Index

A
activation function (AF) circuits 280, 286, 287
adaptability 185
adaptation 3, 4
adaptive circuits 278
adaptive-filter decoding 218, 239
adaptive sensor conditioning applications 278
adaptive systems 278, 284, 290
adaptivity 2, 14
agility 2
analog circuit realization 185
analog-to-digital conversion 217, 240, 245
analogue-digital converters (ADC) 277, 279
analogue-digital multiplier (ADM) circuits 280, 286, 287
animal cognition 21
animal learning 42, 57
ANN, feed-forward topology 296, 297
ANN, recurrent topology 296
ANN, supervised models 4
ANN, unsupervised models 4
approximate reasoning 187
artificial intelligence (Al) 1, 117
artificial neurons 296, 297, 328
bio-inspired artifacts 1
biologically-inspired systems 60, 185
biological motor-sensor systems 116
biological nervous systems 59, 93
biological organisms 2
BJTs 327
bounded-input bounded-output (BIBO) 309, 312, 313, 317, 318, 319, 323, 325
brain-machine interfaces 216, 217, 219, 220, 240, 243, 244, 245, 246, 254
brainstem 61

C
canonical signed-digit (CSD) number systems 309, 312, 313, 314, 317, 318, 319, 320, 321, 323, 324, 325
cellular neural networks 117
central nervous systems (CNS) 59
classical cognitive architectures 21
classical cognitivism 21, 22, 34
clock generator 303, 305
closed-loop control systems 60
cochlear implants 217
cochlear-implant systems 217
cognition 1, 2, 3, 5, 11, 13, 17, 19, 20, 21, 23, 24, 25, 27, 28, 31, 33, 34, 35, 36, 37, 38
cognition dynamics 20, 21, 37, 38
cognition grounding 20, 21, 24, 25, 30, 33, 37, 38
cognition productivity 20, 21, 24, 25, 26, 27, 33, 37
cognitive architectures 21
compressed incremental row storage (CIRS) format 256, 265, 266, 275
<table>
<thead>
<tr>
<th>Terms</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>compressed row storage (CRS) format</td>
<td>262, 263, 264, 275</td>
</tr>
<tr>
<td>computer aided design (CAD) tools</td>
<td>327</td>
</tr>
<tr>
<td>conceptual knowledge</td>
<td>21, 38</td>
</tr>
<tr>
<td>conditioned response (CR)</td>
<td>42, 43, 46, 47, 48, 49, 50, 53, 54</td>
</tr>
<tr>
<td>conditioned stimulus (CS)</td>
<td>42, 43, 46, 47, 48, 49, 50, 53, 54, 55</td>
</tr>
<tr>
<td>conditioning</td>
<td>41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58</td>
</tr>
<tr>
<td>conductometry</td>
<td>139</td>
</tr>
<tr>
<td>cortex</td>
<td>61, 80, 84</td>
</tr>
<tr>
<td>cortical macrocolumn</td>
<td>256, 257, 260, 262, 273</td>
</tr>
<tr>
<td>Darwin, Charles</td>
<td>42</td>
</tr>
<tr>
<td>Descartes, Rene</td>
<td>41</td>
</tr>
<tr>
<td>differential minimax game</td>
<td>116, 117, 121, 124</td>
</tr>
<tr>
<td>digital signal processing (DSP) systems</td>
<td>311</td>
</tr>
<tr>
<td>digital signal processors (DSP)</td>
<td>302</td>
</tr>
<tr>
<td>digitized neural data</td>
<td>217, 240</td>
</tr>
<tr>
<td>diodes</td>
<td>327</td>
</tr>
<tr>
<td>diversity control (DC)</td>
<td>309, 310, 311</td>
</tr>
<tr>
<td>diversity control genetic algorithms (DCGA)</td>
<td>309, 311, 312, 313, 314, 315, 316, 318, 319, 321, 322, 323, 324</td>
</tr>
<tr>
<td>dynamic neural networks</td>
<td>93, 113, 114</td>
</tr>
<tr>
<td>dynamic plasticity</td>
<td>255</td>
</tr>
<tr>
<td>effectors</td>
<td>60</td>
</tr>
<tr>
<td>electroencephalograms (EEG)</td>
<td>158, 166, 169, 170, 172, 174, 175, 176, 177, 178, 180, 181, 182</td>
</tr>
<tr>
<td>electromagnetic (EM)</td>
<td>327, 328, 336, 339, 341, 343, 344, 345</td>
</tr>
<tr>
<td>electronic tongues</td>
<td>137, 139, 140, 148, 149, 150</td>
</tr>
<tr>
<td>epigenetic robotic models</td>
<td>2</td>
</tr>
<tr>
<td>epigenetic systems</td>
<td>2</td>
</tr>
<tr>
<td>epistemological empiricism</td>
<td>42</td>
</tr>
<tr>
<td>ESNN-PC neural network</td>
<td>136, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149</td>
</tr>
<tr>
<td>evolutionary algorithms (EA)</td>
<td>310, 311</td>
</tr>
<tr>
<td>evolvable hardware (EH)</td>
<td>310, 311</td>
</tr>
<tr>
<td>evolving spiking neural network (eSNN)</td>
<td>140</td>
</tr>
<tr>
<td>exploratory behavior</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>fear response</td>
<td>43, 47</td>
</tr>
<tr>
<td>feedback lines</td>
<td>59, 60</td>
</tr>
<tr>
<td>feedforward neural network (FNN)</td>
<td>93, 328, 329, 343</td>
</tr>
<tr>
<td>finite-impulse response (FIR)</td>
<td>309, 310, 311, 312, 313, 320, 324, 325</td>
</tr>
<tr>
<td>forward links</td>
<td>59, 60</td>
</tr>
<tr>
<td>fractional fixed point (FFP)</td>
<td>296, 297, 308</td>
</tr>
<tr>
<td>frequency-response masking (FRM) digital filters</td>
<td>309, 310, 311, 312, 313, 314, 317, 319, 320, 321, 322, 323, 324</td>
</tr>
<tr>
<td>frequency selective surfaces (FSS)</td>
<td>328, 339, 341</td>
</tr>
<tr>
<td>fuzzy-associative rules</td>
<td>185</td>
</tr>
<tr>
<td>fuzzy clauses</td>
<td>186</td>
</tr>
<tr>
<td>fuzzy c-means (FCM)</td>
<td>162</td>
</tr>
<tr>
<td>fuzzy design</td>
<td>185</td>
</tr>
<tr>
<td>fuzzy inference system (FIS)</td>
<td>157, 160, 182</td>
</tr>
<tr>
<td>fuzzy membership function (FMF)</td>
<td>187, 188, 189</td>
</tr>
<tr>
<td>fuzzy neural networks (FNN)</td>
<td>159, 160, 161</td>
</tr>
<tr>
<td>fuzzy operators</td>
<td>187</td>
</tr>
<tr>
<td>fuzzy propositions</td>
<td>187</td>
</tr>
<tr>
<td>fuzzy sets</td>
<td>187, 188, 191, 192</td>
</tr>
<tr>
<td>fuzzy set theory</td>
<td>187</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>GaAs MESFET logic gates</td>
<td>327</td>
</tr>
<tr>
<td>genetic algorithms (GA)</td>
<td>310, 311, 312, 316, 326, 327, 328, 330, 331, 332, 339, 341, 342, 343, 345, 347</td>
</tr>
</tbody>
</table>
giant magneto-resistive (GMR) sensors 285, 286, 287
global asymptotic stability (GAS) 98, 100, 122, 123, 125, 130
global robust control 116, 131
grounded representations 20, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 37
growing and pruning radial basis function network (GAP-RBFN) 157, 171
gustatory neurons 138

H
Hamilton-Jacobi-Bellman (HJB) equation 94, 95, 97, 99, 101, 113, 114
Hamilton-Jacobi-Isaacs (HJI) equation 116, 117, 118, 119, 121, 124, 130, 131, 133
hard c-means (HCM) 162
Hebbian learning 260, 273
Hopfield neural networks 117
human cognition 20, 21, 23, 24, 25, 34, 37
human knowledge 41
human learning 42, 43, 55
hyperbolic tangent 297

I
infinite impulse-response (IIR) 309, 310, 311, 312, 313, 314, 318, 323, 324, 325
information processing 255, 257
information processing, connectionist model of 255, 256, 273
input neurons 302
input-to-state stabilization 93, 94, 98, 99, 100, 101, 103, 113, 114
integrate-and-fire neurons 138, 140
intelligence 41, 54
intelligent computing 2
intermediate-frequency (IF) digital filters 312, 324
inverse optimality 93, 94, 98, 100, 103, 106, 109, 113, 116, 117, 119, 121, 122, 124, 125, 131

K
knowledge bases 186, 187
knowledge representation 20

L
law of contiguity 42
law of contrast 42
law of similarity 42
learning 41, 295, 296, 297
learning capacity 20
Levenberg-Marquardt algorithm 285
linguistic rules 187, 192
linguistic variables 187, 190, 191, 192, 193
little Albert experiment 43, 47
local field potential (LFP) 219, 224, 232
Locke, John 42
logistic sigmoid 297, 298, 300
looser-take-all MINIMUM (LTA-MIN) circuit 186, 201, 202, 203, 204, 205, 206
low-power analog preprocessing 217, 218
Lyapunov technique 93, 94, 96, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 119, 121, 122, 124, 125, 130

M
Mackey-Glass time-series prediction problem 157
macrocolumns 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 269, 272, 273, 275
Mandani fuzzy models 160
matrix-vector multiplication 262, 273
McCulloch-Pitts neurons 257, 266, 269, 270, 275
membership function circuit (MFC) 186, 193, 194, 196, 198, 205, 206, 207, 208, 209
membership functions (MF) 157, 159, 163, 164, 187, 194, 198, 206, 208
MOSFETs 327
microcontrollers 277, 278, 279, 280, 289, 290
microwave circuit steady-state analysis 327
microwave engineering 326, 344
minicolumns 257, 258, 260, 275
Monte-Carlo (MC) simulations 286, 292
MOSFETs 327
multilayer perceptrons (MLP) 326, 328, 333, 334, 337, 338, 339, 340, 341, 343, 344, 347, 348
multilayer perceptrons (MLP) neural network 137, 139, 140, 142, 144, 145, 148, 149, 296, 297
multiple-parameter perturbation (MPP) 285
multiply, add and accumulate (MAC) blocks 295, 296, 302, 303, 307
natural optimization algorithms 327, 330
natural selection 4
nature-nurture debate 41
neural cell ensemble codes 218
neural decoding 217, 218, 219, 220, 223, 234, 239, 243, 244, 245, 246, 254
neural microstructure 61
neural network design 329
neural network design, configuration 327, 328, 329, 333, 335, 336, 337, 338, 340, 341, 345, 346
neural network design, generalization 326, 327, 329, 333, 336, 338, 343, 347
neural network synaptic weights 329
neural prosthetics 217, 223, 240, 247
neural signal decoder 218
neural signals 217, 220, 221, 223, 224, 226, 231, 234, 235, 240, 242, 243, 244, 246, 254
neuromodeling methodology 327
neuronal population activity 217
neuronal population decoding 220
neuron circuitry 61
neuron dendritic subunits 61
neuron firing strength 156, 157, 158, 163, 166, 167, 168, 169, 171, 174, 175, 177, 178, 179
neuron simulator 256
Newell, Allen 21, 22, 27, 37, 38
NNALU 303, 304, 305, 306
noise 116, 117, 121, 122, 123, 124, 125, 130, 131, 133
noise attenuation 117, 131
noise-to-state stabilization 93, 94, 103, 105, 106, 107, 109, 110, 113, 114
noisy recurrent neural networks 116, 117, 119, 120, 121, 122, 131
operant conditioning 43, 46, 47
parallelism 185, 193, 200, 202, 209
particle swarm optimization (PSO) 326, 327, 328, 330, 331, 332, 339, 341, 342, 343, 346, 348
Pavlov, Ivan 42, 43, 47, 48, 56
perceptron 328
perceptual networks 24
Piaget, Jean 4, 9, 13, 15
Piaget's cognitive development theory 4
Plato 41
postsynaptic neurons 139
power-efficient neural decoding 217
programmable logic devices (PLDs) 310
prosthetics 216, 217, 218, 219, 223, 233, 240, 244, 245, 246, 247, 248, 250, 251, 254
rationalism 41
Rayner, Rosalie 43, 52, 56
recursive least square (RLS) algorithm 161, 163
recursive least squares estimator (RLSE) 157, 165
rehabilitation medicine 217
resilient back-propagation (RPROP) algorithms 327, 329, 330, 334, 337, 339, 340, 344, 346
robotics 1, 2, 4, 6, 13, 16
robots 1, 2, 3, 6, 7, 8, 9, 10, 12, 16
robustness 2, 13
root mean square error (RMSE) 280, 285, 286, 289, 290

S
seeker optimization algorithm (SOA) 312
self-organizing fuzzy systems 157
sensory systems 136, 148
sentences 21, 23, 25, 27, 29, 31, 36
signed power-of-two (SPT) number systems 312
simulated annealing (SA) 312, 316, 327
single-parameter perturbation (SPP) 285
Skinner, B. F. 43, 44
smart sensors 276, 277
sparse matrix vector product (SpMxV), 255, 256, 257, xi, 262, 263, 264, 265, 269, 272
SPICE circuit simulator 327, 332, 333, 343, 344, 345
spiking neural networks (SNN) 138, 139, 144, 155
state-machine 256
stochastic recurrent neural network 104, 105, 106, 108, 111, 113
Sugeno fuzzy models 160, 179
symbolic architectures 21, 22, 23, 25, 28, 29
symbol manipulation 21, 30, 31, 34, 37, 40
symbols 20, 21, 22, 23, 25, 27, 28, 34, 38
symbol strings 22
symbol tokens 21, 22
synapses 60, 61, 62, 63, 67
synaptic junctions 61, 62

T
tabula rasa (blank slate) 42
Takagi-Sugeno-Kang (TSK) fuzzy model 160, 161, 162, 163, 180, 182
Takagi-Sugeno (TS) models 157, 161, 163, 165, 173, 174
taste 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155
taste-coding 137, 138
taste-coding, cross-fiber 137, 138, 139
taste-coding, labeled-line 137, 138
taste perception 138, 149
taste receptor cells (TRC) 137, 138
taste sensors 137, 139
taste sensory system 136
topographic maps 61
Tsukamoto fuzzy models 160
Turing machine 22
two-input non-linear-sinc problem 157

U
unconditioned response (UCR) 42, 43, 46, 47, 48, 49
unconditioned stimulus (UCS) 42, 43, 46, 47, 48, 49, 55

V
versatility 2
very large scale integration (VLSI) 94
voltammetry 139
Von Neumann computer 22

W
Watson, John B. 43, 44, 56
Index

winner-take-all MAXIMUM (WTA-MAX) circuit 186, 200, 201, 203, 206 wireless sensor networks (WSN) 277, 279 words 20, 21, 22, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 39

Z

Zadeh, Lotfi 159, 162, 182