Index

4 Ps model 287

A
Abductive Decision Support System (ADSS) 278
abductive reasoning 265, 267, 271, 275-276, 279-283
abductive theory 277-279
AFFORSIM 246, 257, 259
agent based integration 244
aggregated spatial risk modelling 247
Agricultural Ontology Service (AOS) project 303
agricultural practices 32, 183, 186, 212, 228, 237, 239
analytical spatial risk modelling 247
analytic attribute risk modelling 247
Aquatic Environment and Wetland (AEW) 171
Arabidopsis 330
area data analysis 156
Artificial neural networks (ANN) 316, 320
assumption-based truth maintenance system (ATMS) 279
authoring tool 120, 122, 124
autocorrelation 154, 156-158, 160-163

B
back-end level - See Levels of Data Warehousing Architecture.
base cube schema 42
beef farming 100, 102, 117
best management practice (BMP) 332
biofuel crops 332
Blue and Green Infrastructures (BGI) 168
Boolean spatial features 190-191
Bremer Catchments 90
business intelligence (BI) 59

C
cereal silos 221-222
chestnut dataset 146-148, 150
coastal algal blooms 88-89, 98
colocation mining 190, 194, 198, 200, 202, 204, 207-208
colocation mining problem 194
complex measure 32-33, 40, 47-49, 51-52, 54
computeSingleExplanation 278-279
Concert’Eau project 229, 231, 236, 239, 243
coupling 6, 20, 30, 167, 244, 256, 277, 330, 335
correlation 6, 20, 30, 167, 244, 256, 277, 330, 335
CROPGRO model 328, 332, 336
Cultivated Parcel concept 219
cyclic class 10
data-driven method 5-6
data exploration 1, 38, 146
data warehouse 1-8, 10-11, 14, 17-18, 30, 32-38, 41-45, 47, 50-51, 54-57, 59
data warehouse design - See Warehousing and Analysis Methodology.
data warehouse level - See Levels of Data Warehousing Architecture.
decision tree problems 266
design of experiments (DoEs) 19
discontinuous urbanisation thematic 246
DISCO project 30
discrete event simulation environment (DISESE) 105
DPSIR framework 123-124, 126-127, 138
Index

E
EcoInformatics 82, 86, 99, 102
ecological continuums 167, 169-171, 173-175, 181, 184-186
Ecosystem Health Monitoring Program (EHMP) 82-83, 88-89, 98
education for sustainable development 120, 131, 140-141
Enterprise Application Integration (EAI) 290
Enterprise Distributed Object Computing (EDOC) 290
entity instance 41-42
entity schema 41-42
environmental modeling 1, 286, 326
environmental phenomena 146, 208, 211
environmental sustainability index 127, 142
environment class 10
Epidemic concept 219
erosion layer 203
experiment design - See Warehousing and Analysis Methodology.
Extensive Agriculture and Edges (EAE) 171
Extraction, Transformation and Loading (ETL) process 3

F
farm concept 217-218
farmland 100-102, 106-107
food storage units 106, 110
forest ecosystem thematic 246
forest fire risks 244
forest fire risk thematic 246
Forez Mountains 173
fuzzy values 267

G
Genetic k-means algorithm (GKA) 315
geographical discrimination 144
gеographic entity schema 42
gеographic information systems (GIS) 33-34, 56, 198, 212
gеographic measure 32-33, 39-40, 43-44, 48-49, 51-53
geometric primitive 67, 75-76
gеospatial datacube schema 66-68
GeWoLap 32-33, 43-49, 51-52, 54-56
goal-driven method 6
GoogleEarth 90, 93-95, 97

H
hay-making 105, 113-115
Health-e-Waterways Project 82-84, 95
hierarchy class 9-10
hierarchy schema 42, 55
honey 144-153
Hybrid OLAP (HOLAP) 36
hydrographic network 212

I
input class 10
Institute of Electrical and Electronics Engineers
Learning Object Metadata (IEEE LOM) 121
International Atomic Energy Agency (IAEA) 140
Irrigation Networks 221

J
JPivot 13, 18, 45, 51, 57

K
Kernel Density 156-157, 159, 161-162, 164-165
k-means Algorithm 314-315, 320, 324-325
knowledge base (KB) 273
knowledge discovery and data mining (KDD) 4

L
LANDIS II 247, 257
land use planning 154
leaf dry matter content (LDMC) 107
level class 9-10
Levels of Data Warehousing Architecture
back-end level 3
data warehouse level 4
OLAP client level 4
OLAP server level 4
Logan Albert Catchments 90

M
MACROPOLIS 247, 257, 259
MapXtreme Java 45, 57
marker species 144, 149
mediating artefacts 120, 124, 139
MICROPOLIS 247, 257, 259-260
mining algorithm 194, 197-198, 200-202, 208
Model Driven Architecture (MDA) 288, 297, 305, 310
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Index

sustainable development 118, 120, 123, 126, 131-132, 140-141, 169, 228
System on a Chip (SoC) 290
Systems Engineering (SysML) 290

T
Thermophiles Dry Areas (TDA) 171
third generation languages (3GLs) 289
time class 10

U
unified modeling language (UML) 212, 304
urban sprawl 154-155, 159, 164, 166, 246, 250
user-driven method 6

V
vegetation layer 203, 207

Venice Lagoon 32-35, 39, 42, 50

W
Warehousing and Analysis Methodology
data warehouse design 7
eperiment design 7
imulation result analysis 8
imulation result integration 8
water sensitive urban design 89
WATERS testbed 87
Wizard of Oz 129
Woody of Lower Altitude (WLA) 171

Y
yield gap 332