Index

A
Adoption Convergence 277, 280-281
Application Liking Enabling (ALE) 122
application ontologies 247
Application Service Provider (ASP) 213-214
Atlas Transformation Language (ATL) 343
Atomic Interface Components (AICs) 257
attribute axes 257
Attribute Confidences 194-195, 198, 200, 206

B
Business Process Reengineering (BPR) 74, 76-77, 80, 116
business process specificity 153-154, 156, 158, 163-169, 171

C
Change Management 13, 70, 74-78, 80-84, 90-91, 93, 95, 97, 129, 295
Client-Server Computing 213
cloud computing 210-223
combinator 262
complementary technology investment 290, 292, 301-302
component ontology 253
Computation Independent Models (CIMs) 327
computer self-efficacy (CSE) 2-3, 6, 9
Computing Architecture 210
confirmatory factor analysis (CFA) 8
content axes 257, 259
corporate culture 142
critical success factors (CSFs) 3, 74, 86
Cronbach’s Alpha 8, 164, 278, 300
Current Value Confidences 194-195, 198, 206

d
Darwin Information Typing Architecture (DITA) 244
data synchronization 170, 174, 194-196, 198-199, 203, 205-209
define the model (DOM) 257
demand management 154, 163
demand-side organizations 268-269, 271-272, 274-277, 281-282, 305
description language 243, 255
Description Logics (DLs) 226
developer oriented approach 263
diffusion of innovations (DoI) theory 288, 292, 294
domain knowledge specificity 153-154, 156-158, 163-171
domain ontologies 253-255, 258, 260, 262-265

e
Eclipse Modeling Framework (EMF) 343, 352
e-Commerce 56-57, 61-62, 64, 66, 68, 71-72, 305, 311, 336
Electronic Data Interchange (EDI) 56, 141, 291, 295, 307
e-marketplace 64
End-User Computing 253
der-user participation 281
Enterprise Application Integration (EAI) 63
Enterprise Architectures 177-180, 183, 189
Enterprise Computing 210, 251
Enterprise Recourse Planning (ERP) 1, 13
Entropy Method 86-88
e-Partnering 56
e-Procurement 57, 64, 71
e-SCM 57, 65-66, 71
Exensible Markup Language (XML) 268-269, 287-288, 309
Index

F
First-Order Logic 318-319
Force Field Analysis 114-117, 128, 134
free-rider problems 270-271
Function Design Method 243-244

G
Global Data Synchronisation (GDS) 160
Grid Computing 213-214, 221

I
IDEAlliance 299-300
illocutionary acts 238-239
inflation factor (VIF) 278, 280
Information Silos 93
infrastructure as a service (IaaS) 211, 213
Interest Heterogeneity 269, 271, 274, 282
inventory management 16, 56, 154, 156, 173
IT Infrastructure Integration 153-154, 156, 160, 163-171

K
Kaiser-Meyer-Olkin test 44
knowledge stock 272, 274, 278, 280-281, 294-296, 301-302, 304

L
legacy technology embeddedness 276, 280
Less Developed Countries (LDCs) 220
Linguistics-based modeling methods 236-237, 242, 244-246, 250
locutionary acts 238

M
Master Data Management (MDM) 194
materials requirements planning (MRP) 41
Message-Oriented Middleware (MOM) 197
meta-document domain 262
Meta-Object Facility (MOF) 317
microbrowsers 220
Model Driven Software Development 177
model-eval-display loop framework 177
Model Processing Framework (MPF) 181
modular ontologies 226, 234
modular separation 254
multinational corporations (MNCs) 87

N
Neperian logarithm 88
n-tiered architecture 61

O
OASIS 244, 252, 264, 266-267, 287-288, 299-300, 304, 353
Object Constraint Language (OCL) 314, 317, 319, 340
Object Role Modeling (ORM) 232
ontology context model 317, 333-334
ontology spaces 233
organizational compatibility 276, 278, 280-281
organizational participation 268, 271-272, 278, 280
original equipment manufacturers (OEM) 139
Orphaning risk 270, 275, 287-288, 296-298, 302-304

P
Partial Least Squares (PLS) method 300
perceived ease of use of a technology (PEOU) 2
perceived usefulness (PU) 2, 5-6, 9
perlocutionary acts 238
platform as a service (PaaS) 211, 213
Platform Independent Models (PIMs) 327
Platform Specific Models (PSMs) 327
Postconditions 319, 321-322
principal components analysis (PCA) 300
process freedoms 155
Provider Registry 255-256
Pulso Architecture 186

R
R/3 System 122, 124, 130
radio frequency identification (RFID) technology 142
real-time inventory 154
reciprocal investments 153-156, 158-159, 163-171
reference ontologies 247
Relational Interaction 153-156, 159-160, 163-171
request assembly 262
request axes 257-259, 261
Resource Heterogeneity 271, 278
return management 154
RFID-based SCM architecture 154
Risk Hedging 275, 278, 280
role modeling 225-228, 231-233
Index

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantically Enhanced Model Version Control System (SMoVer) 339</td>
<td>Technology Acceptance Model (TAM) 1-2, 13-18</td>
</tr>
<tr>
<td>semantic axes 257-259</td>
<td>Technology Assimilation 287-288, 293, 302</td>
</tr>
<tr>
<td>semantic import 232, 234</td>
<td>terminating gesture 255, 262</td>
</tr>
<tr>
<td>Semantic Interface Definition Language (SIDL) 256</td>
<td>text document domain 257, 262, 265</td>
</tr>
<tr>
<td>semantic portal frameworks 265</td>
<td>Theory of Reasoned Action (TRA) 2</td>
</tr>
<tr>
<td>semantic separation 253-256, 258, 262, 264</td>
<td>third party logistics (3PL) 140</td>
</tr>
<tr>
<td>Semantic User Interfaces (SUIs) 253-254</td>
<td>Top Management Support 3, 75-77, 79, 81, 94-97, 114, 116, 129, 132-133</td>
</tr>
<tr>
<td>Semantic Web services (SWS) 313-314, 328</td>
<td>Total cost of ownership (TCO) 116</td>
</tr>
<tr>
<td>Service Level Agreements (SLAs) 216</td>
<td>transaction cost theory 155, 158-159, 289, 310</td>
</tr>
<tr>
<td>Service Oriented Development Method (SOD-M) 314, 316, 327</td>
<td></td>
</tr>
<tr>
<td>service provider contract 255, 262</td>
<td>U</td>
</tr>
<tr>
<td>software as a service (SaaS) 211, 213</td>
<td>user interface design 15-16, 263</td>
</tr>
<tr>
<td>speech act theory 237-239, 242</td>
<td>user interface pattern language 256</td>
</tr>
<tr>
<td>standard legitimation 287-288, 298-299, 303-304</td>
<td>Utility Computing 213, 221</td>
</tr>
<tr>
<td>standards-development organization (SDO) 269, 287-288</td>
<td>V</td>
</tr>
<tr>
<td>store operations 154</td>
<td>Version Control Systems (VCSs) 337-338</td>
</tr>
<tr>
<td>strong semantic coupling 254</td>
<td>W</td>
</tr>
<tr>
<td>structural equation modeling (SEM) 2, 8</td>
<td>Web Ontology Language (OWL) 225</td>
</tr>
<tr>
<td>Structural Modeling 236</td>
<td>Web Services Execution Environment (WSMX) 328</td>
</tr>
<tr>
<td>SUI Documents (SUIDs) 254</td>
<td>Web Services Modeling Ontology (WSMO) 314, 327-328</td>
</tr>
<tr>
<td>SUI domain 262, 265</td>
<td>Web Services Modeling Toolkit (WSMT) 315</td>
</tr>
<tr>
<td>Supply Chain Council (SCC) 67, 161</td>
<td>X</td>
</tr>
<tr>
<td>Supply Chain Management (SCM) 54, 57, 65, 67-68, 71-73, 137-139, 144-145, 148-152, 156-157, 161, 163-164, 171-175</td>
<td>XML-based technology 293</td>
</tr>
<tr>
<td>supply-side organizations 271-272, 274-275, 278, 282, 304</td>
<td></td>
</tr>
<tr>
<td>SWOT analysis 115, 117, 121, 125, 132-135</td>
<td></td>
</tr>
</tbody>
</table>