Index

Symbols

.NET architecture 138, 139
.Net framework 139, 140

A
absolute error 70
active voice 87, 88
activity diagram (AD) 235, 240, 241, 242, 243, 247, 248, 249, 250
adaptation algorithm 207, 208
adaptation point 207, 208
agile development 14, 15, 17
algorithmic models 46
ambient intelligence (AmI) 129, 132, 143
ant colony optimisation (ACO) 234, 235, 236, 238, 241, 243, 246, 250, 251, 252
anti ant-like agents 243, 248, 251
arbitrary lengths 262, 263
architecture design 182, 186, 191, 192, 193, 194, 211, 212, 214, 215, 216
Architecture Expert (ArchE) 183–216
artificial ant 243, 244, 246, 251
artificial neural network (ANN) 152, 154, 155, 156, 157
attribute-driven design (ADD) method 183, 185, 211, 215, 216
auto-associative neural network (AANN) 74, 75
automata 102, 260, 262, 274

B
Backus-Naur form (BNF) 264
base model 2
Bayesian network (BN) 1, 2, 3, 4, 5, 6, 15, 16, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 106, 107, 111, 112, 113, 114, 117, 118, 119, 120, 123, 126, 128
Bayesian network models 1, 2, 4, 5, 6, 15
Bayes’ rule 32
Bayes theorem 5
black-box testing 218, 219, 221, 225
burndown chart 17, 19

case-based reasoning (CBR) 23, 32, 42, 49, 183, 201, 203, 204, 205, 207, 209, 210, 211, 281, 298
case-based systems 130
causal model 39
c change impact analysis (CIA) 190, 196, 199
Clemson’s Travel Assistant System (CTAS) 187, 188, 189, 190, 191, 194, 196, 198, 199, 200, 201, 203, 208, 211
computational intelligence 24, 45, 47, 59, 132
computational linguistics 83, 85, 96, 100
computer-aided engineering requirement (CARE) tools 110, 113
computer aided method engineering (CAME) 146, 147, 148, 162, 163, 164
Index

computer aided software engineering (CASE) 85, 110, 114, 118, 120, 126, 130, 146, 147, 148, 162, 164, 250, 285, 294
conditional independence (CI) 3
conditional probability distributions (CPDs) 3, 5, 10
conditional probability table (CPT) 32
condition tree 241, 242, 245
constraint solving 218, 219, 224, 226, 228, 229, 231
control flow graph (CFG) 249
control-flow-oriented coverage criteria 220
COQUALMO 2, 23
cost constructive model (COCOMO) 2, 31, 45, 46, 47, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 63, 64, 65, 67, 70, 75, 77, 78, 80
cost models 2, 7
curvilinear component analysis (CCA) 66, 72, 73, 75, 76, 77, 78

D
data coverage criteria 220
data mining 261, 262, 272, 274, 278, 281
data mining algorithm 261, 274
data-object tree 241, 242
data repository (DR) 150, 151, 152
defect model 8, 16
design memory 210
Design Repository 194
detailed design 182
directed acyclic graph 3, 31
domain expert 33, 34, 38
dominant estimation methods 46
dynamic Bayesian network (DBN) 5
dynamic utility language (DUL) 285

E
Elitist Ant System 238
embedded projects 51
estimation model accuracy 70, 71, 75
evolutionary algorithm (EA) 47, 52, 53
evolutionary multi-objective optimization (EMO) 47
experience-based systems 130
expert system (ES) 129, 130, 194, 212
extreme programming (XP) 15, 16, 17, 23

F
finite state machines (FSM) 236
floating-point numbers 229
framelets 192, 193, 207
functional testing 219, 230
fuzzy logic 129, 278, 288

G
genetic algorithm (GA) 47, 234, 235, 236, 237, 238, 250, 281, 290, 291, 292, 293, 296
genetic programming (GP) 280, 291, 293
group support system (GSS) 148, 162, 163

H
hierarchical criteria architecture (HCA) 281
hybrid model 33
hybrid software systems 120

I
ideal engineering days (IED) 17
identification rules 97
illegal chromosome problem 237, 238
information model 111

K
k-fold cross validation 58
kilo lines of code (KLOC) 9, 46, 50
knowledge based system (KBS) 278, 279, 282, 285, 286, 288, 292
knowledge engineering of Bayesian networks (KEBN) 34, 35, 38
knowledge engineer (KE) 34, 40
knowledge management (KM) 129

L
learning software organizations (LSO) 132
linear temporal logic (LTL) 261, 263, 264, 265, 273, 274
live sequence chart (LSC) 262, 263
Index

M
magnitude of relative error (MRE) 16, 54, 71
mean magnitude of relative error (MMRE) 29, 30, 31, 54, 58, 59, 62, 71, 80
median magnitude of relative error (MdMRE) 29, 30, 31
mash-ups 26
mean magnitude of relative error (MMRE) 16, 54, 71
memory map 226, 227, 228
message sequence chart (MSC) 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 105
minimum support threshold 272
model-based testing 218, 219, 220, 221, 222, 223, 225, 230, 232
model-driven engineering (MDE) 184, 185, 216
model-view-controller (MVC) pattern 185, 186, 188, 189, 190, 191, 192, 194, 208, 216
MODIST models 6, 7, 8, 10, 16
multi-layer feed-forward neural network (MFNN) 73, 74
multi-objective optimization (MOOP) 48, 52, 53
multi-objective particle swarm optimization (MOPSO) algorithm 45, 46, 47, 48, 54, 55, 56, 57, 58, 59, 60, 63
MUSTER 146–165

N
natural language (NL) 282, 283, 284, 285, 292, 296
neural network (NN) 236, 279, 280
parametric models 2, 3, 4, 7, 8, 67, 71

O
operational notations 221
organic projects 51

P
parameter elicitation 113, 117
parameter estimation 34, 68
parametric models 2, 3, 4, 7, 8, 67, 71
Pareto dominance 52, 53, 63
parse tree 86, 87, 96, 97
parsimony 66, 69, 72
particle swarm optimization (PSO) 47, 54, 55
part of speech (POS) 86, 87, 88, 93, 94, 95, 96
platform-independent model (PIM) 287
platform-specific model (PSM) 287
productivity model 10, 11, 12, 13, 14
pruning 261, 262, 268, 274, 291

Q
quality models 2

R
rate monotonic analysis (RMA) 191, 197, 199
reasoning framework 190, 191, 194, 196, 197, 198, 199, 201, 210
recurrent networks 73
regression analysis 32, 48, 67
regression trees 3, 32, 67
relative error 20, 31, 54, 58, 70, 71, 81
requirements analysis 84, 102, 104, 108
requirements elicitation 108, 130, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 159, 162
requirements engineering 100, 107, 114, 115, 117, 126, 127, 128, 146, 150
requirements specification 106, 107, 108, 109, 111, 123, 148, 156
requirements validation 109
requisites 106, 107, 113, 114, 116, 117, 119, 120, 121, 122, 123
runaway projects 46

S
scenario response 188
scenario stimulus 188
semi-detached projects 51
simulated annealing 234, 238, 239
software architecture 182, 185, 211, 212, 214, 215, 216
Software Architecture Materialization Explorer (SAME) 183–216
Software Engineering Body of Knowledge (SWEBOK) 106, 108


software evolution 260
software process modelling 3, 6
software project planning 1
software requirements specifications (SRS) 110, 111, 113, 114, 115, 116, 117, 120, 123
specification mining 259, 260, 262
standard deviation 7, 59
static utility language (SUL) 285
stepwise regression analysis 32
structural coverage criteria 220
structural development 34, 35, 36, 38, 40
structure identification 113
symbolic execution 225, 226, 228, 229, 230
systematic reuse assessment and improvement (RAIS) 129, 130, 133, 140, 141, 142, 143
system under test (SUT) 220, 221, 224, 225, 233, 234, 236

T

temporal logic 261, 262, 263, 274, 283
temporal rules 261, 265, 266, 267, 269
test driven development (TDD) 135
thread tree 241, 242, 245, 247, 248, 249
transition-based coverage criteria 220
transition-based notations 221

U


V

variable identification 112, 114, 123

W

Web application 26, 27, 34, 37
white-box testing 218, 219, 220, 225
worst-case execution time (WCET) 228, 232