Index

A

academic
 -to-academic (A2A) 737
 -to-learner (A2L) 737
 -to-teacher (A2T) 737
activity theory (AT) 720
adaptive
 learning design (ALD) 76
 learning systems (ALS) 118
analyze, design, develop, implement, and evaluate
 (ADDIE) model 402
animated pedagogical agents (APAs) 363
apparatus markup language (AML) 777
assessments 699
astronomical instrument markup language (AIML) 778
asynchronous e-learning 741–751
 design guidelines for 743
 for synchronous e-learning 745
 versus design patterns 745

B

blended learning 606

C

California
 achievement test (CAT) 562
 test of basic skills (CTBS) 562
cognitive style 416–448
 and the learning process 430
 justification for examining types of 432
 role of 419
collaboration in online courses 682–691
 motivating students 683
 case study 687
computer
 -aided language learning (CALL) 451
 -assisted instruction (CAI) 66, 398
 -assisted language learning (CALL) 643
 -based instruction (CBI) 397
 -based training (CBT) 92, 572
 -mediated communication (CMC) 604, 787
 behaviors 934
 media richness theory 930
 models 929
 hyperpersonal communication model 933
 reduced social cues model 931
 social identity model 933
 social information processing model 931
 social presence model 929
 gaming 396–408, 416–448, 449–462
 and narratives 453
 and simulations 453
 and the learning process 422
 future in education 403
 in a college classroom 463–475

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
methodology 465–467
results 467–469
justification for examining types of 432
learner expectancy 423
link to IST research 397
role of 418
supported collaborative learning (CSCL) 787
constructivism 52–64
changing roles of teachers and students 52
content management systems (CMS) 731
course management systems (CMSs) 23–33, 27–33, 547–559, 705–715
faculty responses 553
student responses 555
tools 551
cross-cultural communication and collaboration 959
designing an online learning environment 962
implementation 965
culturally
aware systems (CAWAS) 30–33, 829–841
architecture of 832
authoring tool to produce cultural templates 833
cultural adaptation of multimedia content 835
cultural intelligence 831
cultural representations 836
dual representation of cultural rules 832
negotiating the meanings of technology use 842–868
impact of western technologies on non-western communities 857
key issues 846
non-western learners’ cultural appropriation of technologies 852
use of western educational technologies to serve non-western learners 847
CyberCoaching System (CCS) 19–33, 343–359
diagnostic cognitive assessment (DCA) 19, 343
instructional technology and 348
what is it? 346
expert knowledge model 350
intelligent tutoring system 351
student model 349
sum of squares and cross products (SSCP) 352
concepts and computation of 352
what is it? 348
Cyberethics 884–895
academic honesty policy issues 887
detecting online plagiarism 889
framework for sound ethical decision making 886
teaching 890

D
digital
divide dimensions 869–883
cultural differences 873
educationally 874
information access patterns 871
socially and culturally 871
patterns 876
game-based learning 409–415
barriers 412
cost issues 412
infrastructure issues 412
overcoming them 413
people issues 412
benefits 411

E
e-learning adoption 498–513
addressing emotions 803–816
detecting emotions within instructional technology 805
emotion recognition 806, 819
guidelines for designing an inferential system of 810
facial action coding system (FACS) 807
their role in learning 804
affective agents in 817–828
affordances of 820
guidelines in developing 823
comparison of case studies 692–704
faculty training 701
in the two countries 694
criminal justice team in England 698
faculty of graphic arts in Croatia 695
student supports 700
the two universities 693
use of virtual learning environments 699
computer software training 571–581
simulation design and development for 574
animated screen captures 575
HTML hybrids 577
process capture software 577
static screen captures 574
traditional authoring software 576
critical success factors 498–513
the holistic approach 500
align with business objectives 500
a training delivery method 502
blend instruction 504
content design and development 505
establishing the technology infrastructure 503
evaluate and provide feedback to development 505
leadership, managing the project, and managing change 501
motivate e-learners 506
designing interactive environments 596–613
collaborative learning 599
interaction 598
lessons from the corporate world 514–531
drivers and constraints 518
human capital management systems 516
implementation issues and strategies 526
methodological trends 729–740
content-based video indexing 732
emerging ones 730
mobile learning 734
personalized, intelligent Web tutoring 733
research framework 735
XML and Semantic Web 731
educational modeling language (EML) 67
embodied conversational agents (ECAs) 363
employee performance management (EPM) 516
English as a second language (ESL) 25, 641
entity-relationship-modelling (ERM) 134
experiential learning theory 434

F
feedback 416–448
justification for examining types of 432
knowledge of correct response (KCR) 417
knowledge of response (KOR) 417
long-term memory storage 426
Ford partnership for advanced studies (Ford PAS)
26–33, 670–681
implementation of Web-based curriculum 670–681
surveys 674–675

H
handheld hybrid 641–652
overcoming learner obstacles 647
overcoming pedagogical obstacles 646
student benefits and response 649
the rationale 645
human
-computer interaction (HCI) 397
capital management (HCM) 515
resource management systems (HRMSs) 22, 514
hypermmedia 92–106
and learning style 95
rationale and research questions 96
results and discussion 98
tools for teaching and learning 93

I
IMS learning 65–78
learning design (LD) specification 67
a learning design example 69
extension via services 71–75
pedagogical deployment 68
information processing theory 433
instructional
design (ID) 11–33, 1–14, 142–154
applications of ID models 3
artificial intelligence (AI) 9
automated instructional design (AID) 9
learning management systems (LMS) 9
benefits 19
cognitivist and social-constructivist perspectives 146
comparing learning paradigms 144
Cook et al.’s model of learning and knowing 145
discussion: the end of ID? 149
future trends 8, 24
cognitive science and neuroscience 9
object-oriented distributed learning environments 8
reusable learning object (RLO) 8
in corporate settings 28–37
cases from real-world corporate settings 29
responsibilities and skills 34
project management 2
recent paradigm shifts 143
strategies and guidelines for 582
strategies for business education 38–50
effective learning and teaching strategies 43
National Business Education Association (NBEA) 39
NBEA National Business Education Standards 39
technology competencies for business education students 40–42
students’ expectations 21
technology project management 3
Web-based 582–595
adaptive methods 584–588
considerations for 588
individual characteristics 583
environment 156
systems design (ISD) 4, 17
recursive, reflective, design, and development model (R2D2) 6
the Addie model 5, 19
the ASSURE model 8
the dick and carey model 5
the ICARE model 7
the rapid prototyping model 6
subject matter experts (SMEs) 6
systems portfolio management (ISPM) 22–33, 476–497
aligning IS investments with corporate strategy 480
assessing IS portfolio execution 489
building the IS portfolio plan 481
creating the IS portfolio 483
IS portfolio governance 491
managing the IS portfolio 486
technology 18, 53
and social psychology 944–951
attitude-behavior consistency 946
people as motivated tacticians 948
defined 18
implications for integration 23
innovative learning approaches 257–271
distance education delivery 259
equipment for 260
impetus for change 258
information storage 262
solution partners 258
specialized software tools 264
Web sites to enhance education 265
wireless connectivity 262
integration barriers 54
students’ uses 204
teachers’ views of appropriate technology 198–215
a qualitative study 200
contributing factors 199
understanding pre-service teachers’ perceptions 209
use and perception 157
instructor led trainings (ILT) 572
instrument markup language (IML) 778
intelligent tutoring systems (ITS) 734, 830
interface design 79–91
emotions 79–91
positive 82
future trends 86
how it affects users’ experience 80
multimedia learning 79–91
Mayer’s cognitive theory 83
model of emotional design in 84
suggestions for attractive design 85
IT research 913–926
for all social classes 922
myth of technology integration in American education 918
the postmodern perspective 915
J
joint
academic network (JANET) 695
information systems committee (JISC) 695
K
knowledge management 653–669
Kolb’s learning styles 94
L
language learning 449–462
and linguistic 450
case studies 453
constructivist language 451
player-game system 454
verbal interaction 458
player-player system 457
massively multiplayer online games (MMOGs) 457
multi-user, object-oriented (MOOs) 457
verbal interaction 459
tactical language training system 455
learning
and study styles inventory (LASSI) 23, 532
results self-regulation 541
container (LC) 111
content management system (LCMS) 66, 577, 770
management system (LMS) 28, 768, 771
material markup language (LMML) 122
object metadata (LOM) 75, 770
object model 768–784
coupled tank 780
lab-based 776
objects (LOs) 111
paths 122
basic design 123
creation and modification of 127
interactive meta-heuristics course 132
substitution of meta-data and objects 124
synchronized blended learning 129
realities 15–33, 177–197
activity theory as a framework 182
cognitive tool concept 184
situated cognition 181
cogenerative action strategies 186
two case descriptions 190–196
to think 787
villages network 287–299
the Net Academy 289
learning management system (LMS) building
characters 329
SharePoint Alliance (SPA) trial 331
sample subject on 337
Web site and portal components 334
libraries supporting technology 168
collaborative training: Blackboard 170
electronic resource management 173
instruction builder (IB) 173
learning content management system (LCMS) 172
LOLA strategy 653–669
“answering” activity 659
“assessment” activity 663
“commented reading” activity 661
“commenting on links” activity 661
“production of collective article” activity 662
“questioning” activity 658
methodological approach 656
pedagogical management 656
results 663

M

meaningful learning 56
accessing/using the database 58
choosing a topic 57
describing categories of information 57
designing the database structure 58
filing the database 58
gathering information 57
querying the database 58
medical education and technology 312–325
barriers 314, 321
cost 322
faculty incentives 323
helpful technology modalities 316–320
International Virtual Medical School (IVIMEDS) 317
primary medical education
considerations for 314
primary medical education 313
reliability 322
secondary medical education 313
Microsoft SQL Server Desktop Environment (MSDE) 328
misuse of online databases 373–380
recommendations for instructors 377
study 1 375
study 2 375
technology acceptance model (TAM) 374
motivation theory 434
multimedia
messaging systems (MMS) 545
multimedia instruction 216–231
benefit of 219
case studies in 896–912
design and development principles 222
functionality in problem solving 232–248
problem types 235
recency effect 234
spatial ability 235
study 1 236
study 2 239
working memory and cognitive load 234
learner control 226
learning theory 899
State technology standards 222
student interactions 900
the instructor 898
what is it? 218, 898
Myself project 360–372
affective computing in 363
description and main goal 362
soft skills 365
3D interactive simulations for training in 365

N

national
assessment of educational progress (NAEP) 562
learning network (NLN) 732

O

Ohm’s law 780
online
communication 927–943
Index

distance and interaction 936
social presence 937
verbal, nonverbal, and bandwidth 928
community building 906
discussion 787
learning 519
and the Gallup Organization 519
Gallup’s learning management system 520
reading assessment strategies 560–570
can software programs help? 565
extant data analysis 566
how reading problems are identified? 563
literature review 561
learning environment (OLE) 602
MBA program 614–630
commonly used technologies 619
uses of technologies 618
interactivity level of 619
teaching
challenges instructors face 705–715
compensatory issues 709
course content issues 710
course design issues 712
heavier workload 709
interaction issues 711
training issues 710
using course management systems (CMSs) 708
characteristics 706
fear of pedagogical change 723
higher order thinking (HOT) 785–802
classroom implementation 797
dialogic communication 786
literature survey 788
research on 791
learning and study strategies for 532
teaching Shakespeare 631–640
comprehensive assessment system 633
teaching focuses 632
ontology driven model for e-learning 107–116
bootstrapping 109
personalized ontological learning environment (poleONTO) 14, 107, 110
why and ontology 108

P
personal digital assistants (PDAs) 734
portable education 249–256
benefits of using it for education 250
devices 252
podcasting 250–256

educational use of 253
format of 252
really simple syndication (RSS) 251
technologies 251
problem-based learning (PBL) 718
proportion-integral-derivative (PID) 780

R
reusable learning objects (RLOs) 521, 769
advantages of 522
and on-demand learning 523
use by organizations 523
role-playing games (RPGs) 459

S
self-directed learning (SDL) 642
Southern Regional Education Board (SREB) 562
strategic learning 537
and self-regulation 540
skills for 534
teaching strategies 543
student decision making in technology 155–167
a study 158–163
analysis of covariance (ANCOVA) 162

T
team teaching 300–311
improving 308
merging interdisciplinary faculty 304
solving problems in online team teaching 307
special needs students 305

U
ubiquitous learning (u-learning) 20–33, 381–394
role of human to human interaction 383
suggested architecture 386
components 387
technical possibilities and limitations 382
the walkabout environment 388
e-Learning environment 389
implementation models 391
m-Learning environment 391
towards a model for 385

V
virtual
classroom excellence 716–728
case-based learning 719
Index

enhancing it 721
four levels of implementation 722
problem-based learning 717
scope of instruction 718
project-based learning 717
scope of instruction 718
instruments markup language (VIML) 779
learning environment (VLE) 27–33, 118, 692–704
SmartFrame 120
strategies for 903
visuo-spatial working memory (VSWM) 235

W
Web-based training (WBT) 92, 572
WebCT tools 634
discussion board 635
to reach educational goals 634
WebQuest
development 272–286
beliefs and concept mapping on 272–286
study 1: beliefs on WebQuests 274–277
study 2: concept mapping on WebQuests 277–282
underlying constructs of 752–767
applying constructs to online instructional design 759
as functionally relevant to WebQuest
theoretical framework 761
as functionally relevant to WebQuest learning 759
the study 755–759
Windows SharePoint Services (WSS) 328

Z
zone of proximal development (ZPD) 599