Index

Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D systems</td>
<td>32</td>
</tr>
<tr>
<td>2D taxonomy</td>
<td>47</td>
</tr>
<tr>
<td>3D environments</td>
<td>64, 67</td>
</tr>
<tr>
<td>3D model</td>
<td>64, 65, 66, 68, 69, 71, 72</td>
</tr>
<tr>
<td>3D modelling</td>
<td>64, 65, 66, 67, 68, 69, 70, 71, 72, 74</td>
</tr>
<tr>
<td>3D systems</td>
<td>32</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Online</td>
<td>107</td>
</tr>
<tr>
<td>absolute matrix</td>
<td>319</td>
</tr>
<tr>
<td>advection diffusion</td>
<td>296</td>
</tr>
<tr>
<td>adversarial plan recognition</td>
<td>77</td>
</tr>
<tr>
<td>aerodynamic body</td>
<td>101</td>
</tr>
<tr>
<td>Agencia Estatal de Meteorología (AEMET)</td>
<td>356</td>
</tr>
<tr>
<td>agent recognition</td>
<td>76</td>
</tr>
<tr>
<td>Akaike information criteria (AIC)</td>
<td>359, 360</td>
</tr>
<tr>
<td>alignment system</td>
<td>242, 244, 245, 253, 254</td>
</tr>
<tr>
<td>American concrete institute (ACI)</td>
<td>145, 146, 147, 154, 155, 156</td>
</tr>
<tr>
<td>analysis of variance (ANOVA)</td>
<td>221, 222</td>
</tr>
<tr>
<td>analytical chemist</td>
<td>332</td>
</tr>
<tr>
<td>antivirus software</td>
<td>31</td>
</tr>
<tr>
<td>application programming interface (API)</td>
<td>67</td>
</tr>
<tr>
<td>application-specific integrated circuits (ASIC)</td>
<td>166</td>
</tr>
<tr>
<td>architecture</td>
<td>145</td>
</tr>
<tr>
<td>Arrhythmia Database (DB)</td>
<td>204, 206, 207, 210, 214</td>
</tr>
<tr>
<td>Artificial Embryogeny (AE)</td>
<td>12, 13, 25, 27</td>
</tr>
<tr>
<td>artificial eye</td>
<td>65</td>
</tr>
<tr>
<td>artificial intelligence (AI)</td>
<td>64, 65, 66, 67, 68, 69, 70, 72, 73, 143, 189, 313, 314, 315, 316, 321, 326, 327</td>
</tr>
<tr>
<td>artificial intelligence (AI) techniques</td>
<td>64, 189, 313, 314, 315, 316, 326, 327</td>
</tr>
<tr>
<td>artificial neuron model</td>
<td>12</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>188, 201</td>
</tr>
<tr>
<td>asynchronous evolutionary model (AEM)</td>
<td>294</td>
</tr>
<tr>
<td>atrioventricular (AV) node</td>
<td>208</td>
</tr>
<tr>
<td>auto exposure (AE)</td>
<td>33, 43</td>
</tr>
<tr>
<td>automatically defined functions (ADF)</td>
<td>149</td>
</tr>
<tr>
<td>auto-regressive moving-average with exogenous inputs (ARMAX)</td>
<td>353, 356, 357, 360, 361, 364</td>
</tr>
<tr>
<td>auto-regressive moving-average with exogenous inputs (ARMAX) model</td>
<td>353</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>147, 154, 156, 157</td>
</tr>
<tr>
<td>backpropagation (BP)</td>
<td>283</td>
</tr>
<tr>
<td>backpropagation (BP) learning algorithm</td>
<td>283</td>
</tr>
<tr>
<td>backward gaussian puff tracking (BGPT)</td>
<td>294, 298</td>
</tr>
<tr>
<td>bandwidth</td>
<td>93, 94, 95, 97, 99, 100, 101, 102, 103</td>
</tr>
<tr>
<td>batch approach</td>
<td>265</td>
</tr>
<tr>
<td>batch learning</td>
<td>283</td>
</tr>
<tr>
<td>Bayesian framework</td>
<td>65</td>
</tr>
</tbody>
</table>
bayesian inference 295, 296
bayesian inference model 295
Bayesian network 81, 85, 86, 87, 89
best matching unit (BMU) 265
binary coding schema 175
biodegradation 343
biological cellular system 15
biological genes 15
biological system 14, 15
Biomedical Engineering 207
Biorthogonal family 204, 211
BJ (Box Jenkins) 130, 131, 133, 134, 135, 136,
 137, 138, 139
BJ (Box Jenkins) algorithm 131
black-box model 131
black-box structure 131
block diagram 95
Boolean function 166, 176, 178, 179
Boolean function generator 166
Boolean rules 171
Breast Cancer 227, 230, 231, 233, 234, 235

C

CAOS 80, 89
carbon dioxide (CO2) 112, 113, 114, 115, 116,
 117, 119, 120, 121, 122, 124, 125
carbon monoxide (CO) 106, 112, 113, 114,
 115, 116, 117, 119, 120, 121, 122
Cardiology 204, 215, 216, 217, 218
cardiovascular diseases 204, 205, 209, 219
case-based reasoning (CBR) 327
cellular automata (CA) 313, 314, 315, 317,
 327, 328
cellular automata (CA) technique 313
cellular cycle 17, 18, 19, 20
chemical emissions 106, 107, 108, 111, 112,
 113, 114, 115, 116, 117, 118, 119, 120,
 121, 122, 123
Citroen 112, 114
civil engineering 130, 143, 144, 145, 156, 157
classical neural models 272
clustering 222, 223, 237
CO2 emissions 112, 114, 116, 121, 124
CO emissions 114, 119, 121
color image segmentation 46, 47, 59
combustion control technologies 106
commercial software tool 130
comparative molecular surface analysis (CoMSA) 333
competitive networks 49
complex diseases 219, 220, 221, 223, 235, 236,
 238
Computational Embryology 12, 13, 29
computer aided design (CAD) 69
computer aided design (CAD) software 69, 71,
 73
computer-based communications 242
computer science 242
computer vision 31, 44
congestion lock 17
cost function 281, 282, 283
counter-propagation artificial neural network
 (CP-ANN) 331, 332, 334, 336, 337, 338
crop modeling 262
crop yield 262

d
Darwin, Charles 148, 156, 246, 255
data mining techniques 219, 229, 230, 231
data processing and analysis consortium (DPAC) 189
deoxyribonucleic acid (DNA) 12, 13, 15, 17,
 18, 20, 21, 22, 23, 24, 25, 26, 220, 230
detection of informative combined effects
 (DICE) 223
differential evolution 106, 107, 108, 109, 110,
 122, 123, 124, 125, 126
digital elevation model (DEM) 320, 321
discrete wavelet transform (DWT) 206, 207,
 210, 211, 213, 214
DNA sequence 80, 90
domain restrictions 30, 31, 42
dual band antenna 95, 102, 103
DULCINEA Project 356
dummy-variable regression model 355

E
cosystem services 316
data mining 46, 47, 48, 59
ELECTRE 107, 123, 125
electrocardiogram (ECG) 204, 205, 206, 207, 208, 209, 210, 211, 214, 215, 216, 217
electromagnetic optimization 93
El Niño South Oscillation (ENSO) 354
embryological cells 12, 13
embryological processes 12
emission levels 107, 111, 116, 119, 123
empirical mode decomposition/reconstruction (EMD) 356
encoding strategy 6
gas chromatography-mass spectrometry (GC-MS) 332
F
fourier transform 190, 191
gas chromatography-mass spectrometry (GC-MS) 332
gaussian plume model 295
gene regulatory networks 13
generative topographic mapping (GTM) 273
gene regulatory networks 13
field programable gates array (FPGA) 166, 167, 168, 170, 171, 182, 183, 184, 185
field programable transistors array (FPTA) 182
final prediction error (FPE) 132, 136, 137, 138
finger-print identification 187
finite impulse response (FIR) 272
fitness function 95, 96, 99, 100, 152, 153, 164
f-measure 244, 248, 251, 252
Ford 112, 116
foundation for intelligent physical agents (FIPA) 68
fractional vegetation cover (FVC) 356, 361, 362, 363, 364
French flag test 14
fuzzy logic 223
fuzzy methods 48
fuzzy neural network (FNN) 206
fuzzy sets 314, 315, 316, 330
fuzzy system 31, 279

G
galactic census 187
games and multi-agent-based simulation (GMABS) 323, 324
gas chromatography-mass spectrometry (GC-MS) 332
Gaussian distribution 129
Gaussian filter 35
Gaussian function 53
Gene Regulatory Networks 13
generative topographic mapping (GTM) 273
Index

genetic algorithm (GA) optimization 96

genetic programming (GP) 6, 7, 8, 9, 14, 27, 28, 143, 144, 145, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 168, 183, 184, 185, 223, 224, 234, 237

genetic programming (GP) algorithm 168

genome-wide association studies (GWAs) 222

genotype 163, 165, 219, 220, 221, 222, 223, 226, 228, 229

genotyping 220, 230

geographic information system (GIS) 314, 327, 329

gerometric brownian motion (MBG) 308

global error 4

global inventory modeling and mapping studies (GIMMS) 356

Granger cause 354

grey world scenario 34

Grossberg layer 331, 335, 341

H

Handy-Weinberg equilibrium (HWE) 221

hard computing 31

hard computing approach 31

hardware description language (HDL) 166, 167

hardware-software system 31

HCO emissions 114

health assistance budget 204

heart rate variability (HRV) 207, 209, 218

heterogeneity 241, 242

heterogeneous systems 241

Hidden Markov Model (HMM) 81, 83, 84, 85, 87

Hidden Markov Model (HMM) profile 84

hierarchical prototype learning (HPL) 48

higher-order local autocorrelation (HLAC) 39

high speed milling 128

histogram-based thresholding 46

histogram thresholding 47, 59

homeostatic mechanism 33, 36

human-computer interaction 30, 31, 34, 42

human perception 31

hybrid learning 4

hydrocarbons 106, 122

hydrocarbons (HCO) 112, 113, 114, 115, 116, 117, 119, 120, 121, 122

I

identification criterion 130, 132

image segmentation 45, 46, 47, 59, 60

inductive learning 30, 31, 32

infinite impulse response (IIR) 272

information retrieval (IR) 82

information systems 77, 88

instance-based learning (IBL) 80

instance-based learning (IBL) techniques 80

instant messaging (IM) 37, 38, 39, 40, 41

instant messaging (IM) communication 38

intended recognition 76

Internet 34, 39, 43

interval categorizer tessellation model (ICTM) 318, 319, 320, 321, 322, 327, 328, 329

interval mathematics 319

interval mathematics techniques 319

interval matrices 319

inverse kinematics 66, 67

inverse modeling 295

Iris classification 12

J

Japanese Female Facial Expression (JAFFE) 41

JAVA 194, 195

Java tools for neural networks (JATOON) 338, 349

K

keyhole recognition 76

knowledge bases 242

Kohonen layer 334

Kohonen map 331, 332, 333, 334, 336, 337

Kohonen map features model (KFM) 294, 297, 302, 307, 308

Kohonen neural networks 338

L

lagrangian gaussian puff tracking model (LGPT) 294

land biosphere application 354

laser cladding 128

laser milling 127, 128, 129, 131, 132, 133, 139, 140

423
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser milling machine</td>
<td>128</td>
</tr>
<tr>
<td>leaf area index (LAI)</td>
<td>356</td>
</tr>
<tr>
<td>learning algorithm</td>
<td>4, 281, 283</td>
</tr>
<tr>
<td>learning vector quantization (LVQ) network</td>
<td>332</td>
</tr>
<tr>
<td>learning vector quantization (LVQ) networks</td>
<td>45, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 62, 332</td>
</tr>
<tr>
<td>leave-one-out cross validation (CV-LOO)</td>
<td>342, 343</td>
</tr>
<tr>
<td>level of detail (LOD)</td>
<td>68</td>
</tr>
<tr>
<td>Levenberg-Marquardt (LM) algorithm</td>
<td>358</td>
</tr>
<tr>
<td>linear layer</td>
<td>51, 52, 53</td>
</tr>
<tr>
<td>linear model</td>
<td>278, 280, 281, 285, 290</td>
</tr>
<tr>
<td>linear regression model (LM)</td>
<td>261, 269, 270, 271, 272, 273</td>
</tr>
<tr>
<td>linear transfer function</td>
<td>3</td>
</tr>
<tr>
<td>logic gates</td>
<td>161, 162, 166</td>
</tr>
<tr>
<td>loss on ignition (LOI)</td>
<td>338</td>
</tr>
<tr>
<td>L-systems</td>
<td>13, 29</td>
</tr>
<tr>
<td>Machine learning (ML)</td>
<td>279, 280, 282, 290, 354, 365, 367</td>
</tr>
<tr>
<td>machine learning (ML) techniques</td>
<td>278, 279, 280</td>
</tr>
<tr>
<td>macropuffs</td>
<td>294, 302, 304, 305, 308, 310</td>
</tr>
<tr>
<td>malware</td>
<td>31</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology (MIT)</td>
<td>204, 206, 207, 210, 213, 214, 215</td>
</tr>
<tr>
<td>maximum-likelihood hebbian learning (MLHL)</td>
<td>129</td>
</tr>
<tr>
<td>mean absolute error (MAE)</td>
<td>270, 360</td>
</tr>
<tr>
<td>mean error (ME)</td>
<td>270</td>
</tr>
<tr>
<td>Michigan approach</td>
<td>225</td>
</tr>
<tr>
<td>Microsoft Messenger</td>
<td>38</td>
</tr>
<tr>
<td>microstrip antenna</td>
<td>93, 94, 95, 97, 101, 103, 104</td>
</tr>
<tr>
<td>microstrip patch element</td>
<td>97</td>
</tr>
<tr>
<td>microwave frequencies</td>
<td>102</td>
</tr>
<tr>
<td>MiDAS</td>
<td>78</td>
</tr>
<tr>
<td>minimum redundancy maximum relevance</td>
<td>290</td>
</tr>
<tr>
<td>molecular map of atom-level properties (MOL-MAP)</td>
<td>331, 332, 333, 336, 337, 338, 345, 349, 350</td>
</tr>
<tr>
<td>morphology</td>
<td>65</td>
</tr>
<tr>
<td>multi-agent-based simulation (MABS)</td>
<td>313, 314, 315, 321, 322, 323, 324, 327, 328</td>
</tr>
<tr>
<td>multi-agent-based simulation (MABS) tech-</td>
<td>313, 322, 327</td>
</tr>
<tr>
<td>nique</td>
<td></td>
</tr>
<tr>
<td>multi-agent systems (MAS)</td>
<td>313, 314, 321, 327, 328</td>
</tr>
<tr>
<td>multiband operation</td>
<td>94</td>
</tr>
<tr>
<td>multi-criteria decision making (MCDM)</td>
<td>122, 123</td>
</tr>
<tr>
<td>multifactor dimensionality reduction (MDR)</td>
<td>224</td>
</tr>
<tr>
<td>multifrequency antenna</td>
<td>96</td>
</tr>
<tr>
<td>multi-layered interval categorizer tessellation-based model for high performance computing (HPC-ICTM)</td>
<td>318, 329</td>
</tr>
<tr>
<td>multilayer perceptron (MLP)</td>
<td>86, 260, 261, 263, 264, 269, 272, 273, 278, 282, 353, 357, 358, 359, 360, 361, 364</td>
</tr>
<tr>
<td>multilayer perceptron (MLP) model</td>
<td>260</td>
</tr>
<tr>
<td>multilevel wavelet decomposition</td>
<td>190</td>
</tr>
<tr>
<td>multimodal problems</td>
<td>10</td>
</tr>
<tr>
<td>multiobjective problems</td>
<td>10</td>
</tr>
<tr>
<td>multiresolution analysis (MRA)</td>
<td>207, 211</td>
</tr>
<tr>
<td>mutation</td>
<td>6, 8, 9</td>
</tr>
<tr>
<td>National Statistics Institute (INE)</td>
<td>204</td>
</tr>
<tr>
<td>natural resource management</td>
<td>313, 314</td>
</tr>
<tr>
<td>natural resources management</td>
<td>313, 314, 315, 316, 324, 326, 327, 328</td>
</tr>
<tr>
<td>neural model</td>
<td>260, 261, 263, 265, 281, 282, 287, 353, 360</td>
</tr>
<tr>
<td>neural network classifier</td>
<td>213</td>
</tr>
<tr>
<td>neural network model</td>
<td>353, 368</td>
</tr>
<tr>
<td>Neuro-Fuzzy approach</td>
<td>71</td>
</tr>
<tr>
<td>Neuro-Fuzzy system</td>
<td>71, 355</td>
</tr>
</tbody>
</table>
Index

nitrous oxide (NOx) 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 124
non-error rate (NER) 336, 341, 342
non-linear function 280
nonlinear mechanical system 130
nonlinear model 130, 355, 360
non-terminal nodes 149, 150
non uniform puffs functions (NUPFS) 293, 294, 302, 304, 305, 308, 310, 311
non uniform rational basis splines (NURBS) 302, 310, 312
normalized difference vegetation index (NDVI) 353, 355, 356, 357, 359, 361, 365
North American grasslands 354
North Atlantic Oscillation (NAO) 353, 354, 355, 357, 359, 361, 362
NOx emissions 112, 114, 116, 119

O

object modelling 67
on-line approach 265
on-line learning 283, 284
ontology 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258
ontology alignment 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 251, 253, 254, 255, 256, 257, 258
ontology alignment systems 241, 244, 246, 253, 254
ontology alignment techniques 241, 243, 247, 248
ontology engineers 241
ontology mapping 241, 255, 256, 257
ontology matching 241, 256, 257, 258
Output Error (OE) 131, 133, 134, 135, 136, 137, 138, 139

P

parallel genetic algorithm 168
pattern classification 12
pattern recognition 12, 22
perceptions multilayer (MLP) 213
phenotype 163, 165
plan libraries 76, 82
plan recognition 76, 77, 82, 89
plume gaussian 295
plume gaussian principles 295
probabilistic methods 46
processing element (PE) 2, 3, 4
protein concentration percent 17
puffs 294, 295, 296, 298, 299, 302, 305, 308, 310
pulse width modulation (PWM) 181

Q

quarter wave transformer 98, 99, 103, 104

R

radial velocity spectrograph (RVS) 188, 189, 190, 191, 201, 202
radiation transport 187
RBF network 4
receptor-source modeling 295
recommender systems 78
reconfigurable circuit 160, 161, 167, 175, 176, 177, 179, 181, 182
region-based methods 48
regulating genes 15
reinforcement learning 4
relative humidity (RH) 268, 269
relative matrix 319
reproduction operators 163
reproductive plans 148
resonant frequency 94, 97, 100
réunion internationale des laboratoires et experts des matériaux, systèmes de construction et ouvrages (RILEM) 144, 147, 151, 156, 157, 158
robotic application 64
robotics 64, 65, 70
role-playing game (RPG) 322, 323, 327
root mean squared error (RMSE) 353, 359, 360, 364
root mean square error (RMSE) 270

S

schizophrenia 219, 226, 229
scientific community 46
sea pollution 331
second-order closure integrated puff (SCIPUFF) 295, 311
self organized maps (SOM) 207
Short Time Fourier Transform (STFT) 205
sigmoid transfer function 3
signal-to-noise ratio (SNR) 188, 189, 190, 191, 196, 197, 198, 199, 200, 201
similarity aggregation 241, 245, 247, 253, 254
simulated evolution 315
single nucleotide polymorphism (SNP) 219, 220, 221, 222, 223, 224, 226, 227, 228, 229, 230, 233, 235
sinoatrial (SA) node 208
social context 75
social navigation support (SNS) 78
soft computing 30, 31, 42, 46, 47, 93, 95, 108, 121, 123, 127, 128, 143, 144, 155, 156, 223
soft computing methods 1
soft computing model 128
soft computing techniques 144, 155
soil pollution 331
source-receptor model 295
Southern Oscillation Index (SOI) 353, 354, 355, 357, 359, 361, 362
spectroscopy 187, 188
standard precipitation index (SPI) 356, 361, 362, 363, 364
standing wave ratio (SWR) 98
statistical learning methods 64
status matrix 319
stellar physico-chemical parameterization 188
stellar spectrum 187, 192
subclasses 51
supervised learning scheme 49
support vector classification (SVC) 207
support vector machines 130, 204, 211, 213, 214, 215
support vector machine (SVM) 204, 207, 211, 212, 213, 214, 215, 223, 224, 272, 290
swarm intelligence (SI) 93
symbolic discriminant analysis (SDA) 223
synthetic data sets 188
system identification 128, 129, 142

T

Takagi Sugeno Model 310
Takagi–Sugeno model (TKS) 294, 302, 303, 308, 310, 311
target classes 48, 51
taxonomy 243
term frequency–inverse document frequency (TFIDF) 81, 82, 83, 84, 87
terminal nodes 149, 150, 152
termosyphon close loop cooling process 130
threshold transfer function 3
time to live (TTL) 15, 18, 19, 20
topographic error 267
topological feature map 333, 350
TOPSIS 107, 123, 124
touching the head 36
Toyota 112, 113, 115
traffic pollution 339, 341, 351
transport and chemical aerosol model (TCAM) 68
trigonometric differential evolution (TDE) 106, 107, 108, 109, 110, 111, 115, 121, 122, 123, 126
tropospheric ozone 278, 279, 280, 283, 284, 285, 286, 287, 288, 289, 290, 291
tropospheric ozone concentration 278, 279, 280, 284, 287, 289, 290, 291

U

UCI Machine Learning 219, 230, 231, 233, 235
UCI Machine Learning datasets 219
UCI Machine Learning Repository 230, 231, 233, 235
ultraviolet radiation 279
Index

United States of America (USA) 279, 280, 292
University of Michigan 255
UNIX 81, 82, 83, 84, 85, 86, 87
UNIX user 81, 82, 83, 84
UNIX user classification 81
UNIX user profile 81, 84
unstructured cellular automata (UCA) 317
user modeling (UM) 76, 77, 79, 80, 87, 88
user modeling (UM) technology 77

V

vehicle emissions 106, 125
virtual agent 66, 73
Visual C++ 55
Volkswagen 112, 113, 114, 115, 116, 119
voltage standing wave ratio (VSWR) 97, 99, 101, 102, 103
voltage standing wave ratio (VSWR) bandwidth 97

W

Waikato Environment For Knowledge Analysis (WEKA) 86, 89
wavelet transform 192, 198
web utilization miner (WUM) 78, 90
weight elicitation 114
Windows Live Messenger 40
World Wide Web 76, 79

X

XML 195

Z

zero-order fuzzy model 130