Index

A

Abu Fargha 229, 233, 234, 235, 236, 237, 238, 239, 241, 243
accelerated push 317
adaptive capacity 248, 249, 257
Advanced Hydrologic Prediction Service (AHPS) 176
African Great Lakes 407, 416
agricultural development 25
agricultural policy 86
agrochemicals 457
Albert Nile 347
Amman Zarqa Basin 41
anoxia 406, 415
ant colony algorithm 337
ant colony optimization (ACO) 336, 337
anthropocentric ethics 291
anthropogenic pollution 499, 509, 512
anthropogenic sources 419
aquatic environment 174, 287, 288
aquatic systems 420, 422
Aral Sea Basin 36, 40
architectural component 60
arid 229, 230, 241
artificial intelligence 457
artificial neural networks (ANN) 175, 201, 212, 213, 225
Aswan Dam Reservoir 347
atmospheric materials 500
atmospheric processes 497, 500
autocorrelation function (ACF) 202, 203, 208, 209

B

Bayesian belief network (BBN) 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170
best management practices (BMPs) 435, 436, 438
biochemical oxygen demand (BOD) 368, 369, 370, 371, 372
biological diversity 432
biological wastewater treatment (BWWT) 368, 370, 371, 372, 373, 383
BI software 174, 186
black-box 317, 326
block-Kriging 479, 493
Block Kriging-Bayesian Combination (BKBC) 479, 493
Business Leaders Confidence Index (BLCI) 393
business software 174

capacity building 346
Caridina nilotica 406, 411, 412, 413, 414, 415
Causal Loop Diagram (CLD) 159
central lowland 126
changing climate 86
chaos theory 199, 200, 201, 202, 210, 212, 213, 214, 215, 216, 218, 219, 220
chaotic process 202
chaotic signals 202, 224
chemical oxygen demand by dichromate (COD-Cr) 368, 369, 370, 371, 372
Clean Water Act 41
climate change 266, 287, 297, 304, 305, 311, 317, 327, 390, 403
climate extremes 288
closed-loop 320, 334
cokriging (CK) 481, 486, 490, 491, 493, 495
cold cloud duration (CCD) 478, 479, 480, 481, 482, 483, 484, 485, 490, 491, 492, 493, 494, 495
collaborative discovery 37
combined sewer overflows (CSOs) 435, 437
communication management 141
communications-driven DSS 60
communication technologies 60
community-scale systems 2
computational hydraulics 81, 82, 457
computational procedures 159
computer simulation model 37
computer storage 60
concentration 346, 347, 349, 352, 353, 354, 356, 357, 358
consequences 245, 246
conservation of water 1, 3, 4, 18, 21
Control Theory 57
conventional approaches 3
conventional water management 3, 16
converter 318, 330
cooperative modeling 38
CRM systems 173
cubic meter 347
cultural categories 3
cultural heritage 245
cyanobacteria 415, 416
Cyanophytes 410
Cyperus papyrus 423

data analysis 174, 186, 191
database 346, 360
database management 60, 82, 88, 99, 106, 107
data-centric domain 173
data-centric field 173
data clustering 366
data-driven DSS 60
data estimation 201, 216
data services 174, 176
data warehouses 142
data warehouse systems 60
data warehousing as a service (DWaaS) 176
deadlocked processes 38
decentralised decision-making 2
decision analysis 156, 157, 158, 168, 170
decision-making 2, 3, 5, 16, 17, 38, 41, 156, 157, 158, 159, 160, 161, 166, 167, 168, 170
decision-making process 316, 501, 503
decision support 40
decision variables 56, 57, 59, 68, 69, 70, 75
degradation of land 498
demographic transformation 390
dense papyrus 423
deterministic approach 199, 200, 219, 220, 226
dialogical learning 160
difference equations 321, 322
digital computers 82, 83, 86
Digital Surface Model 247, 253
Discrete Fourier Transform (DFT) 319
document databases 60
document-driven DSS 60
document retrieval 60
drainage basin 26
drainage density 26
drainage network 26
drainage water 456, 457, 458, 459, 460, 461, 470, 472, 473, 474, 475
drinking water 364, 373, 374, 375, 376, 385, 391
drought-driven famine 23
Drought Severity Index (DSI) 319
Dying El Nino (Dno) 233
Dying La Nina (Dna) 233, 234
dynamic flow 498
dynamic processes 316
dynamic simulation 316, 320
dynamic systems 200, 219, 317
Index

E
East African Community (EAC) 408
Eastern Nile 22, 23, 30, 31, 32, 34, 35
ecological systems 24, 498, 504
economic dimension 24
economic efficiency 24
economic growth 24
efficient technology 2
Egypt 23, 35
eigenvalue 365, 366, 367, 368, 369, 378, 388
eigenvalue decomposition (EVD) 366, 367, 368
eigenvector 365, 366, 367, 368
electricity production 245
EMO algorithms 161
Endangered Species Act 41
energy constraints 334
Ensemble Streamflow Prediction (ESP) 176, 181
enterprise information systems (EISs) 173
environmental behaviour 498, 513
environmental degradation 3, 28, 31, 124, 137, 291, 294, 301, 431, 432, 434
environmental dimension 24
environmental effects 24, 29
environmental engineering 81, 82, 87, 287, 457
environmental ethic 291
environmental governance 2
environmental management 4, 161, 499
environmental protection 2, 291
environmental protection agency (EPA) 350
environmental research 368, 386
environmental specialists 23
environmental systems 159, 162, 166, 318, 327, 328
equitable pricing 2
Ethiopia 22, 23, 30, 31, 32, 33, 34, 35
eutrophication 407, 408, 409, 411, 413, 414, 415, 416, 418, 419, 428, 499, 501, 503
eutrophication monitoring network 346
EU Water Framework 2
event mean concentrations (EMCs) 435, 438
evolutionary algorithm 158, 161, 166
Evolutionary Multiobjective Optimisation (EMO) 161, 162, 166, 167
evolutionary optimization 332, 335, 338, 342
Experimental Ensemble Forecast System (XEFS) 176, 177, 197
exposure 245, 246, 248, 258, 261

F
False alarm ratio (FAR) 234, 236
flood characteristics 248, 249
flood damage 249, 263, 269, 278
flood disasters 266, 267
flood events 264, 265, 267, 268, 272, 275, 277, 278, 281, 282, 283, 285
flood forecast 266, 271
flood forecasting 265, 266, 269, 270, 281, 282
flood forecasting systems 266, 269
flood hazards 266, 269
Flood Loss Estimation Model (FLEMO) 249
flood management 244, 245, 261, 265, 266, 267, 270, 274, 275, 276, 278, 279, 280, 284, 285, 479, 480
Flood Management System (FMS) 175
flood mitigation 265, 269
flood plain 127, 130, 230, 245, 246, 247, 253, 254, 256
flood protection 245, 254, 257, 264, 265, 268, 282
flood retention 268, 282, 284
flood risk 244, 245, 246, 261, 262, 264, 267, 268, 269, 275, 284
flood risk management 245, 268, 275
flood risk reduction 268, 269
flood scenarios 267, 283
flood situation 267
flood warning 266, 269, 270, 281, 282, 284
flows 318, 325, 328
fluxes 346, 348
forecast 229, 232, 233, 234, 235, 236, 237, 239, 240, 241
freshwater systems 347

G
general reduced gradient (GRG) 335, 343
Index

generic barriers 391
genetic algorithm (GA) 332, 335, 336, 338, 339, 342, 343, 344
geographical information system (GIS) 174, 175, 177, 194, 195, 198, 287, 308, 456, 458, 461, 462, 463, 470, 472, 475, 476
global Internet 143
global knowledge 140, 141, 144, 145
global market 159, 167
governance 287, 291, 292, 296, 298, 300, 301, 302, 311
graphical representation 159
graphical user-interface (GUI) 175
graph model for conflict resolution (GMCR) 291
Great Man Made River Basin 42
Groundwater Abstraction 164
Groundwater Contamination Management 163
groundwater discharge 460
group identity 3
group learning 38
group modeling 38

H

halogenated hydrocarbons 500
hard-path 317, 327
Harvard Water Program (HWP) 86, 118
hazard 245, 246
head constraints 334
heterogeneous mosaic 390
heterotrophic bacteria 423
horizontal communication 2
hydraulic infrastructure 1
hydraulic modelling 244, 246, 247, 255, 256, 261, 262
hydraulic structures 82
hydro-acoustic 411
hydroclimatic regimes 480
hydroclimatology 480
hydodynamic numerical modelling 175
hydroteological models 432
hydroinformatics modelling 82, 106, 122
hydrological concepts 83
hydrological data 364, 365, 368, 384, 387
hydrological model 321, 322
hydrological modelling 319
hydrological subsystem 317, 319
hydrological sustainability 432
hydrological systems 1
hydrological unit 25
hydrological watershed modelling 81, 82
hydrologic applications 479
hydrologic data 201
hydrologic-landscape 499
hydrologic process 199, 200, 210, 211
hydrologic systems 199, 200, 201, 202, 210, 219, 220, 225
Hydrology for the Environment, Life and Policy (HELP) 288
hydrology intelligence 173, 174, 195
hydrology IT systems 173
hydrometeorological bureaus 40
hydrophobic organic 349
hydro-political 230
hydropower generation 347
hydropower production 316, 319, 394
hydrosphere 497, 498, 499, 505, 506, 512
hypertext documents 60
hypoxia 407, 410

I

industrial waste 287
inference engine 82
Influence diagram (ID) 159, 160
information and communication technologies (ICT) 81, 82, 87, 140, 141, 143, 145, 147, 148, 149, 150, 152, 153, 176, 179, 184, 198, 457
information exchange 55
information management 141
information technologies 172, 173, 174
inland navigation 245
inorganic particles 348
Institutional Analysis and Decomposition (IDA) 292, 300, 301, 302, 303
institutional analysis (IA) 286, 291, 292, 293, 296, 300, 301, 302, 308, 310, 312
institutional dimension 24
integrated management 159
integrated modelling 82, 86, 87, 88, 107, 115, 122, 123
Integrated River Basin Management (IRBM) 125, 139
Integrated River Management 124
Integrated Water Resources Management (IWRM) 82, 90, 93, 97, 102, 121, 122, 123, 286, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 302, 304, 305, 307, 308, 310, 311, 313, 315
integrated watershed management (IWSM) 22, 23, 26, 27, 28, 29, 30, 32, 33, 34
interactive environment 38
Internet 54, 55, 62, 63, 65, 69, 72, 73, 76, 77, 78, 79
Inter-Tropical Convergence Zone (ITCZ) 230
Iranian river basins 82, 91, 105
irrigation 245, 456, 457, 458, 460, 470
K
Kalman filtering 479, 493
Key Environments (KE) 503
Key Performance Indicators (KPI) 503, 504, 515
key stations 346, 359
Khor Abu Fargha 229, 233, 234, 235, 236, 237, 238, 239
knowledge-as-capability 142
knowledge-as-cognition 142
knowledge-as-object 142
knowledge-based systems 160
knowledge-driven DSS 60
knowledge management (KM) 142, 153, 154
knowledge sharing 124, 127, 137, 140, 141, 147, 150, 151, 152, 153
kriging (K) 481
Kriging model 478, 479, 480, 482, 491
kriging with an external drift (KED) 478, 480, 481, 482, 485, 486, 487, 490, 491, 492, 493, 494, 495, 496
L
Lake Albert 347
Lake Victoria 125, 127, 128, 130, 132, 139, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418
Lake Victoria basin 317, 342, 343, 344, 345, 453
Lake Victoria Drainage Basin (LVDB) 431, 433, 449, 451, 452, 453
Lake Victoria Environmental Management Project (LVEMP) 317, 318, 319, 320, 321, 324, 325, 329, 331
Lake Victoria Region 432
Lake Victoria Research Initiative (VICRES) 434, 435, 441, 453
Landsat Enhance Thematic Mapper (ETM) 432
Landsat Multi-Spectral Scanner (MSS) 432
land-water resources 499, 501, 502, 503, 504, 512
land-water systems 497, 498, 499, 512
La Nina 231, 232, 233, 235, 239, 241
legal legislation 287
length constraints 334
M
macrophytes 423
management 346, 347, 348, 358, 359, 360, 361, 362
management planning 25, 26, 29, 32, 33
management priorities 3
management strategy 36, 37, 38, 40, 52, 159
Mara Flood Plain 127
Mara River Basin vii, xiii, xxvii
Mara River Basin (MRB) 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138
Mara River (MR) 124, 125, 126, 127, 128, 129, 130, 138
mashups 174, 176
mediated modeling 38
medium-variant 320
Mesopotamian Marshes 41
Middle Rio Grande Water Assembly (MRG-WA) 40
Millennium Development Goals (MDG) 140, 141, 150
Ministry of Water Resources (MoWR) 40, 41
model development 37, 38, 39, 40, 41, 42
model-driven DSS 60
modelling 346
model-management system 60
morphometric properties 26
Multiobjective evolutionary algorithm (MOEA) 161
multiobjective genetic algorithm (MOGA) 338, 339
multiobjective optimization 333, 338, 339, 343, 344, 345
MUSIC Project 479, 494, 495

N
Nakivubo Wetland 431, 433, 444
National Weather Service River Forecast System (NWSRFS) 176
natural disasters 264
natural hazard 264
natural resource management (NRM) 124, 128, 137
natural resources 1, 3, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 55, 56, 77, 124, 125, 127, 128, 129, 131, 132, 133, 135, 136, 137
network simulation program 334
Nile Basin Initiative (NBI) 128
Nile Equatorial Lake Subsidiary Program (NELSAP) 128
nitrate-nitrogen 419, 423
nitrogen cycle 459, 460
nondominated sorting genetic algorithm II (NSGA II) 338, 339
non-governmental organizations (NGOs) 37, 40, 41
non-linear iterative partial least squares (NI-PALS) 366, 367, 368
non-linear iterative power method (POWER) 366, 367, 368
nonpoint source pollution (NPS) 434, 435, 454
northern highland 126
N:P ratios 406, 415
nutrient retention 420, 422, 427
Nzoia River Basin 431, 433, 447

O
Office of Technology Assessment’s (OTA) 86, 98, 118
optimisation algorithm 156, 158
output equation 58, 59
output variables 59

P
Pacific Basin 231
parameters 346, 347, 361
parameter sensitivity 478, 481, 486, 489
Pareto optimal solutions 161
participatory management 2
participatory multicriteria analysis (PMCA) 3, 6
particulate organic carbon (POC) 349, 352
particulate organic nitrogen (PON) 349, 352
PBSD modelling 83, 101
performance function 58, 59
performance index 58
periodic process 202
person-computer systems 60
pheromone trails 336
phosphorous 406
physically based spatially distributed (PBSD) 83, 101
physical water infrastructure 2
Policy Instrument (PI) 502, 503
political asymmetries 3
political hegemony 3
pollutant retention time (PRT) 421, 422
Post agreement (PA) 234, 236
power generation 40, 41
power inequalities 3
power sharing 2
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of detection (POD)</td>
<td>234, 236</td>
</tr>
<tr>
<td>Probability of occurrence</td>
<td>246</td>
</tr>
<tr>
<td>Public Involvement and Information</td>
<td>435</td>
</tr>
<tr>
<td>public participation</td>
<td>54, 62, 63</td>
</tr>
<tr>
<td>public policies</td>
<td>1</td>
</tr>
<tr>
<td>Quadratic assignment problem (QAP)</td>
<td>337</td>
</tr>
<tr>
<td>Rainfall analysis</td>
<td>481</td>
</tr>
<tr>
<td>Rainfall interpolation</td>
<td>479, 480, 482, 483, 489, 490, 493, 494</td>
</tr>
<tr>
<td>RAIN-MUSIC package</td>
<td>479</td>
</tr>
<tr>
<td>Rastrineobola argentea</td>
<td>406, 407, 408, 411, 413, 414</td>
</tr>
<tr>
<td>Real-time data</td>
<td>60</td>
</tr>
<tr>
<td>Remote-sensing based CCD data</td>
<td>479, 480</td>
</tr>
<tr>
<td>Remote Sensing (RS)</td>
<td>431, 432, 453, 454</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>316, 318, 328</td>
</tr>
<tr>
<td>Reservoir water quality</td>
<td>86</td>
</tr>
<tr>
<td>Resource management</td>
<td>36, 37, 38, 40, 41, 42, 52, 287, 289, 291, 294, 303, 306, 310, 313, 314</td>
</tr>
<tr>
<td>Resource systems</td>
<td>37</td>
</tr>
<tr>
<td>Retention efficiency</td>
<td>419, 420, 422, 426</td>
</tr>
<tr>
<td>Rich internet application (RIA)</td>
<td>175</td>
</tr>
<tr>
<td>Rio Grande Basin</td>
<td>40, 52</td>
</tr>
<tr>
<td>Risk curve</td>
<td>249</td>
</tr>
<tr>
<td>Risk Evaluation</td>
<td>244, 245, 246, 248, 259</td>
</tr>
<tr>
<td>Risk management</td>
<td>268, 275</td>
</tr>
<tr>
<td>Risk Management of Extreme Flood Events (RIMAX)</td>
<td>264, 265, 266, 269, 273, 278, 279, 280, 283, 285</td>
</tr>
<tr>
<td>River basin management</td>
<td>82, 97, 98, 109</td>
</tr>
<tr>
<td>River Forecast Centers (RFC)</td>
<td>176</td>
</tr>
<tr>
<td>River hydraulics</td>
<td>86</td>
</tr>
<tr>
<td>River hydrology</td>
<td>246</td>
</tr>
<tr>
<td>River Nile flood plains</td>
<td>230</td>
</tr>
<tr>
<td>River Nile system</td>
<td>230</td>
</tr>
<tr>
<td>Rufiji basin</td>
<td>478, 480, 483, 485, 486, 489, 490, 491, 492, 493</td>
</tr>
<tr>
<td>Ruggedness number</td>
<td>26</td>
</tr>
<tr>
<td>Sampling</td>
<td>346, 348, 349, 356, 357, 359, 361</td>
</tr>
<tr>
<td>Sandia National Laboratories (SNL)</td>
<td>36, 37, 40, 41, 42, 52</td>
</tr>
<tr>
<td>Science literature</td>
<td>200</td>
</tr>
<tr>
<td>Sea surface temperatures (SSTs)</td>
<td>229, 231, 232, 233, 235, 236, 237, 240, 241, 243</td>
</tr>
<tr>
<td>Sectoral demands</td>
<td>1</td>
</tr>
<tr>
<td>Semantic web</td>
<td>176, 185, 191, 192</td>
</tr>
<tr>
<td>Semi-arid ecosystems</td>
<td>230</td>
</tr>
<tr>
<td>Service-orientation (SO)</td>
<td>176, 193</td>
</tr>
<tr>
<td>Service oriented architecture (SOA)</td>
<td>172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 191, 192, 193, 194, 195, 198</td>
</tr>
<tr>
<td>Shared vision planning</td>
<td>38</td>
</tr>
<tr>
<td>Shuffled Frog Leaping Algorithm (SFLA)</td>
<td>336</td>
</tr>
<tr>
<td>Siltation</td>
<td>346, 347, 348, 349, 351, 352, 360</td>
</tr>
<tr>
<td>Simiyu drainage basin</td>
<td>433</td>
</tr>
<tr>
<td>Simulation software</td>
<td>317, 318, 330</td>
</tr>
<tr>
<td>Single objective</td>
<td>332, 333, 338, 342</td>
</tr>
<tr>
<td>Singular value decomposition (SVD)</td>
<td>366, 367, 368, 369, 383, 384, 386, 387</td>
</tr>
<tr>
<td>Social dimension</td>
<td>24</td>
</tr>
<tr>
<td>Social interaction</td>
<td>3</td>
</tr>
<tr>
<td>Social sciences</td>
<td>82</td>
</tr>
<tr>
<td>Socio-economic components</td>
<td>5</td>
</tr>
<tr>
<td>Soft-path</td>
<td>317, 327</td>
</tr>
<tr>
<td>Soil erosion</td>
<td>432, 498, 504, 510, 513, 514</td>
</tr>
<tr>
<td>Southern highlands</td>
<td>126</td>
</tr>
<tr>
<td>Southern Oscillation Index (SOI)</td>
<td>231, 232</td>
</tr>
<tr>
<td>Southern Oscillation (S.O.)</td>
<td>229, 231, 240, 241</td>
</tr>
<tr>
<td>Spatial Correlation</td>
<td>481, 494, 496</td>
</tr>
<tr>
<td>Spatial distribution</td>
<td>481, 483, 493</td>
</tr>
<tr>
<td>Spatial Interpolation</td>
<td>478, 480</td>
</tr>
<tr>
<td>Spatial Rainfall</td>
<td>479, 480, 481, 486, 493</td>
</tr>
<tr>
<td>Species diversity</td>
<td>406, 407, 408, 413</td>
</tr>
<tr>
<td>Specific barriers</td>
<td>391</td>
</tr>
<tr>
<td>Stakeholder group</td>
<td>37, 38</td>
</tr>
<tr>
<td>Standard Growth Value Index (SGVI)</td>
<td>393</td>
</tr>
<tr>
<td>Starting El Nino (Sno)</td>
<td>233, 234, 235</td>
</tr>
<tr>
<td>Starting La Nina (Sna)</td>
<td>233, 234</td>
</tr>
<tr>
<td>State equation</td>
<td>58, 59</td>
</tr>
</tbody>
</table>
state variables 57, 59, 317, 318, 319, 320, 321, 330
stochastic approach 199, 200, 219, 220, 222
stochastic process 202, 207
stochastic theories 201
stocks 318, 320
storm water management 23, 434
strategic policy environment 141
Strategy for Water and Land Resources in Iraq (SWLRI) 41
stratosphere 498, 500
stream frequency 26
stream length 26
stream orders 26
strength Pareto evolutionary algorithm II (SPEA II) 338
subject matter experts (SMEs) 174
Sudan 23, 32, 35, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153
susceptibility 245, 246
suspended 346, 347, 348, 349, 351, 352, 356, 357, 360, 363
sustainability 389, 390, 391, 393, 395, 398, 402, 403, 404
sustainable development (SD) 22, 23, 24, 25, 29, 30, 31, 32, 33, 289, 290, 291, 292, 293, 298, 300, 311
sustainable management 159, 497, 498, 499, 501
Système Hydrologique Européen (SHE) 83, 85, 88, 108, 111, 118, 122
system innovation 389, 390, 394, 395, 400, 401, 403
Systems Analysis 56, 57, 61, 78
Systems Thinking in an Experimental Learning Lab with Animation (STELLA) 317, 318, 320, 321, 323, 327, 329, 330

T

technology management 141
third world 23, 31
Tigris-Euphrates Basin 36, 40, 41
top-down approach 3, 14
total dissolved solid (TDS) 349, 352, 368, 369, 370, 371, 372, 373, 424, 426, 427
total nitrogen (TN) 364, 368, 369, 370, 371, 372
total phosphorus (TP) 368, 369, 370, 371, 372
total suspended solid (TSS) 349, 352, 357, 368, 371, 372, 424, 425, 427
toxic pollution 503
tran boundary 346
transition 389, 391, 394, 395, 396, 403, 404
traveling salesman problem (TSP) 337, 340
tropical basin 478, 480, 490, 495
troposphere 498, 500

U

unilateral flow 3
Unit Hydrograph 83
Urban Drainage System (UDS) 175
urban management 390
urban water 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 402, 403
urban water management 389, 390, 391, 392, 394, 395, 399, 400, 401, 402, 403
U.S. Army Corps of Engineers (USACE) 41, 85, 86, 102, 104, 121

V

variogram 485, 486, 487, 488, 489, 493, 496, 499, 501
variogram analysis 478, 486
vertical communication 2
virtual teams 142
vulnerability 245, 246, 248, 249, 257, 260, 261

W

wastewater 364, 368, 369, 370, 371, 372, 384, 385
wastewater management 391
wastewater treatment plants (WWTPs) 435
water administration 292
water balance models 83
water based knowledge 140
water bodies 316, 317, 330
water claims 3
water conflicts 3
water cycle 457
water disputes 3
Index

water distribution system (WDS) 332, 333, 334, 335, 336, 337, 339, 341, 342, 343, 344, 345
Water Efficiency Management 162
water-energy-agriculture 42
water-energy-food 41
water governance 389, 391
water harvesting 238, 239, 240
water inflows 321
water in irrigation 456, 457
water institution 289, 291, 292, 302
water knowledge 140, 146, 148
water law 292, 304
water management 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 174, 175, 196, 389, 390, 391, 392, 393, 394, 395, 397, 398, 399, 400, 401, 402, 403, 432, 434, 440, 450, 456, 457, 479
water markets 2
water policy 286, 288, 292, 293, 300, 302, 305, 306, 313
water pollution 432, 437
water problems 1, 3, 5, 6, 7, 9, 11, 14, 16, 17, 18
water quality 456, 458, 461, 475, 499, 500, 501, 506, 515
water quality management 458
water resources modelling 86, 87, 90
water resources planning 56, 66, 86, 88, 96, 103, 104
water resources simulation 86
water resource system 86, 87, 92, 111, 287, 288, 289, 306
watershed area 23, 25
watershed boundary 23
watershed development 26, 27, 28, 29, 32, 33, 34
watershed hydrology 83, 84, 108, 118, 119, 120
watershed management 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 431, 434, 435, 436, 441, 445, 450
Watershed Management Model (WMM) 435, 436, 438, 439
watershed modelling 81, 82, 86
watershed modelling systems 82
watershed planning 26
water supply 457
water systems 1, 2, 4, 21
water velocity 421, 426, 427
Well established El Nino (Weno) 233, 234
Well established La Nina (Wena) 233, 234
wetland macrophytes 434
wetland retention 423, 426
wetland sections 424
White Nile 347, 349, 350, 352, 355, 356, 358, 359
Willamette Basin 41
World Meteorological Organization (WMO) 83
world-wide network 55
World Wide Web 143, 144, 150, 153