Index

A
- adaptation and parallel processing 78
- adjusted mean square error (AMSE) 16, 18, 19, 20
- agents 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141
- agile software development 96
- agility 127
- AIRS, generalization 78
- AIRS, parameter stability 78
- AIRS, performance 78, 82
- AIRS, self-regulatory 78
- ant colonies 164, 168, 175, 176
- ant colonies, pheromone biased model of 220
- ant colony algorithm 220
- ant colony optimization (ACO) 161, 162, 163, 164, 166, 167, 173, 175, 176, 177, 220, 221, 222, 223, 225, 227, 228
- ant colony optimization (ACO) algorithm 8, 10, 11
- antigens 77, 82, 84, 85, 87, 88, 89, 90, 91
- ants 129, 164, 166, 167, 168, 169, 170, 171, 172, 175, 176, 178, 179, 180, 221, 222, 223
- artificial immune recognition systems (AIRS) 76, 77, 78, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92
- artificial immune systems (AIS) 76, 77, 78, 82, 91
- artificial intelligence (AI) 96, 162, 163, 164
- attributes, verification of 220
- automatic test cases 167
- automatic test cases 167

B
- bacteria colonies 127, 129, 141
- benchmarking 95, 125
- B memory cells 77
- breeder genetic algorithm 9

C
- capability maturity model (CMM) 202, 217
- capability maturity model-integrated (CMM-I) 202
- CART least absolute deviation (CART-LAD) 99
- case-based reasoning (CBR) 3, 14, 15, 19, 21
- case-based reasoning (CBR) estimation methods 15, 19, 20, 21, 22, 23, 24, 25
- CASE (computer aided software engineering) tool 51, 54, 57, 67
- Choquet integral 203, 218
- chromosomes 7, 17, 18, 21, 22, 23, 24, 35, 187, 188, 189, 190, 193
- classical regression 3
- classification 77, 78, 80, 82, 91, 92
- classification and regression tree (CART) estimation methods 15, 21, 22, 23, 24, 98, 99
- classification-tree models 98
- clonal expansion 77
- clonal selection 77, 78, 92
- clustering 77, 80, 91
- COCOMO (constructive cost model) 4, 12, 21, 22, 23, 24

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
Index

code coverage criteria 185
co-evolutionary models 51, 57, 74
co-evolution of species 51
combinatorial optimization (CO) problems 221
COM+ (component object model) (Microsoft) 57
complex application environments 220
complex systems 50, 51, 52
composer agents (CA) 132, 133, 134, 135, 136, 137
computational intelligence 3, 52, 96
computational intelligence methods 3
computational intelligence techniques 3
cost drivers 14
cross-validation 15, 21, 22
cyclomatic complexity 5
cyclomatic complexity, extended 5
cyclomatic complexity, McCabe’s 5
D
data fields 221
deceptive functions 36
decision-making 145, 146
dependent variable Effort (CE) 4
developed line of code (DLOC) 4
device driver operations 220
differential evolution (DE) 8, 9
differential path length 221
distributed control 78
dynamic bytecode analysis 8
E
edges 221, 224, 226
effort 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25
effort, actual (EFreal) 16
effort estimation 13, 14, 15, 17, 18, 19, 21, 23, 24
effort, predicted (EFpred) 16
elitism 32, 36, 37
estimation methods, model based 15, 17
estimation methods, non-model based 15
ET, byte-source code 6
ET, source code 6
evolutionary algorithm applications 1

evolutionary algorithms (EA) 1, 2, 3, 7, 8, 9, 10, 12, 52, 74, 184, 185, 187, 195, 223
evolutionary computational models 2
evolutionary computation (EC) 1, 2, 3, 9, 10, 12, 30, 31, 142, 157, 159
evolutionary computation paradigm 127
evolutionary computation techniques 1, 2, 3, 4, 6, 8, 9, 12
evolutionary optimization techniques 1
evolutionary programming 2, 30
evolutionary testing (ET) 6, 7, 8, 185, 186, 187, 188, 189, 198, 223
evolution process, artificial 1
evolution process, natural 1
evolution strategies 30
evolution strategy 2
execution state sequence graph (ESSG) 164
execution traces 192
expert judgment 3
F
fault avoidance 78
fault prediction 76, 77, 78, 79, 80, 81, 82, 86, 91, 92
fault removal 78
fault tolerance 78
finite state machine (FSM) 8
first-order logic 220, 223
fitness function 33, 34, 38, 43, 44, 47, 49
flexibility 127
fuzziness 201, 203, 204
fuzzy based multi-criteria analysis 202
fuzzy coefficients 146
fuzzy concepts in ranking 203
fuzzy constrained optimization problems 142
fuzzy environment 201, 203, 216, 217
fuzzy expert systems 5
fuzzy integral 203
fuzzy linear programming 143, 158, 159, 160
fuzzy linear programming problem 143
fuzzy logic 3, 4, 76, 79, 142, 157, 158, 200, 201, 202, 203, 204, 205, 207, 218, 219
fuzzy mathematical programming 143, 159
fuzzy measures 203, 218
fuzzy multi-criteria decision making methods 203
fuzzy neural networks 203
fuzzy numbers 142, 203, 208, 216
fuzzy objective function problem 145
fuzzy optimization 142, 145, 158, 159
fuzzy parameters 143
fuzzy predicates 204
fuzzy relations 203
fuzzy sets 204, 206
fuzzy set theory 203, 204

G
GA convergence 31
GADGET generator 163
GA loop 148
GA, simple 31, 32, 36, 37, 49
gaussian membership function (GMF) 4
GC, construction graph 221
genetic algorithms (GA) 2, 4, 5, 6, 7, 8, 9, 10,
 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34,
 35, 36, 37, 38, 41, 42, 43, 44, 45, 48, 49,
 51, 52, 56, 57, 60, 61, 63, 65, 66, 67, 68,
 69, 70, 71, 72, 73, 74, 75, 76, 147, 148,
 149, 151, 153, 154, 157, 162, 163, 164,
 175, 184, 185, 186, 187, 189, 190, 193,
 194, 196, 197, 198
genetic operators 2, 32
genetic operators, crossover 31, 32, 34, 35, 37
genetic operators, mutation 31, 32, 34, 35, 36,
 187, 189, 192, 195
genetic operators, selection 32, 34, 36, 42
genetic pool 35, 36, 37
genetic programming evaluation 96
genetic programming (GP) 2, 3, 4, 5, 6, 7, 9,
 10, 11, 12, 30, 52, 74, 75, 94, 95, 96,
 97, 102, 104, 105, 107, 108, 109, 111,
 112, 114, 115, 116, 117, 118, 119, 120,
 184, 185, 186, 188, 189, 190, 191, 192,
 193, 194, 195, 196, 197
genotype 35
genotype–phenotype transfer function 188
Goel-Okumoto non-homogeneous Poisson process model (GO) 96, 104, 106, 115, 119
grammar guided genetic programming (GGGP)
 20

gray relational analysis (GRA) 20, 21, 22, 23,
 24

H
heuristic search algorithm 184
heuristic search techniques 184, 185
Hill Climbing algorithm 7
hold-out validation 15, 18, 19, 20, 21, 22, 23
Huang, Hong-Zhong 203, 219
hybrid evolutionary optimization 142
hybrid intelligent predicates 220

I
IEEE 610.12 standard 202
immune systems, adaptive 77
immune systems, innate 77
immune systems, vertebrate 78
information sources (IS) 130
intelligent agents 128
intelligent computational techniques 142
intelligent systems 52
International Software Benchmarking Standards Group (ISBSG) 15, 18, 19, 20, 27
interoperability 127
intrusion detection 77
ISO 9126 Sample Quality Model 203

J
Java bytecode 6, 7, 8
Java modeling language (JML) 8, 163

K
kernel configuration 220
Koza, John 52, 75

L
learning by experience 78
learning classifier systems 30
learning on traversal 220
Lebesgue integral 203
Lee, Huey-Ming 203, 218
linear membership functions 143
linear membership functions, interval 143
linear regression (LR) estimation methods 15, 19, 20, 21, 23, 95, 96, 97, 99, 106, 115, 116, 117, 118
line search (LS) procedures 148, 149, 150, 151, 154, 157
lines of code (LOC) 3, 4
linguistic values 201, 208, 217
linguistic variables 201, 204, 206, 208, 217
linked lists 220, 221, 222, 223, 224, 225, 226, 227, 228
Lin, Lily 203, 218
local propagation on loop 220, 221
logistic membership functions 142
lower costs 51
lymphocytes 77
lymphocytes, B-cells 77
lymphocytes, T-cells 77

M

machine agents (MA) 132, 133, 134, 135, 136, 139
machine learning (ML) 76, 79, 80, 82, 86, 91, 94, 95, 96, 97, 98, 102, 107, 108, 114, 115, 116, 117, 118, 120, 126
machine learning, supervised learning 76, 78, 80, 81, 92
magnitude of relative error (MRE) 15, 16, 19
Markov chains (MC) 34, 49
Markov Software Usage model 8
MdMRE summary measure 15
mean squared error (MSE) 16, 18, 19, 20, 21, 22
mean time between failures (MTBF) 4, 12
measurement of software reliability (MSR) 29
membership function, concave piecewise linear 143
membership function, exponential 143
membership function, hyperbolic 143
membership function, inverse tangent 143
membership functions 143, 144, 145, 159
membership function, s-curve 143, 144, 159
membership functions, logistic type of 143
metadata 51, 56, 57
metaheuristic approaches 162
methodology (ME) 4
MMRE, balanced (BMMRE) 16, 18, 19, 20
MMRE summary measure 15
model bias 95, 102, 103, 107, 114, 117, 118, 119
models, concave 96
models, S-shaped 96, 104, 106, 126
MRE, mean of (MMRE) 15, 16, 18, 19, 20, 21, 22, 23, 24, 25
MRE, median (MdMRE) 15, 16, 21, 22, 23
multi agent systems (MAS) 127, 129, 132, 133, 135, 136, 137, 138, 139
multivariate adaptive regression splines (MARS) 98
mutation operators 189, 190, 192

N

natural selection 2
neighborhood search (NS) heuristic 148
neural networks (NN) 3, 10, 11, 55, 164, 202, 217
nodes 190, 191, 193, 194, 195
non linear fuzzy optimization problem 142
nonlinear programming (NLP) problem 146, 150
non linear programming real world problems 142
null fields 221

O

object developing 50
Object Management Group (OMG) 54, 75, 50
object modeling 50
object-oriented elements, attributes 50
object-oriented elements, classes 50
object-oriented elements, methods 50
object-oriented evolutionary testing 186
object-oriented genetic programming (OOGP) 52
object-oriented paradigm 52
object-oriented programs 184, 197
object-oriented software 50, 51, 52, 53, 54, 55, 57, 64, 73
object-oriented software, attributes 53, 55, 56, 57, 60, 62, 63, 67, 68
object-oriented software, classes 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 67
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>object-oriented software, methods</td>
<td>53, 56, 57,</td>
</tr>
<tr>
<td></td>
<td>60, 62, 63, 65,</td>
</tr>
<tr>
<td></td>
<td>67, 68</td>
</tr>
<tr>
<td>object-oriented software, objects</td>
<td>53</td>
</tr>
<tr>
<td>object-oriented software systems</td>
<td>53</td>
</tr>
<tr>
<td>objects, reusable</td>
<td>50</td>
</tr>
<tr>
<td>offspring numbers</td>
<td>31, 35, 37</td>
</tr>
<tr>
<td>optimization</td>
<td>1, 2, 3, 7, 8, 9,</td>
</tr>
<tr>
<td></td>
<td>10, 12, 76, 77, 91</td>
</tr>
<tr>
<td>optimization-parameter values</td>
<td>186</td>
</tr>
<tr>
<td>optimization problems</td>
<td>142, 146, 147, 150, 151, 156, 157, 159, 160</td>
</tr>
<tr>
<td>oracle</td>
<td>186, 187</td>
</tr>
<tr>
<td>parent numbers</td>
<td>35</td>
</tr>
<tr>
<td>Pareto’s law</td>
<td>5</td>
</tr>
<tr>
<td>Pareto technique for multi objective</td>
<td>51</td>
</tr>
<tr>
<td>problems</td>
<td></td>
</tr>
<tr>
<td>particle swarm optimization (PSO)</td>
<td>7</td>
</tr>
<tr>
<td>phenotype</td>
<td>35</td>
</tr>
<tr>
<td>pheromone exploration strategy</td>
<td>220</td>
</tr>
<tr>
<td>pheromones</td>
<td>166, 167, 168, 169, 171, 179, 180, 220, 221, 222, 223, 224, 225, 226, 227, 228</td>
</tr>
<tr>
<td>Pred(25) summary measure</td>
<td>15, 16, 18, 19, 20, 21, 22, 23, 24, 25</td>
</tr>
<tr>
<td>process engineering</td>
<td>127</td>
</tr>
<tr>
<td>productivity</td>
<td>51</td>
</tr>
<tr>
<td>programming languages, L-type variables</td>
<td>190</td>
</tr>
<tr>
<td>programming languages, R-type variables</td>
<td>190</td>
</tr>
<tr>
<td>program verification</td>
<td>220</td>
</tr>
<tr>
<td>quality assurance (QA)</td>
<td>50, 51, 52, 54, 55, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75</td>
</tr>
<tr>
<td>quality growth</td>
<td>51</td>
</tr>
<tr>
<td>quality model for object-oriented design</td>
<td>(QMOOD) 52, 54, 63, 73</td>
</tr>
<tr>
<td>requirements specifications</td>
<td>185, 186, 201, 202, 206</td>
</tr>
<tr>
<td>resource bottlenecks</td>
<td>130</td>
</tr>
<tr>
<td>reusability</td>
<td>127</td>
</tr>
<tr>
<td>search spaces</td>
<td>51</td>
</tr>
<tr>
<td>search spaces, large</td>
<td>50</td>
</tr>
<tr>
<td>second-order logic</td>
<td>223</td>
</tr>
<tr>
<td>self-organization</td>
<td>127, 128, 129, 130, 132, 141</td>
</tr>
<tr>
<td>self organizing distributed IS</td>
<td>130</td>
</tr>
<tr>
<td>self organizing protocols</td>
<td>127, 129, 131, 132, 135, 141</td>
</tr>
<tr>
<td>self-organizing resources</td>
<td>130</td>
</tr>
<tr>
<td>service autonomy</td>
<td>128</td>
</tr>
<tr>
<td>service discovery process</td>
<td>127, 128, 129, 130, 132, 133, 135, 140, 141</td>
</tr>
<tr>
<td>service elements</td>
<td>128</td>
</tr>
<tr>
<td>service faults, contractual</td>
<td>130</td>
</tr>
<tr>
<td>service faults, environmental</td>
<td>130</td>
</tr>
<tr>
<td>service faults, functional</td>
<td>130</td>
</tr>
<tr>
<td>service level agreements (SLA)</td>
<td>130</td>
</tr>
<tr>
<td>service management middleware</td>
<td>128</td>
</tr>
<tr>
<td>service orientation</td>
<td>127</td>
</tr>
<tr>
<td>service-oriented software applications</td>
<td>127</td>
</tr>
<tr>
<td>simulated annealing</td>
<td>185</td>
</tr>
<tr>
<td>Simulated Annealing algorithm</td>
<td>7, 12</td>
</tr>
<tr>
<td>small learning parameters</td>
<td>220</td>
</tr>
<tr>
<td>SOAP (simple object access protocol)</td>
<td>132, 133, 134</td>
</tr>
<tr>
<td>software agents</td>
<td>129</td>
</tr>
<tr>
<td>software behavior</td>
<td>50</td>
</tr>
<tr>
<td>software complexity</td>
<td>14</td>
</tr>
<tr>
<td>software correctness</td>
<td>29, 30</td>
</tr>
<tr>
<td>software cost estimation</td>
<td>3, 10</td>
</tr>
<tr>
<td>software design</td>
<td>1, 8</td>
</tr>
<tr>
<td>software development</td>
<td>3, 4, 5, 6, 8, 9, 10, 50, 51, 54</td>
</tr>
<tr>
<td>software development, costs of</td>
<td>13</td>
</tr>
<tr>
<td>software development effort</td>
<td>13, 14, 17, 18, 19, 20, 25</td>
</tr>
<tr>
<td>software development life cycle</td>
<td>161</td>
</tr>
<tr>
<td>software development process</td>
<td>15</td>
</tr>
<tr>
<td>software engineering</td>
<td>127, 128, 141, 200</td>
</tr>
<tr>
<td>software engineering data sets</td>
<td>95</td>
</tr>
</tbody>
</table>
Index

Software Engineering Institute (SEI) 77
software engineering processes 200
software engineering (SE) 1, 2, 3, 4, 8, 9, 10, 11, 162, 163
software evaluation 50
software failures 4, 5
software fault data 95
software fault prediction 94, 95, 96, 98, 104, 124
software fault prediction, bias in 95, 101, 112
software fault prediction, cross-release 94, 96, 97, 102, 107, 112
software fault prediction models 76, 78, 79, 95
software faults 95, 96, 97, 98, 122, 125
software lifecycle 203
software metrics 75, 97, 121
software modeling 50
software optimization 50, 51, 57, 71, 72, 73
software problem exploration using genetic programming (SPE-GP) 6
software project costs 3
software project development 3, 14
software project simulator (SPS) 3
software quality 29, 30, 31, 32, 37, 38, 39, 40, 43, 45, 94, 95, 97, 98, 99, 122, 125, 200, 201, 202, 203, 204, 206, 207, 208, 209, 210, 216, 217, 218, 219
software quality assurance 200, 218, 219
software quality attributes 200, 201, 203, 206, 217
software quality, effectiveness metric 51, 52, 54, 63, 64, 71
software quality, extensibility metric 51, 72
software quality, flexibility metric 51, 52, 54, 55, 63, 64, 68, 69, 72, 73
software quality, functionality metric 51, 52, 54, 55, 63, 64, 68, 69, 70, 72
software quality, fuzzy multi-criteria approach 200, 201, 203, 217, 219
software quality modeling 97, 122
software quality, reutilization metric 51, 54, 55, 63, 68, 69, 72
software quality, understandability metric 51, 52, 54, 55, 63, 64, 68, 70, 71, 72, 73
software reliability 4, 6, 11, 29, 30, 31, 37, 38, 40, 41, 44, 45, 47
software reliability engineering (SRE) 37, 38
software reliability, evaluation of 29, 30
software reliability growth models 95, 96, 99, 106, 116, 123
software reliability growth models (SRGM) 96
software reliability management programs 30, 38
software size 14
software specification 50
software structure 50
software testing 1, 161, 162, 163, 164, 165, 166, 175
software testing, automated 161, 163, 172
software testing, exhaustive 161, 163
software testing process 161, 162
solution candidates 1, 8
somatic hypermutation process 77
spurious correlation 36
state transition testing 161, 177
stigmergy 221
stopwatch systems 165, 167
Strongly-Typed Genetic Programming (STGP) methodology 7
Strongly Typed Genetic Programming (STGP) paradigm 6
STTACO prototype tool 168, 171, 172, 173, 174
support vector regression (SVR) 20, 21, 22, 24, 95
swarm intelligence 76, 82
symbolic Java virtual machine (SJVM) 7
symmetrical triangles 4
system under test (SUT) 185, 186, 187, 190, 191, 192, 194, 195, 196

T

Tabu search (TB) techniques 162
test cases, good 185
test criteria 185, 187
testing, automated 186, 187
testing code 190, 191
testing, random 185, 187, 195, 196, 197
TGEN generator 163
trapezoidal membership functions (TMF) 4

tree representation 3

trees, chromosome representation of 5

trees, classification 14, 15, 21

trees, hierarchically organized 190

trees, method call 7

trees, regression 14, 15, 22

tree structures 52, 58, 188, 190, 191, 192, 193, 194, 196, 197

U

UML, simplified 51

UML state transition diagram 166, 167

UML (universal modeling languages) 51, 54, 57, 59, 75

universal description discovery and integration (UDDI) 129, 132, 134

universal modeling languages (UML) 8, 162, 163, 166, 167, 169, 171, 173, 176, 177

V

validation & verification (V&V) techniques 76

variable head 221

Vasconcelos’ GA (VGA) 36, 37, 42, 49

vertices 221

W

Web services (WS) 128, 129, 130, 132, 133, 134, 141

WS reliability 128, 141

Y

Yang, Bo 201, 203, 218, 219

Yao, Lan 203, 219

Z

Zadeh, Lotfi 202, 203, 204, 205, 217, 219