Index

304L stainless steel 148, 240, 242, 244, 247-248
304 stainless steel 144, 146-147, 240-242, 244, 247-248

A
active suspension 62-63, 70-71
adiabatic shearing 192, 197, 200, 215, 220, 222-223
\(\text{Al}_2\text{O}_3 \)-ceramics 167, 171
analysis of variance (ANOVA) 304, 312
analytical modelling 267
Analytic Hierarchy Process (AHP) 256, 269
antibacterial activity 326, 328-329
Arbitrary Lagrangian-Eulerian (ALE) analysis 180
Attributed Adjacency Matrix (AAM) 102, 107
Attributed Connectivity Matrix (ACM) 102, 104, 117, 119-120
backbone curve 25, 28, 34, 36, 40, 46, 50-51, 54
boundary element method (BEM) 26

B
Buckling Mechanism (BM) 142-143, 151, 153

C
carbon footprinting 73
chip morphology 178, 181, 186, 189, 198, 210-211, 214, 216, 221-222, 224
closed shell 109
coefficient of friction 64, 187, 207, 289, 292, 297-298
cold end forming 226, 231
composite foams 91, 93-94, 101
compression beadng 227-228, 238
Computer Aided Design (CAD) 102
Computer Aided Manufacturing (CAM) 102
Computer Aided Process Planning (CAPP) 102
Computer Integrated Manufacturing system (CIM) 102
constitutive model parameters 2, 4, 22
Contact Particles Lens Arrays (CPLA) 130
copper powder 326-327
corrosion resistance 260, 274, 290, 319
CPLA deposition 130
critical instability load 228, 235, 237

difference

D
DD3IMP 10, 15-16, 18, 22
de-ionized water 320-321, 326-327
difference method (FDM) 141
drys friction damping 64-65

E
ELECTRE 253, 263
electrical spark discharge (ESD) 168
electrochemically spark abrasive drilling (ECSAD) 168
electrochemical machining (ECM) 168
electroless 302-308, 312, 314-315, 317-319
end-of-life (EOL) disposal 74
EOL products 73, 75-78, 80, 86, 88
epoxy-polyester (EP-PE) powders 92
Extreme Ultra Violet lithography (EUV) 131

F
feature-based models 103
Finite Element Method (FEM) 2, 6, 141, 159, 180, 198
first-order shear deformable theory (FSDT) 27
forced vibration 25, 27-29, 33-36, 38, 48, 50, 52, 54
forced vibration analysis 25, 27-29, 34-36, 38, 52
Index

G
Geometric Dimension and Tolerance (GD&T) 102
geometric non-linearity 25
governing equations 25, 28, 33-35, 204, 209
gradient-based methods 3, 6-7, 10
Greenhouse Gas (GHG) emissions 74-75, 77, 81, 83-88

H
hardening model 1, 11, 15-16
harmonic excitation 25, 27-30, 33, 35-38, 40, 50, 52
High Power Diode Laser (HPDL) 140-142
High Speed Machining (HSM) 179
hot rolling 240-244, 247-250
hydro-pneumatic friction damper 62, 69

I
immune algorithms 3

L
laser beam forming 140-141
Liquid Composite Moulding (LCM) 269
lithography 131, 138
low amplitude reciprocating wear 289-290, 299

M
material removal rate (MRR) 168
mechanical bending 140-142
mesh-free Galerkin method 27
metal forming 1, 11, 16, 23-24, 140, 193, 231, 238, 240
Micro Lens Array (MLA) patterning 131
montmorillonite (MMT) nano-particles 93
multiple attribute decision making (MADM) 252-254

N
nanobelts 321, 325
nanobricks 320-321, 323-325
nano-clay 93
nanocrystals 327, 332
nanomaterials 320-321, 325, 327, 331
nanorods 321, 325, 331-332
nanotubes 271, 321
nanowires 321-323, 325
nature-inspired algorithms 3, 6
near-field enhancement 130-131
Newton-Raphson iteration technique 26
Ni-B coating 302-305, 307, 312, 314-316, 318
non-linear quarter car model 62, 70

O
object oriented models 103
operational deflection shape (ODS) 25, 42
original equipment manufacturers (OEMs) 76
oxide scale 240-244, 248-249

P
parameter identification 1-7, 11, 15-16, 22, 24
Particle on Surface (POS) model 132
PAS 2050 77-79, 81
passive suspension system 62
Plasmonic Lithography 131
plasticators 93
pneumatic friction damper 62, 67, 69
Polyamide 6 (PA 6) 269
Poly-Butylene Terephthalate (PBT) 271
Poly(methylmethacrylate) (PMMA) 273
Polyphthalamide (PPA) 272
powder coating 91-92, 101
preference selection index (PSI) 253
pressure regulation 62
process map development 78
Product Recovery 73, 75-78, 80-83, 85-90

R
rawstock 102-107, 109-110, 112, 120, 122-124, 127
recycling technology 91
remanufacturing 73, 76-80, 82-90
repairing 73, 76-78, 80, 83-84, 86-88
resin attributes 267, 274, 284
Resin Selection Index (RSI) 278, 283
ring-opening polymerization (ROP) 269

S
scanning electron microscopy 308
Scanning Probe Microscopy (SPM) 131
SDL optimization lab 2-3, 7-11, 22
secondary suspension system 63
Seeman Composite Resin Infusion Moulding Process (SCRIMP) 269
segmented chip 180, 182, 192, 197, 199-200, 212-223
SEM graphs 173
semi-active damping 63
semi-active suspension 63
sensitivity analysis 7, 10, 284
sequential quadratic programming (SQP) 26
shape optimization 1-3, 5-7, 11, 22-23
SIDOLO code 1, 3
Small and Medium-Sized Enterprises (SMEs) 73
solid-state foaming 91-92, 94, 101
Spectrophotometer 134-135
steel substrate 240-242, 248
stiffened plate 25-29, 32-34, 36, 44-45, 48, 50, 52, 54
stress-strain curve 98, 228
structural reaction injection moulding (SRIM) 269
surface roughness 194, 240-242, 244, 247-249, 289, 292, 294-296, 299, 303-304, 310-311, 315, 319
sustainable manufacturing 73-75, 80, 88-90

T
Taguchi Analysis 178
Taguchi Method 188, 194, 196, 302, 304, 307, 314, 319
Temperature Gradient Mechanism (TGM) 141-142, 151
tensile strength (TS) 260
thermoplastic polymers 267-268, 280
thermoplastic resins 268-269, 273-275, 278, 284
thermoplastics 93, 267-269, 271, 280, 287
thin-walled polymer tubes 228
topology optimization 1
Transmission Electron Microscope (TEM) 328
tube bending 140-142, 148-149, 152-156
tube end forming 226-232, 237

U
UK manufacturing industry 74
Upsetting Mechanism (UM) 142-143, 151, 154

V
vacuum assisted resin transfer moulding (VARTM) 269
variational method 25
vehicle suspension system 62
vibration isolation 62
volume decomposition 102-103, 126

W
waste management 74-76, 87-90
waste powders 92-93
Weldability 268, 274
welded thin-walled tubes 226, 228
wire electro discharge machining (WEDM) 168

X
X-ray diffraction (XRD) 322, 328
X-ray diffractometry 94

Y
Young’s modulus (YM) 258, 260