Index

Symbols

ΣΗΟΘ(Δ) description logic 190, 197, 198, 210

A

Abstract Region language 218, 219
academic environments 97, 98
access methods 24, 41
access methods development 24, 41
acoustic environments 45
Active Badge paradigm 3
Active Bat paradigm 3
ActorNet middleware 219, 221
actuators 180
adaptive systems 282
addressing scheme, component-based 138
ad hoc networks 248, 249, 260, 261
agent technologies 1
Agilla middleware 219, 221
ambient intelligence 263, 264, 277
Anoto technology 26, 27, 29, 30, 31, 32, 34,
35, 37, 39, 41
application requirements 60, 89
Archipel project 192
artificial intelligence (AI) 265
Assisted Cognition Project 192
assisted living facilities 192
assistive environment paradigm 190, 191, 196,
211
automatic patient monitoring 98
automatic repeat request (ARQ) mechanism 60
autonomous network systems 249
available bandwidth 60, 89
Aware Home paradigm 3

B

base stations 216, 220, 221, 226, 231
battery technology 158, 159, 160, 161, 163,
168, 170, 171, 215, 217, 219, 223, 225
Bluetooth 27, 31, 33, 34, 35, 59, 61, 63, 64,
66, 67, 68, 69, 70, 71, 72, 81, 84, 85, 86,
87, 89, 90, 91, 94, 95, 97, 100, 102, 103,
104, 106, 107, 108, 109, 110, 112, 161,
166, 171, 283
body area networks (BAN) 232, 233, 234, 236,
237, 238, 242, 244
business environments 97, 98

C

calm technology 160
carrier sense medium access with collision
avoidance (CSMA/CA) 141, 143
CDMA2000 mobile technology standards 59,
89
CellID technology 234, 246
channel quality 59, 65, 87, 89, 92
circuit technology 160, 161, 162, 163, 164,
165, 171
clock gating 162, 163, 164
CodeBlue system 192
code mobility 285, 294, 301
cognitive barriers 190
cognitive impairment 191
common context management systems 214
communication, loss of 60, 67, 69
communication quality 59, 60, 61, 62, 64, 66,
67, 89, 93
communication quality, problems of 61
complementary metal oxide semiconductor (CMOS) technology 161, 165, 171, 173
complex systems 159, 162
computational intelligence 265, 279, 280
computers, embedded 159
computer users 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42
computer users, inexperienced 25
connection cost 59, 89
context-aware applications 111, 191, 211, 214, 215, 216, 217, 228
context-aware computing 263
context awareness 1, 2, 3, 98, 159, 191, 211, 213, 214, 215, 216, 217, 228, 264, 282, 283, 293, 294, 301
context-aware systems 282, 283, 293, 294, 301
context management systems 214, 215
Context Toolkit 191
control execution 114
controller clock drift 114
controller level 113
control loops 114, 115, 116, 122, 126, 141, 144, 145
control systems 113, 114, 116, 117, 122, 124, 128, 135, 136
control systems, distributed hierarchical 113, 138
CoolTown project (HP) 99, 191
cooperative reinforcement learning approach 1
correlation association 113
Cougar language 218
C-pen technology 26
Cricket Location Support System paradigm 3
Crossbow Mica2 node 217
cruise control 159
Cyberguide project 99, 109

data association 113, 126
data capture 24, 25, 26, 27, 31, 35, 40, 41
data entry 25, 26, 31, 34, 40
data fusion, association 113, 126
data fusion, classification 113, 127, 135
data fusion, composite decision 113
data fusion models 113, 114, 123
data fusion, preprocessing 113
data rate scaling 114
decision-making systems 138
density control 250
description logic (DL) 190, 196, 197, 200, 201, 202, 204
device mobility 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 77, 79, 80, 83, 84, 85, 87, 89, 92, 93, 94
DFuse language 218, 219
dialogue flow 46
dialogue strategy 46
dialogue strategy, completion goal 46, 52
dialogue strategy, confirmation goal 46
dialogue strategy, constraining goal 46
dialogue strategy, disambiguation goal 46
dialogue strategy, error recovery goal 46
dialogue strategy, greeting/closing goal 46
dialogue strategy, relaxation goal 46
dialogue strategy, reprompting goal 46
digital divide 24, 25, 41
digital environments 98
digital museum project (Tokyo University) 99
digital notebook technology 27
digital pen and paper technology 24, 25, 26, 27, 29, 31, 32, 34, 37, 39, 40, 41
digital pen technologies 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43
digital whiteboards 27
direct sequence spread spectrum (DSSS) 141, 143, 147, 148
disability 190, 191, 192, 212
disability access 190, 191, 194, 204, 205, 206
DISC VUI 45
distributed independence 114
distributed operations 114
distributed systems 176, 283, 285, 286, 287, 288, 289, 299
distributed systems, mobility in 283
DOMUS LAB 192
dynamic process temperature compensation (DPTC) 163, 164
dynamic systems 248, 249, 250, 251, 253

E
EAGLES VUI 45
Easy-living paradigm 3
Easyliving system (Microsoft) 191, 192, 211

e-health applications 232, 233, 236, 237, 238, 239, 240, 242, 243, 244
elderly care 232, 234, 244
elderly population 24, 25, 29, 32, 33, 40, 41
electronic health records (EHR) 233, 240
electronic medical records (EMR) 233
embedded systems 176, 215
emergency services 232, 233, 239, 243
energy consumption 176, 177, 179, 180, 181, 182, 183, 188
energy depletion 249
energy waste 159, 160, 161, 162, 165, 172
entropy 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21
entropy, joint utility function of 2
EnviroTrack language 218, 219
e-services 24, 25, 31, 40, 41
ESWin hybrid expert shell 267, 268, 269, 270, 271
expert systems 263, 265, 271

F
fault tolerance 114, 121, 127, 286
feedback loop delays 113, 114, 116, 117, 130, 132
feedback loops 113
frequency hopping spread spectrum (FHSS) 141, 143, 147, 148
fuzzy logics 265
fuzzy rules 268

G
Gaussian varying time delays 114
general packet radio service (GPRS) 27, 33, 41, 59, 89
genetic algorithms 265
global clock 163
globally asynchronous locally synchronous (GALS) design 163
global positioning system (GPS) technologies 99
global positioning systems (GPS) 159, 170, 178, 180, 185, 234, 242, 245
GUIDE project 99

H
handicap situations 190, 191, 192
headsets 46, 48
healthcare 232, 233, 235, 243, 244, 246, 247
healthcare applications 232
healthcare applications, pervasive 232
healthcare, home-based 24, 41
healthcare monitoring systems 232, 236, 237, 238, 244
healthcare services 25, 26, 31, 33, 40, 43
health informatics 233
health services 232, 233, 243
heat dissipation 161, 172
heterogeneous wireless networks 265
high availability 286
high priority data 138
HIPS project 99
HIS, association 266, 274, 275
HIS, combination 264, 265, 266, 278
HIS, fusion 265, 266, 267, 274
HIS, integration 266, 267
HIS, modular 266, 267
HIS, transformational 266
HIS, unified 266
Home paradigm 3
Hood language 218, 219, 231
hospital environments 97, 98, 99, 106, 232, 237
human activity 215
human communication 46
human computer interfaces (HCI) 1
human deficiency 190
human-environment interaction (HEI) 190, 191
human-machine interactions 45
human safety 139
hybrid expert shells 267
hybrid expert systems 265, 267
hybrid expert systems, fully-integrated 265, 266, 274
hybrid expert systems, functional-replacing 266
hybrid expert systems, intercommunicating 266
hybrid expert systems, loosely-coupled 265, 267
hybrid expert systems, polymorphic 266
hybrid expert systems, stand-alone 265
hybrid expert systems, tightly-coupled 265, 267, 274
hybrid expert systems, transformational 265, 266, 267
hybrid intelligent systems (HIS) 263, 264, 265, 266, 267, 271, 277, 279, 281
hydrocarbons 113
hydrocarbons, flow of 113

I

ICIDH model 192
IEEE 802.11 WLAN standards 59, 61, 63, 64, 65, 66, 67, 68, 71, 74, 85, 86, 89, 92, 93, 94
IEEE 802.16 wireless broadband standards 59, 89
iHospital project 99
ILEX project 99, 110
industrial environments 113, 134
InfoPad project 99
infra-red technologies 99
inhabitant activity 1, 2, 3, 4, 10, 21
inhabitant mobility 1, 2, 3, 4, 13, 14, 15, 16, 21, 22
intelligent agents 263, 273, 277
intelligent computing environments 1
intelligent environments 98, 109
intelligent factories 249
Intelligent Home paradigm 3, 22
intelligent homes 249
intelligent hospitals 98
Intelligent House_n paradigm 3
intelligent labels 99
intelligent processing techniques 266
intelligent systems 263, 265, 266, 267, 278, 279, 280, 281
intelligent transport systems 249
interfaces 25, 26, 40, 42
interfaces, user-friendly 25
Internet, access to 24, 25, 27, 29, 31, 37, 38, 39, 40, 41
Internet of Things 176
internet protocol television (IPTV) 47, 58
io2 Digital Pen 27
IP multimedia subsystem (IMS) 234

J

jitter 114
joint location uncertainty 1, 2, 3, 4, 11, 12, 13, 16, 17, 21

L

language complexity 47
languages, data-level 218
languages, group-level 218
languages, node-level 218, 219
LeapFrog 27
learning, Nash Q- (non-cooperative) 2, 11, 13
learning, reinforcement (cooperative) 4, 23
link layer 250
Livescribe 27
location-aware resource management 1, 3, 4
location systems 282, 283
location-tracking paradigms 3
location-tracking paradigms, indoor 3
Logitech 27
low power design considerations 158
low priority data 138, 149
LPQ controllers 114

M

machine learning 1
machine translation 47
MAC sublayer 250
MANET design 251
MANETs, self-organizing 251, 259
man/machine dialogue strategy 46
Markov decision processes 46
media access control (MAC) parameters 61, 63, 66
medical telemetry systems 233
medium access control (MAC) 140, 141, 143
message passing 285, 294
metadata 46, 47
metropolitan area networks (MAN) 59, 89
m-Health (mobile Health) 233, 236, 246
micro controller units (MCU) 139
microsensor networks 249, 261
middleware 1, 59, 60, 85, 214, 217, 219, 227, 228, 229
INDEX

MIT (Massachusetts Institute of Technology) 100

mobile ad hoc networks (MANET) 98, 104, 105, 106, 109, 112, 248, 249, 250, 251, 254, 257, 258, 259

mobile computing 177, 282, 283, 284, 286, 287, 288, 289, 303

mobile devices 59, 63, 93

mobile networks 46

mobile users 59, 89

mobile wireless communications 1

monitoring applications 232, 234

monitoring loops 141

monitoring, remote 232, 233, 234, 236, 237

multi-hop communication 216

multimodal interfaces 47

multimodal searching 47

museum environments 97, 98, 99, 102, 103, 110, 111

N

natural language processing 47

network architectures 176

network clustering 250

network layer 250

network lifetime 217

network load 60, 89

network management systems 113, 121, 135

network manager level 113, 114, 115, 117, 118, 119, 121, 124, 126, 127, 129, 133

network robotics 233, 234, 235, 237, 238, 239, 240, 243, 244, 245

network routing protocol 138

network state 59, 89

Neural Network House paradigm 3, 22

neural networks 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 275, 277

neurocybernetics 265

node operational time 217

noise 45, 48, 51, 52, 56

Nokia Digital Pen SU-1B 27

non-cooperative Nash H-learning approach 1, 11, 12, 13, 15, 16, 17, 18, 19, 21

NuFlo Measurement System Model MC-II flow analyzer 140

O

oil field platforms 114, 138

oil pipeline flow control 114

oil pipelines 114, 122, 123, 126, 127, 128

oil production control system 138, 139, 140, 141, 144, 145, 154

oil production flow 139

oil production platforms 113, 138, 139

oil pump stations 139

Olivetti Active Badge system 99

OneWorld project 98

Oxygen project (MIT) 100, 111

P

paper 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

dpaper as an interface 26

PARADISE VUI 45

PARCTab project 99

ParcTab system 191

peer-to-peer (P2P) network 98, 100, 110, 111

pentop computers 27

Personal Shopping Assistant project 99

pervasive applications 97, 98, 100, 102, 110

pervasive computing 1, 2, 97, 98, 100, 109, 110, 111, 160, 173, 177, 190, 191, 192, 232, 233, 236, 237, 244, 247, 249, 261, 284, 285, 288, 289, 296, 300, 301, 303

pervasive computing applications 232

pervasive computing environments 214, 215, 216

pervasive computing paradigm 232, 233

pervasive environment 232, 233, 234, 236, 242, 244

pervasive systems 98, 99, 248, 249, 261

physical difficulties 190

physical impairment 190, 191, 192, 195

PID controller 114, 132

Polyvisions Eno digital whiteboard 27

portable devices 282, 286, 288

PostgreSQL 140

PostgreSQL database 140

Post-it notepads 27

power budget 158, 159
Index

power consumption 158, 159, 160, 161, 162, 163, 164, 166, 167, 170, 171, 172
power dissipation 161, 162, 164, 165, 166
power dissipation, dynamic 159, 161, 162, 163, 164, 165, 168, 169, 174
power dissipation, leakage 161, 165
power dissipation, short circuit 161
power limitations 158
power waste 162, 163
PPH model 192
predictive PI (PPI) controller 114
Proactive Health Research 192
proactive paths 138, 147, 148, 153
process components 138, 141, 145
process devices 113
Pulse™ Smartpen 27

Q
quality of service (QoS) 176, 182

R
RADAR paradigm 3, 21
radio frequency identification (RFID) 99, 178
radio frequency (RF) 140
radio interfaces 59, 89
radio signal 59
reactive paths 138
real-time communications 45
real time systems 176
receiver signal strength indicator (RSSI) 60, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 87
recognition error rates 45
Rememberer system 99, 110
remote access 233, 239, 240
remote communication 285
remote information access 286
remote method invocation (RMI) 285, 289
remote procedure call (RPC) 285
retransmissions 60, 87
RFID sensors 99
routing protocol, hybrid 138
runtime task management 214, 217, 224, 228

S
sample rate adaptation 114
security 214, 217, 225, 226, 227, 228, 229, 230, 231
self-adaptability 214, 217, 223, 224, 227, 228
self-organization 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262
self-organizing ad hoc networks 248, 251
semantic matching framework (SMF) 190, 193, 195, 200, 201, 203, 204, 205, 207, 209, 210
semantic nets 265
sensor network level 113
dless network system 138
sensors, acoustic 180
sensors, infrared 180
sensors, intelligent 176
sensors, movement 180
sensors, optical 180
sensors, pressure 180
sensors, seismic 180
sensors, smart 179, 180
sensors, temperature 180
Shannon’s entropy measure 3, 4
signal interference 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 75, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96
signal, received 60, 65, 66, 77
signals, bad quality 59
simple object access protocol (SOAP) 46
Simulink 114
S-MAC scheme 250
smart cards 99, 178
smart cooperative objects 263
smart devices 1, 2, 15
smart environments 1, 2, 4, 13, 21, 97, 175, 176, 177, 178, 187, 190, 205, 210, 212, 263, 267, 268, 270, 271, 277
smart environments, hybrid approach for 263
smart homes 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 190, 210, 212
smart homes, multi-inhabitant 1, 2, 4, 13, 16
smart objects 263, 264, 265, 272, 277
smart pervasive environments 1, 3
smart spaces 98
Sony Ericsson Chatpen™ 27
speech technology 44, 57
spontaneous networks 98, 100, 102, 112
Squawk middleware 219
stemming 47
subdialogues 46
supervisory control and data acquisition (SCADA) system 115, 118, 133
swarm intelligence 265
synonyms 47
system-on-a-chip (SoC) 163, 164, 174

T
task description language 214, 217, 227, 228
TeenyLIME language 218
telemedicine 233, 235, 236, 240, 244, 245
telepresence 233, 235, 246
terminal designs 25
terminal devices 25
terminal technologies 24, 41
time division medium access (TDMA) type scheduling 141, 143, 150
time division multiple access (TDMA) schemes 250
time varying network conditions 114
TinyDB language 218, 219
TinyLIME language 218
Tokyo University 99
tourism 99
transducers 180
transistor technology 161, 171
TrueTime simulator 114

U
ubiquitous applications 44, 50
ubiquitous computing environments 97
ubiquitous computing systems (UCS) 263, 264, 265, 267, 272, 277
ubiquitous environments 176, 177, 178, 179, 181, 183, 185
ubiquitous hospital 99
ubiquitous software 282, 283, 290, 300, 302
ubiquitous software development 282, 283, 285, 287, 289, 290, 291, 293, 296, 298, 299, 300, 302
ubiquity 44, 45, 46, 47, 48, 49, 50, 52, 55, 57, 58
uniform distribution 113
universal mobile telecommunications systems (UMTS) 59, 89
U.S. Defense Advanced Research Projects Agency (DARPA) 179
user limitation capabilities 190, 192
user voice recognition 44
user voices 44

V
vehicular ad hoc networks (VANET) 248, 258, 259
vehicular networks 248
voice 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58
voice-based interaction systems 45
voice commands 45
voice dialog 46, 47, 58
voice recognition process 45
voice recognition systems 45
voice user interface (VUI) 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
voice XML (VXML) 46, 47
VUI evaluation 45, 52
Index

VXML metadata 47
VXML syntax analyzer 47

W
wavelets 61, 64, 65, 74, 75, 77, 79, 94
Websign project 99, 111
Weiser, Mark 160, 173, 174, 176, 177, 178, 189, 283, 284, 285, 287, 289, 298, 299, 300, 302, 303
WiFi (IEEE 802.11) 161, 166, 283
WiMAX 283
wired networks 59, 60
wired topology 140
wireless ad-hoc networks 215
wireless cards 60, 67, 71, 72, 73, 75
wireless channels 60, 61, 62, 63, 64, 67, 72, 75, 76, 77, 87, 92, 93
wireless communication devices 215
wireless communication systems 98
wireless communication systems, low power 98
wireless computing devices 97, 98, 99, 100, 101, 102, 108, 109, 111, 112
wireless devices 46
wireless environments 60, 74, 77, 84
wireless fidelity (WiFi) (IEEE 802.11) 97, 102, 112
WirelessHART standard (IEEE 802.15.4) 113, 119, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 154, 155, 156
wireless infrastructures 98
wireless interfaces 60, 61, 62, 63, 65, 66, 67, 68, 69, 72, 85, 93
wireless links 215
wireless local area networks (WLAN) (IEEE 802.11) 59, 61, 95, 99, 234, 236, 237, 245
wireless networks 59, 63, 64, 65, 85, 89, 92, 94, 96, 97, 99, 175, 176, 248, 282, 284
wireless network technologies 264
wireless personal area networks (WPAN) (IEEE 802.15) 59, 61
wireless radio 161
wireless systems 59, 96
wireless transmission 161
WLAN SSIDs 234

X
XAC project 214, 215, 217, 219, 220, 221, 223, 224, 225, 226, 227, 228
Xerox PARC 191

Z
Zigbee standard (IEEE 802.15.4) 112, 114, 137