Index

Symbols

2-dimensional arrays 172
4-dimensional tensor calculus 116
4-quadrant approach 280
4-quadrant point of view emergence 285

A

“agent-based modelling” (ABM) 26
ABM “bottom-up” modeling 26
actual simulation 235
adaptation 12
adaptive activity 30
adaptive activity, first postulate of 44
adaptive activity, second postulate of 44
adaptive multi-agent modeling 313
adaptive systems, central processing 159
adjacency matrix 109
agent-based computational economics (ACE) 256
agent-based computational social science 255
agents 13
aggregation 99
algorithmic complexity 114, 276
algorithmic complexity, definition 123
algorithmic information complexity 117
algorithmic information theory 114
allocation of complexity 332
Anthropic Principle 117
Anthropic Principle, definition 123
arcs 107
artifact 129
artificial chemistry 98
artificial cognitive system 136
artificial complex adaptive systems 98, 216
artificial intelligence (AI) 127
artificial life (ALife) 135
artificial life systems 216
artificial species 136
artificial systems 75, 91
atomistic concepts 16
autopoiesis 131

B

behavioral specialization 218, 220, 221
bifurcation 192
biological collective behavior systems 216
biologically inspired design principles 216
biological taxonomy 87
biological taxonomy, hierarchy of 87
Boolean networks 187
Boolean networks, dynamics 189
Boolean networks, information barriers 187
Boolean networks, modularization 202
Boolean networks, structure 189
bottleneck problem, solution 166
building blocks 84

C
carrier space 339
CAS, adaptive potential of 29
CAS, conditions of realisation 29
CAS-modelling 39
CAS-modelling, MSP-platform 42
CAS agents 28
CAS modelling 35
CAS theory 1, 2
CAS theory, concepts of 9
CAS theory, conceptual concepts 2
CAS theory, reductive study of 4
CAS theory, studies of 1
causal concepts, relationship between 14
causal propositions 13
causal relationship 13
cellular automata 133, 135
cellular automaton 119, 275
cellular automaton, definition 123
church-turing thesis, definition 123
classifier system, definition 123
cliocide 300, 304
co-causal propositions 1
co-selection 101
cognition 131
collective behavior methods for specialization 221
collective behavior systems 215, 217
collective behavior systems, biologically inspired principles 215
collective behavior tasks and specialization 226
collective construction 228
collective gathering 226
collective resource allocation 230
collective resource distribution 230
complex adaptive system, construction of 37
complex adaptive systems (CAS) 1, 2, 26, 27, 35, 76, 77, 215
complex adaptive systems, modularity and 75
complex adaptive systems modelling 26
complex adaptive systems models 302
complexity 75, 187
complexity (quality), definition 123
complexity (quantity), definition 123
complexity, allocation of 331, 338
complexity, concept of 105
complexity, context dependence 107
complexity, definition of 105
complexity, graph theoretic measures of 107
complexity, information 110
complexity, relative price of 342
complexity as a quality 106, 117
complexity as a quantity 106
complexity economics 331
complexity in economic systems 331
complexity theory 2
complex life forms 159
complex networks, dynamic robustness 204
complex rules 331
complex systems 117, 334
complex systems, adaptive nature 77
complex systems, robustness 187
component concepts 2
computational complexity 115
computational complexity, definition 123
concept of “reflexive” 9
connected graph 80
connectivity 305
connectivity of a graph 108
constant change 12
contextual archetypes 194
control network 140
convergence 165, 170
convergent-divergent branching networks 166
convergent-divergent comparison networks 180
convergent-divergent decoding 164
convergent-divergent encoding 164
cconvergent-divergent networks 159, 163
convergent-divergent neural network 172
convergent-divergent systems 165, 179
cooperative co-evolutionary genetic algorithms 222
cooperative co-evolution methods 222
cooperative transportation tasks 238
cortical neurons 165
cost of change 345
creative artifacts 129
creativity 150
creativity, emergence of 126
creativity, simulation approach 132
Crude Look at the Whole (CLAW) Workshop 313
cycle 80
cyclical dynamics 27
cyclomatic number of a graph 109

D
Darwinism 42
data classification 85
decision-making processes 187
decision cortex 138
decision tree 86
density 118
destination map 192
DEWEY catalogue system 78
diagrammatic 4-quadrant approach 256
diameter of a graph 80
digital literacy 1, 26, 105, 126, 159, 18
 7, 215, 255, 300
dimensional analysis 16
directed graph 80
distance-based methods 86
divergence 165
division of labor methods 222
dominant zone similarity 139
downward/backward causation 255
downward causation 258, 265
dynamical robustness 194
dynamic core, emergence 198
dynamic equilibrium 12
dynamic robustness of complex networks 204
dynamics 27
dynamics cores 195

e
Earth-Moon-Sun system 115
economic systems 331
edge of chaos 69
edge of chaos (EOC) 13
edges 107
effective complexity 114
Einstein’s General Theory of Relativity 116
embryogenesis 89
emergence 117, 256
emergence, conceptual issues of 257
emergence, definition 123
emergence, definitions 271
emergence, varieties of 261
emergence as a complexity drop 275
emergence of a dynamic core 198
emergence of creativity 126
emergences in complex systems 272
emergent behavioral specialization 217
emergent behavior design methodologies 217
emergent dynamic structure 198
emergentism 262
emergent properties 27
emergent properties, definition 123
emergent specialization 215, 220
emergent specialization, heterogeneous approaches 224
emergent specialization, homogeneous approaches 224
emergent specialization design methodologies 242
energy payoff 139
enforced sub-populations (ESP) 223
entail, definition 123
entropy 118
entropy, definition 123
episodic memory 136, 139
equilibrium-based analysis 332
equivalence class, definition 124
equivalence relation 84
event-data coding practices 304
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>event data</td>
<td>302</td>
</tr>
<tr>
<td>event data research</td>
<td>310</td>
</tr>
<tr>
<td>evolution</td>
<td>217</td>
</tr>
<tr>
<td>evolutionary algorithms</td>
<td>222</td>
</tr>
<tr>
<td>evolutionary economics</td>
<td>333</td>
</tr>
<tr>
<td>external observer</td>
<td>272</td>
</tr>
<tr>
<td>eyeless gene</td>
<td>87</td>
</tr>
<tr>
<td>face validity</td>
<td>303</td>
</tr>
<tr>
<td>fault tolerance</td>
<td>95</td>
</tr>
<tr>
<td>first-order strategy</td>
<td>210</td>
</tr>
<tr>
<td>first law of thermodynamics</td>
<td>118</td>
</tr>
<tr>
<td>first order functionality</td>
<td>207</td>
</tr>
<tr>
<td>fixed evolutionary parameters</td>
<td>53</td>
</tr>
<tr>
<td>fruit flies</td>
<td>87</td>
</tr>
<tr>
<td>fully connected graph</td>
<td>80</td>
</tr>
<tr>
<td>functional space</td>
<td>194</td>
</tr>
<tr>
<td>Game of Life, definition</td>
<td>124</td>
</tr>
<tr>
<td>game theory methods</td>
<td>222</td>
</tr>
<tr>
<td>genetic algorithm (GA)</td>
<td>275</td>
</tr>
<tr>
<td>genetic algorithms</td>
<td>98</td>
</tr>
<tr>
<td>genetic modules</td>
<td>87</td>
</tr>
<tr>
<td>genotype</td>
<td>194</td>
</tr>
<tr>
<td>global dynamics</td>
<td>211</td>
</tr>
<tr>
<td>Gödel Incompleteness Theorem, definition</td>
<td>124</td>
</tr>
<tr>
<td>graph</td>
<td>78, 107</td>
</tr>
<tr>
<td>graph theoretic measures</td>
<td>108</td>
</tr>
<tr>
<td>graph theory</td>
<td>79</td>
</tr>
<tr>
<td>graph theory, definition</td>
<td>124</td>
</tr>
<tr>
<td>grounded theory</td>
<td>16</td>
</tr>
<tr>
<td>growth hormone</td>
<td>89</td>
</tr>
<tr>
<td>horizontal emergence</td>
<td>202</td>
</tr>
<tr>
<td>hormone</td>
<td>89</td>
</tr>
<tr>
<td>human civilization</td>
<td>128</td>
</tr>
<tr>
<td>human creative capabilities</td>
<td>128</td>
</tr>
<tr>
<td>human creativity</td>
<td>129</td>
</tr>
<tr>
<td>humanistic history</td>
<td>305</td>
</tr>
<tr>
<td>ideal gas</td>
<td>117</td>
</tr>
<tr>
<td>ideal gas law</td>
<td>118</td>
</tr>
<tr>
<td>image matching</td>
<td>139</td>
</tr>
<tr>
<td>implicit goal</td>
<td>151</td>
</tr>
<tr>
<td>information</td>
<td>187</td>
</tr>
<tr>
<td>information, definition</td>
<td>124</td>
</tr>
<tr>
<td>information, reduction of</td>
<td>187</td>
</tr>
<tr>
<td>information age</td>
<td>187</td>
</tr>
<tr>
<td>information barriers</td>
<td>187, 202</td>
</tr>
<tr>
<td>information bottlenecks</td>
<td>159</td>
</tr>
<tr>
<td>information conserving loops</td>
<td>199</td>
</tr>
<tr>
<td>information flows</td>
<td>187</td>
</tr>
<tr>
<td>information hiding</td>
<td>92</td>
</tr>
<tr>
<td>information loops</td>
<td>195</td>
</tr>
<tr>
<td>information processing</td>
<td>181</td>
</tr>
<tr>
<td>information theoretic graph complexity</td>
<td>114</td>
</tr>
<tr>
<td>inheritance</td>
<td>93</td>
</tr>
<tr>
<td>input gate boxes</td>
<td>140</td>
</tr>
<tr>
<td>input location</td>
<td>165</td>
</tr>
<tr>
<td>input strength</td>
<td>166</td>
</tr>
<tr>
<td>insanity</td>
<td>150</td>
</tr>
<tr>
<td>integrated development environment (IDE)</td>
<td>91</td>
</tr>
<tr>
<td>intelligence</td>
<td>126</td>
</tr>
<tr>
<td>intelligent complex adaptive systems (ICAS) theory</td>
<td>1, 2</td>
</tr>
<tr>
<td>inter-molecular interaction</td>
<td>35</td>
</tr>
<tr>
<td>interactions</td>
<td>13</td>
</tr>
<tr>
<td>intrinsic emergence</td>
<td>275</td>
</tr>
<tr>
<td>Kolmogorov complexity</td>
<td>114</td>
</tr>
<tr>
<td>labor methods, division of</td>
<td>222</td>
</tr>
<tr>
<td>Lamarck’s First Law</td>
<td>43</td>
</tr>
<tr>
<td>Lamarck’s laws</td>
<td>36</td>
</tr>
</tbody>
</table>

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Lamarck’s Second Law 43
Lamarckism 42
language hierarchy 91
lateral pressure theory 313
learning 217
leaves 82
LEGO robot 136
length of a path 80
Leyton machine 276
Linear Array Model 167
link degree, definition 124
links 78
logical couplings 210
logical depth 115
logical depth, definition 124
logicality 150
loop types 197

M
M-Strong emergence 274
macro-indices 27
macroscopic mechanisms of adaptation 29
MAM-MSP interrelation 35
MAM-platform 36
method of systems potential (MSP) 26, 29, 42
micro code 91
modular graph 79
modularity 75
modularity, adaptive processes 99
modularity, definition 76
modularity and CAS 75
modularity and fault-finding 98
modularity and fault tolerance 95
modularity and the Internet 95
modularity in artificial complex adaptive systems 98
modularity in artificial systems 91
modularity in electronic appliances 97
modularity in embryogenesis 89
modularity in language 89
modularity in manufacturing 96
modularity in mathematics 84
modularity in natural systems 86
modularity in plants 88
modularity in social structure 90
modularity in software engineering 91
modularity in the genome 87
modularization 195
modularization in Boolean networks 202
modularization in complex networks 196
modules 75, 84
morphologically specialized robots 218
morphological specialization 218, 220
motifs 87
MSP-system, adaptive activity 44
MSP-system, density of conditions 46
MSP-system, discontinuous evolutionary cycle of 56
MSP-system, discontinuous evolutionary cycle of 55
MSP-system, efficiency 46
MSP-system, exploited potential of 44
MSP-system, second type of 67
MSP-system, temporary equilibrium states 47
MSP-systems 42
MSP-systems, first type of 55
multi-agent computer games 233
multi-agent ecological models 312
multi-agent modelling approach (MAM) 27
multi-agent systems 280
multi-agent systems (MAS) 256
multi-robot swarm intelligence 216
multiple realizability 267

N
NAND boxes 140
natural creativity 126
network 78
network modules 83
networks, dynamical robustness 194
networks and graphs 78
networks and modularity 78
network topologies 188
neural branching 163, 179
Newton’s laws of motion 118
Newton’s laws of motion, definition 124
nodes 78, 107, 197
nominal emergence 261
non-conserving (structural) information loops, role of 201
non-conserving information loops 195
non-emergent specialization 220
non-linear dynamics 2
non reductive individualism (NRI) 267
non reductive materialism 264
noosphere 280
NOR boxes 140

O
object-oriented languages 92
object-oriented paradigm 92
object-oriented programming, implications of 94
object oriented paradigm 91
Occam’s Razor 116
Occam’s Razor, definition 124
offdiagonal complexity 109, 110
order parameter 272
organizational theory 2

P
p-loop 194
peace and war, human history 302
peace and war, ontological reflections 300
perception cortex 136, 137
percolation threshold 108
phase space portrait 192
phenotype 194
plan composer 142
positive reinforcement 101
preference-values, dynamics of 41
pressure 118
process modularisation 97
product modularisation 96
propositions 2
protective belt 2
punctuated anytime learning 236
punctuated equilibrium 27, 66
punctuated equilibrium, dynamics of 32
pursuit-evasion 236

Q
quadrants 9, 280
qualitative chaos 208
quasi-chaotic 194
quasi-chaotic attractors 194

R
random graph 80, 108
random graphs and networks 80
reduction 119, 264
reduction of information 187
reflexive dimensional analysis (RDA) 16
reinforcement learning (RL) methods 229
reinforcement learning methods 223
relatedness 9
relational propositions 11
relative algorithmic complexity (RAC) 276
relaxation time 192
resource modularisation 97
response magnitude 170
RoboCup Soccer 235
robust core of theory 1
robustness 9, 187, 207
root node 82
root of the tree 82
rule-based methods 86
rule-making carriers 339

S
scale-free graphs 109
scale free distribution, definition 124
scale free network 81
schemas 13
science of networks 188
second law of thermodynamics 119
definition 124
segregation 99
self-organization 2, 12, 217
self-organizing components 2
semantic content 112
semantic layer 119
semantic level (or space), definition 124
sensory information bottleneck 159
separatrices 192
set theory 85
simple graph 79
simple systems 117
simplicity, theory of 116
simulated multi-robot systems 227
simulation framework 134
six degrees of separation 109
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>small-world network 82</td>
</tr>
<tr>
<td>small world model 108</td>
</tr>
<tr>
<td>small world networks 109</td>
</tr>
<tr>
<td>SOC-phenomenon 27, 35, 69</td>
</tr>
<tr>
<td>social intelligence 269</td>
</tr>
<tr>
<td>sociosphere 280</td>
</tr>
<tr>
<td>Solomonoff-Levin distribution 113</td>
</tr>
<tr>
<td>spanning trees 109</td>
</tr>
<tr>
<td>sparse graph 80</td>
</tr>
<tr>
<td>spatial acuity 181</td>
</tr>
<tr>
<td>spatial multiplexing 180, 181</td>
</tr>
<tr>
<td>spatial tradeoffs 181</td>
</tr>
<tr>
<td>specialization 216</td>
</tr>
<tr>
<td>specialization, suppositions of 217</td>
</tr>
<tr>
<td>specialization, types of 219</td>
</tr>
<tr>
<td>stabilizing feedback 31</td>
</tr>
<tr>
<td>state space compression 207</td>
</tr>
<tr>
<td>static boxes 140</td>
</tr>
<tr>
<td>static structure of the network 198</td>
</tr>
<tr>
<td>stick pulling 227</td>
</tr>
<tr>
<td>stochastic discontinuous cycles 33</td>
</tr>
<tr>
<td>straw man argument 120</td>
</tr>
<tr>
<td>structural attractor 198</td>
</tr>
<tr>
<td>structural complexity 276</td>
</tr>
<tr>
<td>structured programming 92</td>
</tr>
<tr>
<td>structure of theory 7</td>
</tr>
<tr>
<td>subtree 82</td>
</tr>
<tr>
<td>synchrony 100</td>
</tr>
<tr>
<td>syntactic layer 119</td>
</tr>
<tr>
<td>syntactic level (or space), definition 124</td>
</tr>
<tr>
<td>system dynamics 215</td>
</tr>
<tr>
<td>systemic interrelation 69</td>
</tr>
<tr>
<td>system robustness 209</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>“top-bottom” approach 26</td>
</tr>
<tr>
<td>tatami 77</td>
</tr>
<tr>
<td>temperature 118</td>
</tr>
<tr>
<td>temporal multiplexing 181</td>
</tr>
<tr>
<td>temporal tradeoffs 181</td>
</tr>
<tr>
<td>tension index 33</td>
</tr>
<tr>
<td>theory of natural creativity 126</td>
</tr>
<tr>
<td>thermodynamic description of the gas 118</td>
</tr>
<tr>
<td>thermodynamics, first law of 118</td>
</tr>
<tr>
<td>thermodynamics, second law of 119</td>
</tr>
<tr>
<td>tolerance 170</td>
</tr>
<tr>
<td>transients 190</td>
</tr>
<tr>
<td>tree 82</td>
</tr>
<tr>
<td>triangulation 15</td>
</tr>
<tr>
<td>Turing complete syntactic language 114</td>
</tr>
<tr>
<td>turing machine, definition 124</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>uniform measure 113</td>
</tr>
<tr>
<td>universal macroscopic adaptive mechanisms (UMAM) 29, 42</td>
</tr>
<tr>
<td>universal prior distribution 113</td>
</tr>
<tr>
<td>universal turing machine (UTM) 113</td>
</tr>
<tr>
<td>universal turing machine, definition 124</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>vertex, degree of 80</td>
</tr>
<tr>
<td>vertices 78, 107</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>walls of constancy 195</td>
</tr>
<tr>
<td>war and peace 300</td>
</tr>
<tr>
<td>weak/strong emergence 255</td>
</tr>
<tr>
<td>weak emergence 261</td>
</tr>
<tr>
<td>weak emergent phenomenon 274</td>
</tr>
<tr>
<td>whole-part hierarchy 92</td>
</tr>
<tr>
<td>wild disjunction 267</td>
</tr>
<tr>
<td>Winner-Take-All Economics 169</td>
</tr>
<tr>
<td>Wolfram one-dimensional network of automata 262</td>
</tr>
</tbody>
</table>