Index

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-leakage</td>
<td>529</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>access method</td>
<td>268</td>
</tr>
<tr>
<td>access paths</td>
<td>176, 177, 178, 179, 180</td>
</tr>
<tr>
<td>accuracy</td>
<td>389, 391, 394</td>
</tr>
<tr>
<td>active replication</td>
<td>763</td>
</tr>
<tr>
<td>analysis coherence</td>
<td>132</td>
</tr>
<tr>
<td>answer set programming (ASP)</td>
<td>799, 804</td>
</tr>
<tr>
<td>APEX</td>
<td>675</td>
</tr>
<tr>
<td>application server layer</td>
<td>866</td>
</tr>
<tr>
<td>approximate similarity queries</td>
<td>293, 296</td>
</tr>
<tr>
<td>archical clustering algorithms</td>
<td>618</td>
</tr>
<tr>
<td>archiveSIC</td>
<td>637</td>
</tr>
<tr>
<td>arrays</td>
<td>15</td>
</tr>
<tr>
<td>artificial intelligence</td>
<td>233, 235, 236</td>
</tr>
<tr>
<td>aspect-oriented database engineering</td>
<td>87</td>
</tr>
<tr>
<td>atomic commit protocols</td>
<td>742</td>
</tr>
<tr>
<td>automatic memory management</td>
<td>757</td>
</tr>
<tr>
<td>autonomic computing</td>
<td>754</td>
</tr>
<tr>
<td>AXL files</td>
<td>304</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>balanced signature tree</td>
<td>650</td>
</tr>
<tr>
<td>Berners-Lee, Tim</td>
<td>419</td>
</tr>
<tr>
<td>bi-clustering</td>
<td>566</td>
</tr>
<tr>
<td>bianchi reengineering</td>
<td>37, 39, 40, 42, 901</td>
</tr>
<tr>
<td>bind-variable SQL</td>
<td>884, 890</td>
</tr>
<tr>
<td>bind but dynamic (BBD) technique</td>
<td>886, 887, 888, 889</td>
</tr>
<tr>
<td>bioinformatics text mining (BTM)</td>
<td>619</td>
</tr>
<tr>
<td>bit-slice file</td>
<td>646</td>
</tr>
<tr>
<td>bit-slice signature file</td>
<td>654</td>
</tr>
<tr>
<td>Boolean satisfiability problem (SAT)</td>
<td>799, 804</td>
</tr>
<tr>
<td>Boolean SOs</td>
<td>77</td>
</tr>
<tr>
<td>bottom concept</td>
<td>180</td>
</tr>
<tr>
<td>bounded cardinality</td>
<td>12, 16, 12</td>
</tr>
<tr>
<td>brute force checking</td>
<td>336, 366</td>
</tr>
<tr>
<td>business intelligence (BI)</td>
<td>861</td>
</tr>
<tr>
<td>business process</td>
<td>224, 238, 959</td>
</tr>
<tr>
<td>butterfly approach</td>
<td>38, 43, 972</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache hit ratio</td>
<td>760</td>
</tr>
<tr>
<td>cache miss ratio</td>
<td>760</td>
</tr>
<tr>
<td>caching</td>
<td>253</td>
</tr>
<tr>
<td>cardinality</td>
<td>12, 15, 16, 17, 957</td>
</tr>
<tr>
<td>cardinality, bounded</td>
<td>12, 13, 15, 17</td>
</tr>
<tr>
<td>case</td>
<td>352, 356</td>
</tr>
<tr>
<td>CASE tool</td>
<td>181, 186, 187</td>
</tr>
<tr>
<td>certification-based replication</td>
<td>764</td>
</tr>
<tr>
<td>change sets</td>
<td>96</td>
</tr>
<tr>
<td>Chicken Little approach</td>
<td>38, 43</td>
</tr>
<tr>
<td>Chinese philosophy to knowledge discovery in databases</td>
<td>632–643</td>
</tr>
<tr>
<td>class diagrams</td>
<td>12</td>
</tr>
<tr>
<td>classification task</td>
<td>595</td>
</tr>
<tr>
<td>client/server information systems</td>
<td>252–259</td>
</tr>
<tr>
<td>closed world assumption (CWA)</td>
<td>18</td>
</tr>
<tr>
<td>cluster analysis</td>
<td>550, 552, 553, 573, 574</td>
</tr>
<tr>
<td>clustering</td>
<td>616, 618, 665, 666, 667, 668, 669, 670, 671, 672, 912, 913, 916, 940, 941, 964</td>
</tr>
<tr>
<td>Content</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>clustering algorithms</td>
<td>296</td>
</tr>
<tr>
<td>Coalescing</td>
<td>34, 35, 902</td>
</tr>
<tr>
<td>CODASYL</td>
<td>186</td>
</tr>
<tr>
<td>code injection</td>
<td>882, 890</td>
</tr>
<tr>
<td>collection type</td>
<td>169</td>
</tr>
<tr>
<td>commonsense reasoning, interactive model</td>
<td>606</td>
</tr>
<tr>
<td>commonsense reasoning process, machine</td>
<td></td>
</tr>
<tr>
<td>learning</td>
<td>605–611</td>
</tr>
<tr>
<td>commonsense reasoning rules (CRRs)</td>
<td>607</td>
</tr>
<tr>
<td>completeness</td>
<td>388, 389, 391, 394</td>
</tr>
<tr>
<td>complex systems</td>
<td>797</td>
</tr>
<tr>
<td>composite data quality assessment</td>
<td>381</td>
</tr>
<tr>
<td>compressed bit-slice file</td>
<td>646</td>
</tr>
<tr>
<td>computer-aided design (CAD)</td>
<td>269, 307</td>
</tr>
<tr>
<td>concept, primitive dimensionality</td>
<td>175</td>
</tr>
<tr>
<td>concept, rank of</td>
<td></td>
</tr>
<tr>
<td>concept-oriented models</td>
<td>171</td>
</tr>
<tr>
<td>concept-oriented models, two-level</td>
<td>174</td>
</tr>
<tr>
<td>concept graphs</td>
<td>175</td>
</tr>
<tr>
<td>concepts, bottom</td>
<td>175, 176</td>
</tr>
<tr>
<td>concepts, primitive</td>
<td>171, 174, 175, 176</td>
</tr>
<tr>
<td>concepts, top</td>
<td>175, 180</td>
</tr>
<tr>
<td>conceptual conversion strategy</td>
<td>43</td>
</tr>
<tr>
<td>conceptual model design</td>
<td>231</td>
</tr>
<tr>
<td>conceptual multidimensional model</td>
<td>55</td>
</tr>
<tr>
<td>conceptual normalization</td>
<td>187</td>
</tr>
<tr>
<td>concurrency control</td>
<td>365</td>
</tr>
<tr>
<td>concurrent engineering</td>
<td>85</td>
</tr>
<tr>
<td>configuration, index and materialized view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>693, 694, 695, 696, 697</td>
</tr>
<tr>
<td>consistent answer</td>
<td>363</td>
</tr>
<tr>
<td>consistent database</td>
<td>346, 364, 416</td>
</tr>
<tr>
<td>constraint</td>
<td>164</td>
</tr>
<tr>
<td>constraint checking</td>
<td>346, 347</td>
</tr>
<tr>
<td>constraint logic programming (CLP)</td>
<td>804</td>
</tr>
<tr>
<td>Constraint Programming (CP)</td>
<td>799, 801, 803, 804, 920</td>
</tr>
<tr>
<td>constraint propagation</td>
<td>178</td>
</tr>
<tr>
<td>constraints, declarative</td>
<td>13, 15</td>
</tr>
<tr>
<td>constraints, procedural</td>
<td>13</td>
</tr>
<tr>
<td>constraints, semantic</td>
<td>14</td>
</tr>
<tr>
<td>constraints checking</td>
<td>335–347</td>
</tr>
<tr>
<td>constraint simplification</td>
<td>348, 349, 351, 352, 353, 355, 356, 357, 910, 954</td>
</tr>
<tr>
<td>content-based data quality assessment</td>
<td>394</td>
</tr>
<tr>
<td>content-centric networks</td>
<td>797</td>
</tr>
<tr>
<td>context-independent</td>
<td>388, 390, 393</td>
</tr>
<tr>
<td>contextual data quality assessment</td>
<td>394</td>
</tr>
<tr>
<td>continuous queries</td>
<td>296, 297, 922</td>
</tr>
<tr>
<td>control protocols</td>
<td>762, 763</td>
</tr>
<tr>
<td>corporate politics</td>
<td>216</td>
</tr>
<tr>
<td>cryptography</td>
<td>527, 533, 534, 924</td>
</tr>
<tr>
<td>currency</td>
<td>389, 391, 394</td>
</tr>
<tr>
<td>data-intensive mobile applications</td>
<td>863</td>
</tr>
<tr>
<td>Database Administration Policy</td>
<td>87</td>
</tr>
<tr>
<td>database administrators (DBAs)</td>
<td>693, 753, 694</td>
</tr>
<tr>
<td>database consistency</td>
<td>365, 375</td>
</tr>
<tr>
<td>database enrichment</td>
<td>280</td>
</tr>
<tr>
<td>database evolution</td>
<td>98</td>
</tr>
<tr>
<td>database issues</td>
<td>217</td>
</tr>
<tr>
<td>Database Maintenance Policy</td>
<td>87, 89</td>
</tr>
<tr>
<td>database maintenance supervised by adminis-</td>
<td></td>
</tr>
<tr>
<td>tration (DBA)</td>
<td>85</td>
</tr>
<tr>
<td>database management systems (DBMSs)</td>
<td>260, 694, 696, 697</td>
</tr>
<tr>
<td>database models</td>
<td>83, 85, 86</td>
</tr>
<tr>
<td>database physical conversion</td>
<td>38, 41</td>
</tr>
<tr>
<td>database queries</td>
<td>217</td>
</tr>
<tr>
<td>database reengineering</td>
<td>37, 38, 42, 934</td>
</tr>
<tr>
<td>database refactoring</td>
<td>105, 108</td>
</tr>
<tr>
<td>database repair</td>
<td>364</td>
</tr>
<tr>
<td>database reverse engineering</td>
<td>181, 182, 185, 187, 188, 189, 928, 929, 953</td>
</tr>
<tr>
<td>databases</td>
<td>734, 735, 736</td>
</tr>
<tr>
<td>databases, consistent</td>
<td>416</td>
</tr>
<tr>
<td>databases, inconsistent</td>
<td>416</td>
</tr>
<tr>
<td>database schema</td>
<td>91, 92, 93, 94, 97, 98, 100, 101, 964</td>
</tr>
<tr>
<td>database state</td>
<td>335</td>
</tr>
<tr>
<td>database systems (DBS)</td>
<td>860</td>
</tr>
<tr>
<td>data clustering</td>
<td>562–572, 581–588</td>
</tr>
<tr>
<td>data clustering techniques</td>
<td>563</td>
</tr>
<tr>
<td>data coherency</td>
<td>255</td>
</tr>
<tr>
<td>data cubes</td>
<td>694, 699, 962</td>
</tr>
<tr>
<td>data integration</td>
<td>364, 460, 465, 469, 471, 480</td>
</tr>
<tr>
<td>data integration, ontology-based</td>
<td>473</td>
</tr>
<tr>
<td>data items</td>
<td>174</td>
</tr>
</tbody>
</table>
datalog with unstratified negation (DATA-LOG¬) 798, 799, 801, 803
data migration: 442
data mining 296, 298, 547, 548, 555, 560, 574, 578, 579, 696, 697, 892, 953
data mining to ontologies 509
data model 28, 29, 32, 34, 35, 913, 964
data modeling 171
data perturbation 529
data processing 601
data quality 385
data quality assessment 378–384
data quality assessment, problems 379
data sources layer 866
data stream clustering 567
data stream query processing 702
data streams 701, 702, 704, 705, 709, 710, 712, 714, 715, 897
data streams, mining of 702, 711, 713, 922
data streams, synopsis techniques for 704, 710
data suppression 528, 531, 533, 535, 958
data suppression, partial 528
data suppression techniques, generalization 528, 535, 958
data task 591
data utility 394
data warehouse (DW) 45, 56, 87, 89, 716, 717, 721, 724, 725, 726, 727, 933
data warehouses, and business-driven approach 66
data warehouses, and combined approach 66
data warehouses, and source-driven approach 66
data warehouses, and user-driven approach 66
data warehouses, requirements specifications 65–73
data warehouse systems (DWS) 860
DB built-in functions 890
DBTime 755
de-optimization 187
de-projection 176
decision making 716, 718, 726
decision support 716, 726
decision support system 727
declarative constraint support 16
deduction 553, 921
Degrib 305
delegate 763, 764, 765, 768
delegate replica 763, 764, 765, 768
density-based clustering 564
deprojection 176, 180
description logics (DLs) 435
differential feedback, need of 599
differential learning expert system 597–604
differentially fed neural networks 598
digital elevation models (DEM) 403
dimension 46, 55, 180
dimensionality reduction 298
dimension historization 132
dimensions, inverse 175
dimensions, primitive 175
dimensions, rank of 175
direct acyclic graph (DAG) 101
direction 160
disjoint/overlap relationship constraints 2
disjunctive datalog program 804
disk access 735, 736
disk page 736
distance function 298, 736
distance function injected statements 298
distributed data sources 589, 595
distributed DBMS 347
distributed hash tables (DHTs) 797
distributed information system 480
distributed real-time database system (DRT-DBS) 737, 742, 769
document schema 665, 673
document summarization 666, 667, 668, 670
document versioning 137–144
domain ontologies 511, 512
domains 175
dualities 172

E
electoral databases 216
electoral systems, confidentiality 218
electrocardiography 191
emptiness, in Chinese 634
encoding injected statements 885, 890
enterprise resource planning system 238
entity modelling 173
entity relationship (ER) model 1
genomes 573, 578, 917

gene chip 617
gene expression 617, 618, 619, 620
gene mapping 621
genetic algorithms (GAs) 558, 559, 561

genomes 573, 578, 917
genotype 621
geographical information systems (GIS) 269, 279, 307, 481, 489, 951
gene chip 617
gene expression 666
gene mapping 583
gene chip 617
gene expression 666
gene mapping 583
genetics 573, 574, 575, 576, 578, 579, 580, 896, 921, 924, 934, 966, 972, 973
genetic algorithms (GAs) 558, 559, 561
genomes 573, 578, 917

generic and progressive algorithms for continuous mobile queries (GPAC) 864

genes 573, 574, 575, 576, 578, 579, 580, 896, 921, 924, 934, 966, 972, 973

generic and progressive algorithms for continuous mobile queries (GPAC) 864

genomes 573, 578, 917

generic and progressive algorithms for continuous mobile queries (GPAC) 864

genomes 573, 578, 917

textbook 583

textbook 583

textbook 583

textbook 583

textbook 583

textbook 583

textbook 583
Index

identity modelling 173
IFSAR correlation problem 404
IFSAR DEM control 403–409
Image Service 306
impartial data quality assessment 394
imprecise functional dependencies 191
inconsistency 351, 352, 356, 348
inconsistency tolerance 350, 351, 352, 353, 354, 355, 356
inconsistent database 358, 362, 363, 364, 415, 925
indexable Web 582, 583, 585, 587, 588
indexing algorithm 736
indexing schemes 288
indexing tuning 756
index maintenance 754
index selection, problems with 694, 699, 938
indices 693, 694, 695, 696, 697, 698, 699, 734, 735, 736, 893, 908, 919, 921, 926, 938
inductive queries 521, 522
inference 553
information retrieval (IR) techniques 805, 806, 807, 808, 809, 807, 809, 810, 811, 812, 813, 814, 912
information retrieval (IR) techniques, peer-to-peer (P2P) 806, 807, 811, 813
information systems, biological 575, 576
integration operator 360, 364
integration process 482, 483, 484, 485, 486, 487, 488, 489, 963
integrity 348, 351, 354, 355, 356, 348, 914, 942, 945
integrity constraint 153, 356, 345, 346, 347, 411, 413, 416, 932
integrity control 347
integrity satisfaction 349, 356
integrity violation 348, 356
interactive model of commonsense reasoning 606
interferometry SAR (IFSAR) 403
Internet map services (IMS) 300, 301, 302, 303, 304, 305, 306
interoperability 491, 492, 493, 494, 495, 496, 497, 498, 502, 503, 504, 505, 506, 896, 901, 903, 907, 939, 940, 951, 962, 963, 964
Inverse Dimension 180
K
k-anonymity 528, 535, 943, 958
k-n-match query 296
KDD using ontologies cycle 510
KMeans-R 551
k nearest neighbor (kNN) query 318, 319, 320, 321, 322
knowledge discovery 518, 519, 524, 525, 903, 904, 928, 949
knowledge discovery process in databases (KDD) 508, 518
knowledge extraction 598
L
LCS distance 736
learning from data 591
learning task decomposition 595
legacy data 37, 38, 39, 40, 41, 43, 44
legacy information system 181
level 51, 55
linear vector space, multi-aspect data qualities 380
linkcell-based data management 245
linkcell construct 240–251
linkcell size selection 247
local constraint checking 347
location-aware linkcell (LAL) 242
location-aware query processing 240–251
location-based services 324
location repository management problem 241
logical navigation 176
Logical representation 52, 55
M
Machine learning (ML) 589, 594, 595, 916, 947
mapping categories 8
mapping discovery 482, 484, 487
map service 306
Index

materialized views 693, 694, 696, 698, 700, 895, 968
mechanisms, search 808, 809, 815, 817, 935
mediator 461, 465, 469, 492, 493, 494, 497, 498, 499, 500, 501, 503, 506, 963
memory buffer 754, 761
memory management 757
memory optimization 757
merging 96
metadata ontologies 511, 512
metasearch engines 809, 815, 946
metric 727
metric database 736
metric space 735, 736
microarray 573, 574, 575, 576, 577, 578, 579, 580, 617, 618, 621, 902, 929, 930, 957, 967, 972
minimal orthogonal bounding rectangle (MBR) 271
mobile clients 252–259
mobile process component 160
modal SOs 77
model-based clustering 565
model-driven development 145–153
model updating 131, 133
MoGATU 863
monitoring 716, 717, 718, 720, 727
moving object tracking 295
MRtree 263
multi-aspect data qualities in a linear vector space 380
multi-document summarization 279
multi-representation 97, 99, 101, 904
multidimensional model 64
MultiDim model 46, 58
multilevel signature file 647, 654
multimedia information systems (MIS) 269, 307
multiple inheritance 9
multiplicity constraints 145, 147, 148, 153
Multiset 16
multisets 13, 14

N

National Digital Forecast Database (NDFD) 300, 303, 305, 306
national spatial data infrastructure (NSDI) 301
National Weather Service (NWS) 301, 303, 304, 306
nearest neighbor queries (NNQ) 272
nested table 169
network edge 317, 318, 320, 321, 322, 324
network vertex 320, 321
node subsumption 663
notation, formal 40, 41, 42
NP datalog logic language 798, 799, 800, 801, 802, 803
NP optimization problem 799
NP search problem 804
numbering scheme 676
numbering scheme-based indices 676

O

object-relational data model 163, 169
object-relational impedance mismatch 162
object-relational modeling 169, 974
object identifier 163
observer system 475
online analytical processing (OLAP) 56, 87, 119, 700, 119, 700, 716, 717, 716, 717, 721, 722, 724, 725, 726, 727, 861, 901
online stock trading 769
ontological changeability 480
ontological commitments 507
ontologically-based information system 239
ontological reusability 480
ontological scalability 480
ontologies, hybrid approach 500
ontologies to data mining 508
ontology 434, 442, 469, 473, 475, 479, 478, 471, 480, 475, 479, 480, 491, 494, 497, 500, 504, 505, 506, 507, 907, 918, 920, 926, 969
ontology mapping 469, 489, 490, 935
ontology matching 480
ontology merging 450, 483, 490
ontology population 442
open geospatial consortium (OGC) 326
OpenGIS consortium 493, 497, 498, 503
OpenJUMP 284
open world assumption (OWA) 18
optimization programming language (OPL) 799, 801, 802, 803, 804, 968
optimization schema construct 189
Oracle8 165
ORION model 104
ORM (object-role modeling) 1
outlier mining 556, 561
outlier mining, example-based 556, 561
outlying subspace 561, 555
OWL lite 424
OWL ontology 425

P
pagination method 736, 728
paraconsistent realtions, algebraic operators 20
paraconsistent relational data model 18–27
paraconsistent relational data model, contraints and storage 25
paraconsistent relations 19
partitioned logging 787
partitioning clustering 563
party databases 216
pattern matching 666
PDEM, description 398
PDEM, how to employ 399
peer-to-peer (P2P) networks 805, 806, 807, 808, 809, 810, 806, 810, 805, 806, 805, 810, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 891, 902, 903, 912, 937, 940, 942, 949, 958, 975
peer-to-peer (P2P) systems 410, 411, 413, 414, 415
Peer-to-peer network 816
Peer-to-peer protocol 817
percolation theory 797
perpendicular distance estimation method (PDEM) 404
phenotype 621
PHP/MySQl development tool 576, 577
platform specific model 153
PMRquadtree 262
points, query 319, 320, 321, 324
points of interest 324
political databases 215
politically oriented database applications 214–220
politics, role 214
Posttest 350, 357
Pretest 351, 357
primary copy replication 764, 765
primitive concept 180
principal component analysis (PCA) 549, 553
privacy preserving data mining (PPDM) 527, 528, 530, 531, 532, 533
process-sensitive software engineering environment (PSEE) 154
process component 155
process component delegation 160
process level model 239
process modeling 155
product 160
profile models 85, 86, 87
projection 176, 180
PSEE, ability 157
PSEE, background 157
PSEE, capability 157
PSEE, ModelType 157
PSEE, participant 156
PSEE artifacts 155
pseudorandom generator 531, 536

Q
quasi-identifier 528
query engines 812, 813
query engines, peer-to-peer (P2P) 813
query languages 520
query optimizers 812, 816, 975
query reformulation 108
query schemes for mobile databases 860–871
query strategies 806
quorum 763

R
R* tree 263, 548, 549, 550, 551, 552, 553
random sampling 561
random variables 531
range, specified 12
range query 734
REA ontology 222, 227, 229, 230, 231, 232, 233, 235, 236, 239
redundant data, managing 253
referenceable table 169
reference DEM (R-DEM) 396
reflexive relation 16
relation 16, 17
relation-theoretic operators 21
relational database (RDB) schema 435, 436, 437, 441
relational database management system (RD-BMS) 880, 890
relational to ontology (RONTO) 435, 436, 437, 439, 440, 441, 442
relations, reflexive 16
relationship 16, 970
relationships, symmetric 13, 14
replication 254
resource 817
resource description framework (RDF) 420
resources-events-agents (REA) 222, 239
reverse engineering 85
robots 583
role 160
rollback operation 35
RTDCRS 772
rule extraction 601

S
S-tree 647, 654
sampling 530
sampling, random 558
schema 113, 114, 115, 117, 118, 935, 940, 956
schema, conceptual 181, 182, 184, 185, 187, 188, 189, 907
schema changes 104, 108, 117, 118, 935
schema evolution 93, 98, 99, 100, 101, 103, 108, 119, 120, 121, 130, 132, 136, 897, 904, 909, 920, 921, 934, 942, 946, 953, 970, 971
schema evolution management 120
schema evolvability 104
schema level consistency 118
schema matching 435, 436, 437, 440, 441, 442, 915
schema modification 103, 109, 120
schema property 118
schemas, logical 181, 184, 185, 186, 187, 189
schema versioning 103, 109
Scientific databases 296
SDA, defined 77
SDA, principles 79
secondary storage 736
secure coprocessor 534, 917
secure multiparty computation 527, 530, 536
segmentation 281
self-manageable database 761
self-tuning database 761
self-tuning database management systems 753–761
semantically modeled database 239
semantic conflict 498, 500, 501
semantic constraint 16
semantic heterogeneity 480, 491, 494, 502, 503, 505, 507, 928
semantic integration 469
semantic integrity constraints 365, 367
semantic integrity subsystem 366, 375, 376, 932
semantic interoperability 494, 495, 503, 504, 506, 507, 901, 963
semantic metadata 499
semantic network 450
semantic operators 451
semantics, canonical 171, 176
semantics, primitive 176
semantics-based search techniques (SemSTs) 811
semantic similarity 496, 502, 505, 934, 956, 959
semantic Web tools, for ontologies construction 418–433
semi-supervised clustering 567
sensor network monitoring 295
sensor networks 796, 797, 893
sequence alignment 621
sequential engineering 85
sequential logging 787
sequential pattern discovery methods 626
sequential pattern mining 622–631
sequential patterns, discovery 624
sequential patterns, restriction 625
sequential signature file 654
service 327, 328, 329, 330, 333
set-theoretic operators 20
Shamir’s secret sharing scheme 528
Shapley value 533
shared GIS server 497
shi (energy) for scientific enterprise 636
signature file 645
signature file techniques 644–654
signature identifier 654
signatures 654, 973
signature tree 649, 654
similarity, degree of 436, 437, 440, 441, 442, 949, 952
similarity detection 667
similarity measure 442
similarity query 298, 736
similarity retrieval 552, 554
similarity search 735
simple hierarchies 47
simplification method 357
small world models 797
snapshot isolation 764, 765
snowflake schema 55
SO concept, semantics 78
SO defined 77
software projects 155
software requirements 471
space lattices 557, 558, 559, 561
spatial access method 293
spatial aggregate queries (SAQ) 271
spatial data 261, 325–334, 490
spatial database 307, 309
spatial database engine (SDE) 302, 306
spatial database system (SDBS) 269
spatial data clearinghouses 301, 302
spatial data infrastructure 327
spatial data integration 327
spatial data types 278
spatial data warehouse 57, 64
spatial dimension 64
spatial fact relationship 64
spatial hierarchy 64
spatial index 554
spatial level 64
spatial measure 64
spatial network databases 324
spatial networks 316, 318, 319, 322, 323, 324, 937, 951
spatial relationship 283
spatio-temporal query 268
specified range 17
SQL-92 12, 14
SQL:1999 163
SQL:2003 standard 146
stable-model semantics 804
star and snowflake schema 46
star schema 55
statistical database 536
stereotype 164
stored data 92, 101
streaming time series 288, 299
structural summary-based indices 675
structured P2P network 817
structured query language (SQL) injection attacks 880, 881, 883, 884, 885, 886, 889, 890, 895, 907, 920, 934, 936, 937, 941, 951
subspace 556, 557, 558, 559, 560, 561, 892
subspace, outlying 556, 557, 558, 559, 561
subspace clustering 566
sufficient statistics 591
summarization 530, 536
summarization 530, 531, 533
super-peer 817
suppression 528, 536
SWIFT 737–743
symbolic data analysis (SDA), principles 74–81
symbolic data tables 75
symbolic object (SO) 74
symmetric relation 17
system empirical design 189
system failure 787
T
tabular data representation 530
task level model 239
temporal atom 29
temporary data, representing 29
temporal database 35
temporal database management 28–36
temporal data model 35
temporal data object 787
temporal element 35
temporal relations 30
temporal relations, designing of 32
termination 146, 153
text clustering 567
text filtering 282
text indexing methodology 644
the coherence problem 129
threshold query 296
time granularity 35
time interval 35
time series 288–299
time series, similarity search in 290
time series, streaming 288
tool 160
top concept 180
trajectory 266, 268, 941
transactional data 670
transaction time 36
transcript 621
transformation rules 149
tree embedding 656, 663
tree encoding 657, 664
tree pattern query 664
tree tuples 670
triangular inequality 291
triggering graph 147
two-phase-locking (2PL) 762
two phase commit (2PC) 738

U
U.S. National Oceanic and Atmospheric Administration (NOAA) 301, 303, 304
unstructured P2P network 817
untranslation 187
update 357
user's layer 866
user-defined types (UDTs) 163, 169
user-driven approach 132

V
valid time 29, 36
Value chain 239
varray 15, 166
vector-space models 669
version derivation 101
versioning-view 101
version management, approaches 139
very large scale integration design (VLSI) 269, 307
virtual organization 727
visualizations, interactive 575
voting technique 763

W
weak-voting replication 764
Web ontology language (OWL) 423
wide spectrum language (WSL) 37, 40, 41
workloads 693, 694, 695, 696, 697, 700
Wrapper 333, 462, 470

X
XBR tree 263
XML (eXtensible Markup Language) 419, 674
XML databases, and query evaluation 655–664
XML databases, indices in 674–681
XML document 664
XML document versioning 140
XML in digital libraries 137–144
XML schema 664
XPath expression 664