Index

Symbols
3-D visualization 558–575
GUI design remarks 564
high-performance 3-D remote visualization 565
distributed visualization service (DVS) 566
mobile visualization client 567
local computation 559
remote computation 561

A
adaptive
interfaces in mobile environments 302–317
abstract user interface adaptation 304
adaptation to devices 306
design-time adaptation 306
mobile agent adaptation 308
run-time adaptation 307
adaptation to users 309
adaptive user interface system (ADUS) 309
mobile learning management system (AM-LMS) 286–301
analyzing learning style 296
structure 295
ambient system (AmS) 369
audio-based memory aid 1031–1048
personal audio loop (PAL) 1032
final prototype 1038
formative evaluations 1033
making PAL socially and legally acceptable 1044
making PAL ubiquitous 1043
making PAL useful 1043
usefulness of PAL 1036
average ranked list position (ARP) 417

c C

camera phones in social contexts 55–68
barriers to sharing 64
situated use 58
social uses 60
cognitive models as usability testing tools 814–829
architectures 820
goals, operators, methods, and selection rules (GOMS) 821
descriptive vs. generative models 822
atomic component of thought with rational analysis (ACT-R) 823
ISO quality models 818
collaborative learning 270, 272
an environment for cognitive engagement 275
mobile technology supported classroom 275
cognitive conflict 271
cognitive elaboration 271
cognitive tool (CT) 271
mobile learning 273
pedagogical design 279
encouraging reciprocal tutoring 281
collaborative mobile applications
field study 997–1014
data analysis 1002
through ActivityLens 1003
data collection techniques 999
computer
-supported collaborative learning (CSCL) 1068
-supported collaborative work (CSCW) 1068
-supported intentional learning environments (CSILE) 1068
context 187–204
-aware mobile interfaces 759–779
designing 770
mobile use context 761
wizard of oz evaluation 770
for mobile applications? 192
ontology-based model 194
mobile context-aware applications 208
design guidelines 212
support for interaction design 210
usability 209
risks 210
perils of context-awareness 191
supporting user interaction 197
utilisation in mobile applications 190
what is context-awareness? 206
 relevance to human-computer interaction (HCI) 207
 relevance to mobile HCI 207
what is it? 189

D
disambiguation accuracy (DA) 417
distraction classification 973
 three studies 974–978

E
electromyographic (EMG) 524–542
 electrodes, recording, and applications 526
 for human-computer interaction (HCI) 527
 intimate communication armband 528
 hardware 529
 signal 526
 subtle gestures 528
 1st study: learning and recognition rate 533
 2nd study: multimodal realistic interaction 535
 3rd study: assessing noticeability 537
 model 531
engineering emergent ecologies 364–385
 an example: virtual residence 372
 bio-inspired approaches 367
 engineering approach 373
 Aml spheres and collective behaviour 374
 awareness and presence 374
 interacting with Aml spheres 374
 GAS approach 375
 interaction 367
 symbiotic Aml spaces 367
ethnography and interface design 3
 design sketching 9
 informing design 5
 interpreting data 4
 in the design process 4
 prototyping 11
experimental ethno-methods 16–34
 experimental prototypes 25
 public interactive display 26
 results analysis 27
 theatre workshops: personas and scenarios 22
 to evaluate the user experience with mobile interactive systems 16–34
exploring starfield displays 576–593
 fisheye 583
 interfaces 584
 overviews+detailed 580
 interfaces 581
 smooth-zooming 578
 interface 578
extensible user-interface language (XUL) 310
eye movement studies of mobile readability 945–971
cathode ray tube (CRT) 951
evaluation methodology 955
general linear model (GLM) 956
liquid crystal display (LCD) 951
reading on small screens 951
 study one: reading on a PDA 957
 study three: reading on a mobile phone 963
 study two: verifying the results 960
text presentation formats 952
 the reading process 947
 cognitive processing 948
 measuring readability 949
 physiological limitations 947
thin-film transistor (TFT) technology 951

F
field laboratory for evaluating in situ 982
 close-up video and improved sound 985
 increasing battery lifetime 991
 minimizing equipment 991
 small cameras and video sources 988
flexible organic light emitting diodes (FOLEDs) 179

G
gadgetware architectural style (GAS) 196
generation of GUIs (indirectly) 311
 graphical partitioning model (GPM) 274
 graphical user interfaces (GUIs) 302

H
heuristic evaluation methods 780–801
 appropriating usability heuristics 785
 mobile usability issues 786
 toward a set of heuristics 787
environment of mobile infrastructure 796
 limitations 784
 mobile devices, applications, and their context 782
 nature of mobile devices 795
 strengths 784
human-computer interaction (HCI) 731–744
 defining evaluation targets 732
 designing an evaluation protocol 739–740
Index

making sense of human activity 736–737
reference models 734
human mobile computing performance 830–846
applying Fitt’s law 834
experiment on mobile input performance 835
input time and Fitt’s law 839
mobility and HCI 832

I
in-car user-interfaces 218–236
case study: vehicle navigation systems 229
design and evaluation 223
15 second rule 228
field trials 224
keystroke level model (KLM) 228
lane change task 228
peripheral detection task 227
road trials 225
simulator trials 225
human-centered design process 220
environments 223
equipment 222
tasks 221
users 220
types of in-car computing systems 219
individuals with disabilities 609–623
design of assistive technologies 613
instrumented usability analysis 928
case study of walking and tapping 931
example: mobile text entry 930
the Hilbert transform 934
intelligent user interfaces (IUIs) 318–329
artificial intelligence (AI) in mobile computing 322
artificial intelligent (AI) in mobile computing techniques 323
reflections on context 320
device characteristics 321
prevailing environment 321
social situation 322
the intelligent agent paradigm 324
interface definition language (IDL) 369

K
keystrokes per character (KSPC) 417

L
language understanding 469
learning-disabled children 142
method 144
participants’ experience with technology 146

M
media services language (MSL) 658
micro-electrical-mechanical systems (MEMS) 160
mobile
applications and mental health 635–656
adaptable systems 646
case study: “mobile mood charting” 649
design of chart 650
design 638
for adolescents 639
for therapists 639
design recommendations 644
multistage prototyping 647
software to support psychotherapy 640
supporting mental health interventions 637
camera-based user interaction 543–557
computer vision technologies 544
markerless tracking 545
tagging-based systems 546
mapping camera motion 547
prototype 550
applications 551–553
high-level algorithm description 550
collaboration in learning environments 1069
collaboration components 1074
paper prototype testing 1070
design for older adults 624–634
meetings/discussions 628
physical interfaces 629
recruiting older target populations 627
virtual interfaces 630
devices as museum guides 256
example of mobile activity design 262
evaluations in a lab environment 910–926
distractions 913
evaluation 1: audio and visual navigational cues 914
evaluation 2: comparison of wearable displays 919
learning 287
evironment 288
research trends 289
styles 290
four dimensions 291
index of learning style (ILS) 292
user interface 294
learning in museums 253–269
mixed systems 346
3-D simulation environment 349
Index

ASUR model 350
 basic principles 350
 extension 351
 designing 348
 SIMBA 354
 element model 355
 overall process 354
 simulation 358
 telephones for rendezvousing 35
 a diary study 37
 method 38
 performance deficits: user experience 43
 results 39
 design implications 45
 model-based sonification 481
 doppler effect 483
 experiments
 one 485–491
 two 493–503
 human operator modeling 499
 quickening 482
 multilayered evaluation approach 850
 experiment: comparing field and laboratory use of a PDA 851
 WebQuest Tool 854
 multimodal user interface (MUI) 462
 multiplatform e-learning systems 1083
 evaluation methodology 1086
 overall learner satisfaction score 1090
 participants information 1089

N
 navigational aid for blind pedestrians 693–710
 aids 694
 user- and activity-centered approaches 695
 activity-centered approach 699
 user-centered approach 697
 nonspeech audio 676–692
 advantages of using our ears 676
 benefits 678
 ecological psychology approach 678
 experimental process 680
 sound localization process 679
 spatial conceptualization process 684
 experiments 686
 virtual courses 685
 virtual 3-D acoustic space 679

O
 one-handed use of mobile devices 86–101
 field study 88
 thumb movement study 93
 design 94
 equipment 93
 Web survey 90
 optical fiber flexible display (OFFD) 178

P
 photo management on a mobile device 69–85
 designing mobile interface 77
 enhancing interaction 77
 context-awareness 78
 online photoware for sharing and photoblogging 73
 photo browsing techniques 76
 stand-alone photoware 73
 privacy regulation model 863–876
 case study: privacy perception of the PePe system 869
 five factors affecting information disclosure 866–868
 previous research 865
 projected displays for collaboration 594–608
 Hotaru (Firefly) 595
 intuitive manipulation techniques 599–601
 examples 600
 of mobile devices 596
 user studies 601
 experiment 1 602
 experiment 2 603
 prototyping tools 330–345
 building a high fidelity prototype 341
 SUEDE 330
 topiary 330
 with storyboards 332
 wizard of oz (WOz) testing 335

Q
 question-answer relationships (QAR) 1069

R
 radio frequency identification (RFID) technology 657
 application fields 660
 EuroFlora guide 664
 structure of the interface 666
 integration of RFID subsystem 662
MADE support 659
location-aware computing 659
mobile applications development environment (MADE) 658
architecture 660

S
smart
 garments
 applications 184
 embedded technologies 177
 microprocessors 179
 power, radiation, and the environment 180
 ergonomics of intelligent clothing 180
 aesthetics vs. function 182
 cut, connectors, and material 181
wheelchair
 adaptability 717
 alternative navigation models 724
 behaviour-based interaction 725
 physical interface 722
 structure 712
 user interface 713
 design constraints 714
 what is it? 712
wheelchairs 711–730
speech-based user interfaces (UI) 237
 automotive UI design principles 239
 recommendations 240
 recent automotive spoken Uls 242
 speech-in list-out approach (SILO) 245
speech-centric user interface design 461–477
 generic MUI architecture 463
 modality fusion 470
 special considerations for speech modality 465
 context-aware language model 469
 modality switching 468
 resource constrained speech recognition 466
 speed-dependent constrained automatic zooming (SDAZ) 589
stroke-based input 426–445
 Chinese characters 427
 mobile input solutions 428
 handwriting recognition 428
 pinyin method 428
 structure-based methods 429
 Motorola iTap™ stroke input method 430

T
technology acceptance model (TAM) 103
 for mobile services (TAMM) 106
text entry 408–425
 disambiguation 412
 evaluation 417
 keyboards 409
 ambiguous 411
 unambiguous 409
 stylus-based 414
 gesture-based input 416
 handwriting 415
 on-screen keyboards 414
tourist digital assistant (TDA) 658
transgenerational designs 122–141
 assessments 126
 implications for design 135
 independent and dependent variables 124
 learnability effects 131
 menu navigation performance 130

U
ubiquitous mobile input 386–407
 design space of input devices 387
 orient 394
 positioning tasks 388
 continuous direct interactions 390
 continuous indirect interactions 388
 discrete direct interactions 391
 discrete indirect interactions 391
 positioning techniques 392
 spatial layout of design space 401
 text 399
UI design in a closed environment 1015
 competing technologies 1019
 participatory design 1023
 patient monitoring unit (PMU) 1017, 1025
 physiological monitoring 1018
 strategic user needs analysis (SUNA) 1020
 steps 1021
 usage context 1017
 user-centred design (UCD) 1019
 unobtrusive movement interaction 507–523
 continuous detection reliability: experiments 514
 customization 511
 sensor interaction cover 511
 use cases and usability 513
 usability
 evaluation methods (UEMs) 745–758
 case study: towards a real world lab 752
 current UEM framework 747
 cultural probes 750
 for mobile applications 746
 factors of mobile phones 877–896
Index

case studies 890–892
 developing a framework 881
 hierarchical model of impact factors 883
 phones and tasks 879
user acceptance of mobile services 102–121
 applicability of earlier approaches 105
 design implications 110
 perceived ease of adoption 116
 perceived ease of use 112

V
 validity laboratory test results 897–909
 challenges of mobility 899
 suggestions for field testing 904
 logistics 905
 usability testing 900
 principles 900
visualising meeting recordings on small screens 1052
 meeting browser evaluation test (BET) 1057
voice-enabled user interfaces 446–460
 the prototype 448
 managed applications 450–454
 program manager 454
 graphical user interface (GUI) 454
 underlying speech technology 449
 speech recognition 449
 speech synthesis 450

W
 W3C device independence activities 1082
wearable computers 158–175
 computer response to physical activity 164
 emotional impact 168
 finding and retrieving information 166
 human factors 158–175
 form-factor and physical attachment 160
 navigation and wayfFinding 165
perceptual impacts 163
physical effects 161
reducing size and separating components 162
supporting memory 165

 wizard of oz for evaluating 802–813
 in the development lifecycle 804
 method 803
 studies for mobile technology 805
 variability 806
 wozzing 806
 cautions 810

Z
 zoomable user interface (ZUI) 577