Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCADA</td>
<td>138, 145</td>
</tr>
<tr>
<td>Access Control List (ACL)</td>
<td>299</td>
</tr>
<tr>
<td>Activator</td>
<td>209</td>
</tr>
<tr>
<td>Active Inactive Time Algorithm (AITA)</td>
<td>310</td>
</tr>
<tr>
<td>Active Time Algorithm (ATA)</td>
<td>309</td>
</tr>
<tr>
<td>adaptation actuator</td>
<td>139</td>
</tr>
<tr>
<td>adaptive content distribution protocol</td>
<td>241, 255</td>
</tr>
<tr>
<td>Adaptive Middleware and Network Transports (ADAMANT)</td>
<td>173</td>
</tr>
<tr>
<td>adaptive network transports (ANT)</td>
<td>174</td>
</tr>
<tr>
<td>Ad hoc On-Demand Distance Vector (AODV)</td>
<td>277</td>
</tr>
<tr>
<td>Air Traffic Control (ATC)</td>
<td>42</td>
</tr>
<tr>
<td>AJEER</td>
<td>200, 206</td>
</tr>
<tr>
<td>Ambient Assisted Living (AAL)</td>
<td>174</td>
</tr>
<tr>
<td>Angle of Arrival (AoA)</td>
<td>261</td>
</tr>
<tr>
<td>AOSGi</td>
<td>200</td>
</tr>
<tr>
<td>application services (AS)</td>
<td>72</td>
</tr>
<tr>
<td>application-specific adaptation</td>
<td>198</td>
</tr>
<tr>
<td>application-transparent adaptation</td>
<td>198</td>
</tr>
<tr>
<td>architectural description languages (ADL)</td>
<td>152</td>
</tr>
<tr>
<td>architecture</td>
<td>62</td>
</tr>
<tr>
<td>Artificial Neural Networks (ANNs)</td>
<td>178</td>
</tr>
<tr>
<td>Aspect Oriented Programming (AOP)</td>
<td>199</td>
</tr>
<tr>
<td>Autonomic Computing (AC)</td>
<td>139</td>
</tr>
<tr>
<td>autonomic system</td>
<td>138</td>
</tr>
<tr>
<td>actuator</td>
<td>132, 138-139, 144-147, 202</td>
</tr>
<tr>
<td>analyzer</td>
<td>138, 216</td>
</tr>
<tr>
<td>planner</td>
<td>94-96, 99-100, 138</td>
</tr>
<tr>
<td>AxSel</td>
<td>214-215, 218</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon Nodes</td>
<td>263, 266, 268-270, 272-274</td>
</tr>
<tr>
<td>broadband</td>
<td>291</td>
</tr>
<tr>
<td>Broadcast Diffusion Time (BDT)</td>
<td>231</td>
</tr>
<tr>
<td>bundles</td>
<td>209</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>caching performance</td>
<td>230</td>
</tr>
<tr>
<td>Call Session Control Fuctions (CSCF)</td>
<td>84</td>
</tr>
<tr>
<td>car network</td>
<td>252</td>
</tr>
<tr>
<td>centralized model</td>
<td>198</td>
</tr>
<tr>
<td>CERP-IoT</td>
<td>69</td>
</tr>
<tr>
<td>closed control loop</td>
<td>138</td>
</tr>
<tr>
<td>cloud computing</td>
<td>68-69, 72, 74-75, 79, 84-85, 109, 121-122, 173, 194</td>
</tr>
<tr>
<td>Coalition-aware Adaptive content Download (COADA)</td>
<td>238</td>
</tr>
<tr>
<td>communication coalition</td>
<td>240</td>
</tr>
<tr>
<td>CompAA (Auto-Adaptable Components)</td>
<td>151</td>
</tr>
<tr>
<td>Content Manager (CM)</td>
<td>225</td>
</tr>
<tr>
<td>context reasoner</td>
<td>139-141, 147</td>
</tr>
<tr>
<td>context-specific modeler</td>
<td>139-141, 144-147</td>
</tr>
<tr>
<td>contextual turbo-mode (CTM)</td>
<td>16</td>
</tr>
<tr>
<td>core gateway</td>
<td>212</td>
</tr>
<tr>
<td>cost trade-off analysis</td>
<td>22</td>
</tr>
<tr>
<td>Count Active Algorithm (CAA)</td>
<td>307, 310</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data-centric pub</td>
<td>178</td>
</tr>
<tr>
<td>Data Distribution Service (DDS)</td>
<td>42, 173, 178</td>
</tr>
<tr>
<td>data exchange rate</td>
<td>230</td>
</tr>
<tr>
<td>data local reconstruction layer (DLRL)</td>
<td>178</td>
</tr>
<tr>
<td>decentralized</td>
<td>130-131, 135, 151, 198</td>
</tr>
<tr>
<td>Delay Tolerant Networks (DTNs)</td>
<td>221</td>
</tr>
<tr>
<td>Diagnosable Units (DUs)</td>
<td>32</td>
</tr>
<tr>
<td>DIMA</td>
<td>152</td>
</tr>
<tr>
<td>Distributed Hash Table (DHT)</td>
<td>211</td>
</tr>
<tr>
<td>Distributed Interactive Engineering Toolbox (DIET)</td>
<td>111</td>
</tr>
<tr>
<td>distributed real-time and embedded (DRE)</td>
<td>173</td>
</tr>
<tr>
<td>Domain Specific Modeling Language (DSML)</td>
<td>107</td>
</tr>
<tr>
<td>duty cycle measurements</td>
<td>307</td>
</tr>
<tr>
<td>dynamic coalition P2P network</td>
<td>239</td>
</tr>
</tbody>
</table>
Index

dynamic grain size 89
dynamic load balancing 88, 96, 100, 102-103
dynamic optimization 8
dynamic voltage 4, 6, 10, 26-27

E
ejection of resulting 126
EPC Information Services (EPCIS) 70
Equinox Aspect project 200
ERROR 29, 31, 33-36, 39-40, 42, 46, 52, 55, 57-60,
62-67, 94, 99-100, 103, 147, 160, 173-174,
183, 186, 193, 253, 255, 258-260, 265, 269-
272, 274-275, 297, 307-308, 310-319, 321,
323-329
error correction (EC) 57, 60
European Learning Grid Infrastructure (ELeGI) 153
event monitor 139

F
failure avoidance 196
falling objects 126
False Positive Rate 44, 47-48, 54
fault tolerance (FT) 57, 60
femtocells 72
Firmware Update Management Object (FUMO) 298
flags 283-284, 287
Flight Data Plans (FDPs) 42
frequency scaling 10
freshness grade 90, 93-94, 96, 100

G
Gateway Hello (GWH) 282, 287
Gateway Information (GI) 282-283
gateway IP address 283-284
gateway load 283-285, 287
gateway sequence number 283
General Packet Radio Service (GRPS) 84
Grid Scan Algorithm 264

H
Hardware Description Diagram (HDD) 107
Hardware Description (HD) 107
Heisenbugs 30
holistic diagnostic approach 31
home subscriber server (HSS) 70, 82
Home Subscriber Server (HSS) 70, 82
hop count 281, 283-288, 291

I
iJVM Project 214
Inactive Time Algorithm (ITA) 309
Infection Ratio (IR) 231
Information Technology (IT) 106
Infrastructure as a Service (IaaS) 74
integrated model 198
Interest Manager (IM) 225
interests exchange phase 226
interface definition language (IDL) 98, 181
Internet of Things (IoT) 68, 86
interprocess communication (IPC) 182
Interrogating-CSCF (I-CSCF) 84
IP Multimedia Subsystem (IMS) 69
IxChariot 288

J
Java Message Service (JMS) 173
JVM 132, 142
JXTA platform 160

K
kernel function (K) 40
LBGD-AODV 277, 281-289, 291-293

L
LeJOS 142-143, 149
Local Agents (LA) 111
localization 259
location-based service (LBS) 73
look-up table (LUT) 13
low intrusiveness 31

M
machine to machine (M2M) 72
management architecture 180, 299-300
Download 238-241, 247-256, 298-299,
301-302, 304
DownloadAndUpdate 301
FwInfo 301-302
MdPkg 301
PkgData 301
PkgName 301
PkgURL 301-302
PkgVersion 301
Index

State 2, 8, 10, 16-17, 21, 23-24, 30, 33-35, 58-59, 61-62, 66, 71, 80-81, 89, 93-96, 99-100, 102, 105, 139-140, 146, 148, 166, 180, 188, 195, 201, 211, 213, 239, 246, 253, 281, 297, 301, 305, 307, 317
Update 42, 44, 49, 70, 138, 150, 176, 201, 283-284, 287, 296-304
Master Agents (MA) 111
memory utilization 226, 229, 233-234
Message and Presence Service (IMP) 81
metal and mobile scaffolds 126
mobile social computing 221
Mobility Support Service (MSS) 189
Mobius modeling 246
Model Predictive Control (MPC) 8
Modulation Module Update (MMU) 296, 299
Monitoring Framework (MF) 226
MOSGi 210-213, 216-218
MPSoc mapping 4
Multi-Class SVMs (MCSVMs) 40
multiple data stream (MIMD) 88
multisource dynamic algorithm 89
MUSE project 211

N
Nakcast 183
Nasa Mars Rovers 138
negative acknowledgments (NAKs) 174
Network Diameter (ND) 231
Next Generation Network (NGN) 68
*next hop 283
no error correction 59
no error detection 59
noise exposure 126
non-adaptive protocol 253-256
NXT robot 138

O
Object Name System (ONS) 70
Off-The-Shelf (OTS) 29
omniORB system (OMNI) 111
Open Mobile Alliance Device Management (OMA DM) 297
Operating System (OS) 32-33
Operation, Administration, and Maintenance (OA&M) 68-69, 71, 78, 84
Opportunistic Communication Manager (OCM) 226
opportunistic communications 220-222
Orthogonal Defect Classification (ODC) 30
OSGi 76, 137, 142, 149, 196, 199-203, 205-206, 208-219
OSGi platform 199
OSGi sandboxing 212
overloaded sandboxes 117-118

P
passive fault tolerance 63
pedestrian network 252
peer discoveries 229
Peer-to-Peer (P2P) OSGi 211
pervasive computing 124, 205-206, 236, 256-257
Points of Interest (PoI) 239
Policy Description Diagram (PDD) 107
Process ID (PID) 32
processing nodes 88-89
property of interest 61
protection of feet 126
proximity sensing 236, 261
Proxy-CSCF (P-CSCF) 84
publish/subscribe (pub 172-173
pure fault tolerance (PFT) 58
push-to-talk over cellular (PoC) 81

Q
qua fault 59
quality of experience (QoE) 196, 202
Quality-of-Service (QoS) 71

R
Radio Access Technology (RAT) 298
Radio Frequency (RF) 261
random sampling technique 307
range-based 259
range-free 259
Real-Time Scheduling 1
Received Signal Strength Indicator (RSSI) 261
Record Management Store (RMS) 227
reflective-and-refractive variables (RR vars) 198
resource availabilities (RAs) 91
resource scarcity grade (RSG) 92
resource set availability (RSA) 91
Ring Overlapping Based on Comparison of Received Signal Strength Indicator (ROCRSSI) 259

369
robust optimization 8
ROCS 214-218
route activation message 282, 284, 286-287

S
SAFRAN 152, 190
scenario-based design 8
scene analysis 261-262
self-adaptation 122, 148-151, 156-157
self-adaptive system 4
semantic web 150, 153, 169
sensor networks 307
SErver Deamons (SED) 111
Service-oriented architecture (SOA) 73
Service-Oriented Programming (SOP) 210
Serving-CSCF (S-CSCF) 84
Session Initiation Protocol (SIP) 82
SIGnALS 2, 37, 39, 134, 261, 266
Simple Network Management Protocol (SNMP) 78
Smart Box Management (SBM) 298
Smart City Ambient Assisted Living (SCAAL) 174-175
Software Description Diagram (SDD) 107
Software Description (SD) 107
Software Wrapper Description (SWD) 107
Stochastic Activity Network 246
stochastic programming 9
structural modeler 139-140
supervised machine learning (SML) 174
Support Vector Machines (SVMs) 178
SUSPECTED ERROR (SE) 35
suspend and resume 213-214
System Level Recovery 33

T
test script 99
 CONFIG_ERROR 99-100
 FAIL 30, 32, 34, 38, 58, 66, 89, 93, 99-100, 106, 117, 127, 176
 SUCCESS 99, 222
THROUGHPUT 37, 39, 256, 278-280, 283, 285, 288-289, 291-293
Time Difference of Arrival (TDoA) 261
TIME EVENTS 37
timely integrated machine learning (TIML) 174
Time of Arrival (ToA) 261
Time-To-Leave (TTL) 231
Toulouse University Network (TUNe) 107
Transmission Control Protocol (TCP) 173
triangulation 134, 261-262

U
ubiquitous applications 124
U-Hopper 224
underloadedseds 117-118
Uniform Resource Identifiers (URI) 297, 304
unique identifiers (UID) 70
Universal Mobile Telecommunication Systems (UMTS) 84
Universal Resource Identifier (IMS-URI) 70
UNKNOWN FAULT 35, 47
upstream IP address 283, 287-288
user-centric heterogeneous opportunistic middleware 221, 224
User Datagram Protocol (UDP) 173
User Interfaces (UIs) 225

V
video on demands (VoDs) 81
Virtual Organizations (VOs) 109
Virtual OSGi (VOSGi) 212
Vocational and Educational Training (VET) 156
voice over IP (VoIP), 81

W
white deaths 124
Wireless Mesh Network (WMN) 278
Wireless Personal Area Network (WPAN) 262
Wireless Sensor Network (WSN) 70
Workload Level Recovery 33