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ABSTRACT

An autoencoder has the potential to overcome the limitations of current intrusion detection methods 
by recognizing benign user activity rather than differentiating between benign and malicious activity. 
However, the line separating them is quite blurry with a significant overlap. The first part of this study 
aims to investigate the rationale behind this overlap. The results suggest that although a subset of traffic 
cannot be separated without labels, timestamps have the potential to be leveraged for identification 
of activity that does not conform to the normal or expected behavior of the network. The second part 
aims to eliminate dependence on visual-inspections by exploring automation. The trend of errors for 
HTTP traffic was modeled chronologically using resampled data and moving averages. This model 
successfully identified attacks that had orchestrated over HTTP within their respective time slots. 
These results support the hypothesis that it is technically feasible to build an anomaly-based intrusion 
detection system where each individual observation need not be categorized.
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INTRODUCTION

Monitoring any system or process is done by collecting and examining the relevant metrics. An 
Intrusion Detection System (IDS) is used to monitor a computing infrastructure and identify potential 
malicious activity. Malicious activity can be defined as anything that is a threat to the confidentiality, 
integrity, or availability of data. It usually occurs when an uncorrected vulnerability is exploited. It 
may range from unauthorized access to viruses and denial-of-service attacks. Modern computing 
infrastructure can generate several gigabytes of metrics within a short span of time, and real time 
analysis of these metrics is essential for timely identification of such threats.

Intrusion detection methods can be broadly classified as signature-based or anomaly-based. 
The former involves maintaining a database of known threats and their behavior. Intrusions can 
be recognized by comparing current activity to these known patterns. This method is often used in 
commercial products due to its high accuracy (Bace & Mell, 2001). These systems are very efficient 
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at identifying known threats, but they cannot detect new and emerging threats that are orchestrated by 
exploiting zero-day-vulnerabilities (Panda & Patra, 2009). The anomaly-based method is data driven. 
An anomaly is a data point that does not conform to the normal or expected behavior of a system 
(Chandola, et al., 2009). Anomaly-based intrusion detection using supervised classifiers have shown 
excellent results in the literature, particularly with Random Forest (RF) based models (Choudhury 
& Bhowal, 2015), (Anbar, et al., 2016), (Chang, et al., 2017), (Obeidat, et al., 2019), (Patil, et al., 
2019). However, the process of acquiring accurate labels, keeping them updated, and accounting for 
any imbalance in the training data can be expensive and time consuming (Chandola, et al., 2009). 
Unsupervised learning can address most of these issues, but with higher false alarm rates (Davis & 
Clark, 2011). Semi-supervised methods and their advantages have also been widely discussed in the 
literature (Dong & Wang, 2016), (Aung & Min, 2017), (Heba, et al., 2010), but they do not overcome 
the inherent limitations of supervised classification.

To address the aforementioned issues, related work in the literature (Choi, et al., 2019), (Catillo, et 
al., 2019) has proposed the application of a specific kind of feed-forward, non-recurrent artificial neural 
network known as the autoencoder. The basic methodology involves modelling benign user activity 
and evaluating future activity with respect to its deviation from this learned model by measuring 
reconstruction errors of the autoencoder. The reconstruction errors of benign and malicious activities 
usually follow normal distributions. However, they overlap with each other making it challenging to 
determine an appropriate classification threshold.

Contribution

This work presents a new perspective to the autoencoder-based model by leveraging timestamps, 
which have often been ignored in the literature. The proposed solution does not eliminate the overlap 
or categorize each individual packet or flow. Instead, it identifies deviations from the expected 
behavior of the network by tracking consistent irregularities in autoencoder reconstruction errors 
over a period of time.

CICIDS2017 DATASET

The CICIDS2017 Dataset (Sharafaldin, et al., 2018) was used for this study. It is an IDS evaluation 
dataset generated by the Canadian Institute of Cybersecurity based at the University of New Brunswick 
in Fredericton, Canada. This dataset was generated over a period of five days from Monday, July 3, 
2017 through Friday, July 7, 2017. It has been available for use by the research community since 
2018 in Packet Capture (PCAP) format, as well as in CSV format where each record is a labelled flow 
with 84 features. Monday is the first day and includes benign traffic only. Simulated attacks were 
executed from Tuesday through Friday. Each record in the CSV files is a traffic flow (Claffy, et al., 
1989), (Quittek, et al., 2004) with some measured properties and calculated statistics of that flow. 
The CICFlowMeter tool (Habibi Lashkari, 2018), (Lashkari, et al., 2017), (Draper-Gil, et al., 2016) 
was used to generate these flows and the calculated features from the PCAP files. Table 1 summarizes 
the CSV files. This dataset is a good match for this study for the following reasons:

1. 	 Monday’s data contains only benign traffic, which was used to train the models.
2. 	 This dataset includes timestamps, which are an important aspect of this work.
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BACKGROUND AND RELATED WORK

Autoencoders were introduced in the 1980s based on the principle of learning internal representations 
by error propagation (Rumelhart, et al., 1985). An autoencoder is a self-learning artificial neural 
network where the input and output layers have the same number of nodes, whereas the middle layer 
known metaphorically as the bottleneck has fewer nodes. Conceptually, an autoencoder resembles 
an hourglass. Functionally, it consists of an encoder and a decoder as illustrated in sub-figure (a) of 
Figure 1.

The encoder reduces unlabeled input data (X) from its superficial to intrinsic dimensions. In other 
words, it transforms the data from higher dimensional space to a lower dimensional representation 
(h). The decoder then reconstructs this compressed data back to the original number of dimensions. 
The reconstructed data (X’) is similar to the original (X), but it is not an exact match. The difference 
between (X) and (X’) is the reconstruction error. This error is measured using a loss function, such as 
mean squared error. During the training process, the reconstruction error is back-propagated through 
the network after each epoch, and the autoencoder updates the weights and biases to minimize the 
reconstruction error. By doing so, the autoencoder models the identity function of the input data 
distribution to arbitrary accuracy. This concept of identity mapping using an autoencoder was 
demonstrated in the early 1990s by (Kramer, 1991).

An autoencoder can be used for inference after it is trained on historical data that is confirmed to 
be normal. The trained model is capable of reconstructing new, never-seen-before instances of data 

Table 1. Dataset Summary

CSV Benign 
Flows

Malicious 
Flows Network Activity

Monday 529918 0 Benign (Normal user activities)

Tuesday 432074 13835 Benign + Brute force (FTP-Patator, SSH-Patator)

Wednesday 440031 252672 Benign + DoS (Slowloris, Slowhttptest, Hulk, GoldenEye), 
Heartbleed

Thursday-Morning 168186 2180 Benign + Web attacks (Brute force, XSS, SQL-Injection)

Thursday-Afternoon 288566 36 Benign + Infiltration

Friday-Morning 189067 1966 Benign + Botnet (ARES)

Friday-Afternoon-Portscan 127537 158930 Benign + Portscan

Friday-Afternoon-DDoS 97718 128027 Benign + DDoS

Figure 1. Autoencoder as an anomaly detector
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that belong to the same distribution. When future data is passed through it, the reconstruction error 
is measured. If the error is greater than a predefined threshold, it implies that the autoencoder has 
not seen that activity before and it is likely to be a deviation from the normal or expected behavior 
of the system. (Japkowicz, et al., 1995) applied this methodology to three diverse applications: 
CH46 helicopters gearbox fault detection, identification of a specific sequence of DNA known as 
the promoter, and sonar target recognition. (Thompson, et al., 2002) investigated anomaly detection 
using an autoencoder with data from the values of average CPU utilization of a designated server 
over a period of 10 weeks. More recently, (Sakurada & Yairi, 2014) used spacecraft telemetry data 
consisting of continuous sensor measurements to demonstrate the application of an autoencoder as 
the core component for anomaly detection based on comparison of reconstruction errors. Although 
the studies referenced above are not related to network intrusion detection, the methodology is generic 
and can be applied to any domain. Within the domain of cybersecurity, autoencoders have primarily 
been used for feature engineering to improve the performance of supervised classifiers. In one such 
study by (Javaid, et al., 2016) on the NSL-KDD (Tavallaee, et al., 2009) dataset, an autoencoder 
was used to generate a new feature representation. These new features along with the original label 
vectors were used for the final classification using Softmax Regression. (Yousefi-Azar, et al., 2017) 
analyzed the performance of various classifiers with the original feature set, and then with a set of latent 
features generated using an autoencoder. (Shone, et al., 2018) proposed stacked non-symmetric deep 
autoencoders combined with Random Forest for the final classification. Daisy chaining of four shallow 
autoencoders was implemented by (Farahnakian & Heikkonen, 2018). The shallow autoencoders 
were trained sequentially. The last layer was a supervised layer that used a SoftMax classifier for the 
final output. (Mirsky, 2018) proposed a plug and play Network Intrusion Detection System called 
Kitsune which used an ensemble of autoencoders to collectively differentiate between normal and 
abnormal network traffic patterns with a performance comparable to offline anomaly detectors. The 
system used incremental statistics maintained over a damped window. (Zavrak, 2020) evaluated a 
Deep Autoencoder and a Variational Autoencoder with One Class Support Vector Machine (OCSVM) 
using the CICIDS2017 (Sharafaldin, et al., 2018) dataset. Both autoencoders had five hidden layers 
with the architecture: (79-512-256-64-256-512-79). The classification results were analyzed using 
Receiver Operating Characteristics (ROC) and Area under ROC curve (AUC). The results were 
compared with OCSVM. Overall, the Variational Autoencoder showed better performance, but with 
a high false-positive rate. (Choi, et al., 2019) developed a network intrusion detection system with 
an autoencoder as the core component. This model was evaluated on the NSL-KDD (Tavallaee, et 
al., 2009) dataset. A small percentage of abnormal data (records labelled as attacks) were included in 
the training data to reflect real world conditions, where some abnormal patterns exist within normal 
data. The classification threshold was defined as a function of the percentage of this abnormal data. 
(Catillo, et al., 2019) explored the use of a deep autoencoder to identify denial-of-service attacks 
using Wednesday’s subset of the CICIDS2017 (Sharafaldin, et al., 2018) dataset. The input and output 
layers of the autoencoder consisted of 83 neurons because the features Flow_ID and Timestamp were 
dropped. There were five hidden layers, and the structure of the autoencoder was (83-100-90-10-
90-100-83). Wednesday’s dataset was split into training (40%, benign data only), validation (20%, 
benign data only), threshold (20%, both benign and malicious) and testing (20%, both benign and 
malicious) subsets. The threshold subset was used to determine the probability that maximized the 
F1 score, which was used for the final classification of the testing data. The same group extended 
this study in (Catillo, et al., 2020) to reduce the number of false alerts with an updated version of 
the same dataset (CSE-CIC-IDS2018) using a double learning approach. In addition to the primary 
autoencoder, two secondary autoencoders were deployed. The first autoencoder at the second level 
was used to separate benign flows from False Negatives (FN), and the second one was used to separate 
attacks from False Positives (FP).
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The Problem Statement
The application of representation learning with an autoencoder at the heart of it successfully overcomes 
the limitations of signature-based and anomaly-based intrusion detection methods. But it has one 
major drawback. The trained autoencoder encodes a subset of normal and abnormal data equally 
well, which causes the reconstruction error distributions of both categories to overlap as demonstrated 
in histogram (b) of Figure 1. Selecting a specific probability as the classification threshold (θ) 
depends on whether the organization’s stakeholders prioritize precision or recall. The threshold is 
a critical component because the performance of the model is dependent on it (Choi, et al., 2019). 
(Japkowicz, et al., 1995) proposed a semi-automated threshold determination component. For cases 
where the separation of normal and abnormal data was unclear, this component constructed absolute 
and intermediate positive and negative regions within the epoch versus reconstruction error space. 
(Catillo, et al., 2019) selected a threshold that maximized the F1 score, which is the harmonic mean 
of precision and recall. (Choi, et al., 2019) added some abnormal data to the training set and defined 
the threshold as a function of the anomalous data percentage. However, irrespective of the threshold 
selection method, this overlap results in an unreasonable number of false alerts and missed anomalies.

In line with the problem statement, the research questions addressed in this study are the following:

1. 	 Why does an autoencoder that is trained on data generated by benign network traffic encode 
a subset of both benign and malicious traffic equally well, thus causing an overlap in their 
reconstruction error distributions?

2. 	 What effect does an increase in the complexity of the neural network have on this overlap?
3. 	 What effect does a decrease in the diversity within the input data have on this overlap?

The following hypotheses were inspired by ‘The Adventures of Sherlock Holmes’ written by Sir 
Arthur Conan Doyle (Doyle, 1859-1930). As an analogy to the postal system in the physical world, 
when a package is dispatched for delivery, only the information on the envelope is accessible to an 
observer (for example, the addresses and dispatch date). Although, the contents of the package are 
not accessible when it is in transit, the observer can deduce the purpose of the exchange from the 
frequency, direction and size of the packages using the methods of Sherlock Holmes. However, for 
some packages, a visual inspection of the envelope is not sufficient, and the contents or purpose of 
the exchange may remain ambiguous. Comparably, in the virtual world, when malicious activities 
within the application layer are being examined at the network and transport layers, a subset of traffic 
cannot be categorized without explicit labels.

1. 	 A subset of network traffic originating due to malicious activity in the application layer is similar 
in structure to benign traffic when observed in the lower layers and cannot be differentiated 
without explicit labels regardless of the complexity of the neural network or the diversity within 
the data.

2. 	 Instead of the traditional method of categorizing each individual packet or flow, a deviation from 
the expected behavior of the network can be identified by statistically modelling reconstruction 
errors of the trained autoencoder in chronological order.

Drawbacks of Classifying Each Individual Observation
A traffic flow (Claffy, et al., 1989), (Quittek, et al., 2004) consists of statistics summarized from 
several packets. However, a flow is not necessarily mapped 1:1 to a specific transport connection 
(Rajahalme, et al., 2004). For instance, the three records shown in Table 2 belong to Tuesday’s 
subset of the CICIDS2017 (Sharafaldin, et al., 2018) dataset. Although, they belong to the same 
TCP connection, they exist as three separate records with the first two labelled as malicious (FTP-
Patator brute-force attack) and the third one labelled as benign. Similarly, a single packet may not 
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be malicious in isolation, but it could be part of a structured denial-of-service attack. Therefore, 
we suggest that building a model to classify each individual observation is not an ideal solution for 
network intrusion detection.

Other Considerations: Random Splitting of Data Into Train 
and Test Sets Without a Resampling Procedure
Randomized splitting of data into training and testing subsets is done with the stratify parameter 
set to the target (label). However, other variables can have a significant role in the formation of 
distinct substructures within the data and can influence the final results. These substructures can 
be visualized using a two-dimensional representation of the data. As an example, Wednesday’s data 
from the CICIDS2017 (Sharafaldin, et al., 2018) dataset is projected in scatter plot (a) of Figure 2.

Wednesday’s data was reduced to 20 vectors which covered 99.66% of the variance as shown in 
plot (b) of Figure 2. The first two vectors of this compressed data were used to plot the data. Scikit-
learn’s (Pedregosa, et al., 2011) Principal Component Analysis (PCA) module was used for this 

Table 2. Traffic Flow

Source IP Source 
Port Destination IP Destination 

Port Protocol Time 
stamp

Flow 
Duration

Total 
Fwd 

Packets
Label

172.16.0.1 53734 192.168.10.50 21 6 9:31 
AM 4 2 FTP-

Patator

172.16.0.1 53734 192.168.10.50 21 6 9:31 
AM 9306763 9 FTP-

Patator

192.168.10.50 21 172.16.0.1 53734 6 9:31 
AM 31063 2 Benign

Figure 2. Data Sub-structures
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activity. Table 3 and Table 4 show the weights of the top 10 features in the first two vectors (Principal 
Components). The binary feature ACK Flag Count was found to hold a weight of 0.78 in the second 
vector and had considerable influence in defining the substructures seen in scatter plot (a) of Figure 2.

In this work, we examined two use-cases using the methodology proposed by (Catillo, et al., 
2019) for identifying denial-of-service attacks. In use-case 1, 95% of the benign and malicious flows 
had opposite values for ACK Flag Count, while in use-case 2, 95% had the same values. The results 
summarized using traditional metrics in Table 5 and Table 6 show that the distribution of use-case 1 
where majority of the benign and malicious flows had opposite values for ACK Flag Count yielded 
better results. In the current study, the entire set of each day’s traffic as it transpired naturally was 
used without splitting it into train, validate and test subsets in order to eradicate this bias.

Table 3. Top 10 Feature Weights - Vector_0

Feature Name Weight in Vector_0 Rank

Fwd IAT Total 0.331933 1

Flow Duration 0.331787 2

Idle Max 0.315553 3

Fwd IAT Max 0.315068 4

Flow IAT Max 0.314738 5

Idle Mean 0.311927 6

Idle Min 0.308521 7

Fwd IAT Std 0.183275 8

Avg Bwd Segment Size 0.151220 9

Bwd Packet Length Mean 0.151220 9

Table 4. Top 10 Feature Weights - Vector_1

Feature Name Weight in Vector_1 Rank

ACK Flag Count 0.780023 1

Destination Port 0.192774 2

URG Flag Count 0.165120 3

Fwd Push Flags 0.102586 4

SYN Flag Count 0.102586 4

Fwd Packet/s 0.050348 6

Idle Min 0.038528 7

Idle Mean 0.036184 8

Idle Max 0.033159 9

Fwd IAT Max 0.032073 10
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DETERMINING AN APPROPRIATE AUTOENCODER CONFIGURATION

The number of neurons in the input and output layers of the network are defined by external problem 
specifications (Hagan, et al., 2014). The CICIDS2017 (Sharafaldin, et al., 2018) data is composed of 
eight sets as summarized in Table 1. Each record has 84 network flow features and a label.

Data Preparation – Phase 1
Feature Selection and the Curse of Dimensionality
Although eliminating features based on variance and internal correlation improves the time and space 
complexity of any learning algorithm, it is possible to miss out on an anomaly if traffic characterizations 
change in the future. We therefore suggest that for dynamic data, it is more appropriate to project 
the entire dataset as it occurs naturally to a lower dimensional representation instead of dropping 
features outright. However, the following features were dropped from the training data for the reasons 
stated below:

1. 	 Source and Destination IP Addresses: Encoding IP addresses to an integer representation 
and including them in the training data can influence the trained model to identify malicious 
activity based on the source, thereby narrowing down the generalizability of the solution. The 
infrastructure used to generate the CICIDS2017 Dataset (Sharafaldin, et al., 2018) consisted of 
a separate attack-network that was used to orchestrate the attacks on the victim-network. The 
source IP address on all the records labelled as malicious are therefore 172.16.0.1, which is the 
internal IP address of the victim’s firewall (An exception to this is ‘Infiltration’, as explained 
under the section- ‘Infiltration and Portscan’). Moreover, IP addresses can be spoofed and/or are 
likely to change if they were assigned by a DHCP Server.

2. 	 Flow ID: It is a unique string identifier given to each flow. It consists of a string created by 
concatenating the source and destination IP addresses and port numbers. Including the Flow ID 
would have had the same influence as including the IP addresses.

Table 5. Use-Case 1 Results

Metric Formula Value

Precision TP / (TP+FP) 0.9998

Recall TP / (TP+FN) 1.0

Accuracy (TP+TN) / (TP+TN +FP+FN) 0.9999

False Alarm Rate FP / (FP+TN) 6.36e-05

F1 Score 2*(Precision * Recall)/(Precision + Recall) 0.9999

Table 6. Use-Case 2 Results

Metric Formula Value

Precision TP / (TP+FP) 0.9449

Recall TP / (TP+FN) 0.8385

Accuracy (TP+TN) / (TP+TN +FP+FN) 0.9536

False Alarm Rate FP / (FP+TN) 0.0137

F1 Score 2*(Precision * Recall)/(Precision + Recall) 0.8885
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3. 	 Timestamps: Encoding timestamps to numeric values and including them in the training set 
can skew the model to classify attacks based on the time slots in which they were orchestrated. 
Timestamps were excluded from the training data, but they were stored in another variable for 
later use.

4. 	 Fwd Header Length: This feature occurs twice with the same values. One duplicate instance 
was dropped.

Records

1. 	 Records with Infinity and NaN values were removed.
2. 	 Duplicate records were removed for this preliminary analysis (The count of unique records is 

displayed in Figure 3 for reference).
3. 	 Labels were made binary – Benign (0) or Malicious (1).

The resultant dataset had 79 features and the ‘Label’ column. Labels were not included in the training 
data. The input and output layers therefore had 79 neurons. An important question was, “How to 
ascertain the required number of middle layers and the optimal number of neurons in each layer?”. 
Determining the optimal number of neurons in the hidden layer is still an active area of research 
(Hagan, et al., 2014). Theoretically, a neural network with one hidden layer is capable of universal 
approximation (Heaton, 2015). As a first step, one middle layer with an arbitrary number of neurons 
(10) was chosen. The structure of the autoencoder was therefore (79-10-79):

•	 Input Layer - 79 Neurons
•	 Middle Layer - 10 Neurons
•	 Output Layer - 79 Neurons

Data Scaling
Scikit-learn’s (Pedregosa, et al., 2011) MinMaxScaler() function shown in Equation 1, was used to 
scale the features in the range of 0 and 1.

Equation 1. MinMaxScaler

x
x Min x

Max x Min xscaled
=

− ( )
( )− ( )

	

Monday’s dataset that contains only benign traffic was used for training. It was scaled using 
the fit_transform() method. The datasets from Tuesday to Friday were used for testing. The training 
parameters from Monday’s dataset were reused to scale the testing data using the transform() method. 
This was done to treat the test data as new, never-seen-before data.

Libraries
Tensorflow (Abadi, et al., 2015) version 2.3.0 and Keras (Chollet & others, 2015) version 2.4.0 
libraries were used to build the Autoencoder.
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Other Parameters

1. 	 Activation Function: A common activation function, as suggested by most current literature, 
and used in this work is the Rectified Linear Unit (ReLu) function. Over the last decade, ReLu 
has become a de-facto standard (Heaton, 2015). The ReLu function is defined in Equation 2. If 
the input (z) is positive, the function will return (z), else it will return zero.
Equation 2. ReLu Activation Function

R z
z z

z
( ) =

>
≤








,

,

0

0 0
	

2. 	 Loss Function: The autoencoder minimized the Mean Squared Error (MSE) with each iteration 
during the training process. The Sqrt() function of NumPy (Harris, et al., 2020) was used to 
compute the Root Mean Squared Error (RMSE) for the analysis. The RMSE of matrices X and 
X’ is defined in Equation 3, where n is the number of observations.
Equation 3. Root Mean Squared Error

RMSE
n

X X
i

n

= −( )′
=
∑� �
1

1

2
	

3. 	 Training Epochs: During the training process, the MSE always plateaued well before 100 epochs. 
Therefore, each autoencoder was trained for 100 epochs in the rest of this study.

4. 	 Batch Size: As recommended by (Heaton, 2015), an initial batch size equal to 10% of the number 
of records was used.

5. 	 Optimizer Function: The Adam Optimizer (Kingma, 2014) was used with default hyper 
parameters. This optimization algorithm is computationally more efficient since it dynamically 
adjusts the learning rate over the course of the training process.

Evaluation of the Autoencoder with one middle layer 
(79-10-79) on the CICIDS2017 Dataset
As explained in the section on ‘Data Scaling’, the autoencoder was trained on the entire dataset of 
Monday and was tested on the eight datasets described in Table 1, including Monday’s data on which 
it was trained. The RMSE distributions of the eight sets are plotted in Figure 3. These histograms 
show that benign flows follow a consistent distribution but have a significant overlap with malicious 
flows. Wednesday’s data, which contains denial-of-service attacks exhibits the best separation.

The Effects of Varying the Number of Neurons in the Middle Layer
As mentioned earlier, determining the optimal number of neurons in the hidden layer is still an active 
area of research (Hagan, et al., 2014). In this interesting experiment, the impact of varying the number 
of neurons in the hidden layer was studied. The hidden layer had 2 neurons to start with. The count 
was increased by one neuron with each iteration till there were 40 neurons, which is around half the 
number of neurons in the input and output layers. The model was retrained during each iteration. The 
impact of the additional neurons on the subsets are plotted in Figure 4 for reference. In the interest of 
space, each data point in the plot represents the RMSE of the entire matrix of flows in its respective 
subset. In the printed version of this paper, this image may appear in grayscale and the colors may 
not be discernable. But the colors are not relevant. The important observations are the following: 
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Overall, the RMSEs were found to be inversely proportional to the number of neurons in the middle 
layer, as was expected. However, the RMSEs of both categories of traffic were found to change with 
equal proportion and changing the number of neurons did not make malicious traffic stand out.

Figure 3. RMSE Distribution of the CICIDS2017 Dataset (Autoencoder Structure: 79-10-79)
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Extending to a Deeper Architecture
As shown in Figure 5, adding additional layers to the encoder and decoder sections exhibited the 
same behavior. Extending to a deeper architecture only compacted the range of error distributions and 
did not show any significant benefits. Also, adding additional layers has an inherent disadvantage. It 
exponentially increases the time and space complexity of the model (Srivastava, et al., 2015).

From these observations, it can be concluded that the precise configuration of the autoencoder 
is not relevant per se (only in this case and with this data). For example, it does not matter if the 
structure of the autoencoder is (79-9-79), or (79-11-79) instead of (79-10-79) as long as the same 
structure is consistently used throughout.

For the rest of this study, autoencoders with one hidden layer (79-10-79), the ReLu activation 
function at each layer, and the Adam optimizer with default hyper parameters were used.

TIME BASED ANALYSIS

As mentioned in the section on ‘Feature Selection and the curse of Dimensionality’, encoding 
timestamps to numeric values and including them in the training data can influence any model to 
classify attacks based on the time slots in which those attacks were carried out. In this experiment, 
timestamps were used to analyze the trend of autoencoder RMSEs. Most studies in the literature had 
dropped the Timestamp column. This section explores this interesting but often ignored dimension.

Figure 4. From 2 to 40 Neurons in the Middle Layer
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Data Preparation – Phase 2
The features: ‘Source IP Address’, ‘Destination IP Address’, ‘Flow ID’ and one duplicate instance of 
‘Fwd Header Length’ were dropped as explained earlier. Duplicate records were removed from the 
training data, but this time they were retained in the testing data. ‘Timestamps’ were not included 
in the input to the autoencoder. They were stored in another variable and were used to visualize the 
autoencoder RMSEs in chronological order.

Figure 5. RMSE Distribution with additional layers
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Appending Microseconds to Timestamps
The original timestamps in the dataset are granular to the level of seconds. Since more than one 
traffic flow can be generated within one second, visualizations based on these timestamps would have 
resulted in lost details and would have been equivalent to excluding a part of the available data without 
reasonable justification. An example is highlighted in Figure 6. As a workaround, microseconds were 
appended to make each timestamp unique, as shown in Figure 7. This workaround ensured that all 
the records were used in the analysis.

Encoding timestamps to Datetime objects
The Pandas (McKinney, 2010) (pandas development team, 2020) function to_datetime() was used to 
encode the timestamp strings to datetime objects.

Time Corrections
In the original dataset, timestamps after 12:59 PM are incorrectly tagged as AM. To correct this, 
12 Hours were added to the time objects starting from 1:00 PM to the rest of the day (around 5:00 
PM) in each set.

Figure 6. Original Timestamps

Figure 7. Timestamps after appending Microseconds
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Autoencoder Ensemble
The term ensemble was inspired by an ensemble of stringed musical instruments where each instrument 
contributes based on its performing range of musical notes. Using a (79-10-79) autoencoder trained 
on Monday’s data, Tuesday’s RMSEs were plotted with respect to time using Matplotlib’s (Hunter, 
2007) plot_date() method. On Tuesday, brute-force attacks were executed on FTP from 9:20 AM to 
10:20 AM, and on SSH from 2:00 PM to 3:00 PM. However, the RMSEs plotted in scatter plot (a) 
of Figure 8 show that a single autoencoder trained on such a diverse dataset did not give the expected 
results, and the model was unable to separate brute-force attacks from benign user activity. Extending 
to a deeper autoencoder architecture did not make brute-force attacks stand out either. Due to space 
constraints, scatter plots generated by deeper architectures are not shown because they are similar 
to scatter plot (a) of Figure 8. In the previous section, we explored increasing the complexity of the 
neural network. In this section, we explored reducing the diversity within the input data. An ensemble 
of autoencoders was implemented, each trained on a specific substructure within the data. Rather 
than using a clustering algorithm, destination ports, which are natural clusters were used. Although, 
it is likely for correlations to exist based on usage (for instance, a script can be used to telnet a remote 
machine and then initiate an FTP transfer), each service is independent by design. An individual 
autoencoder was allocated for traffic to each destination port in the well-known port range (0 - 1023). 
Each autoencoder was independent of the others in the ensemble. The results shown in plot (b) of 
Figure 8 show that this approach vividly makes brute-force attacks stand out from benign traffic.

Figure 8. Tuesday RMSEs with respect to time
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Comparison with the Previous Methodology of Classification 
Based on Thresholds of Reconstruction Errors
Intuitively, it seems apparent that autoencoder ensembles can be equally effective with the methodology 
of classification based on thresholds of reconstruction errors. However, the histogram of RMSEs from 
Tuesday’s FTP traffic shown in Figure 9 shows that overlaps in reconstruction errors exist irrespective 
of the diversity within the data. These results further corroborate the theory that building a model to 
classify each individual observation is not an ideal solution for network intrusion detection.

Setup for the Next Set of Experiments
Based on these results, an ensemble of shallow autoencoders, each with three layers (79-10-79) with 
the ReLu function at each layer and the Adam optimizer was used in the final setup. Monday’s data 
(without duplicates) was used for training, and the rest of the week’s data (with retained duplicates) 
was used for testing. MinMaxScaler() was used to scale the data. Traffic to each destination port in 
the well-known port range (0 - 1023) was scaled in the range (0-1) and was allocated to an individual 
autoencoder in the ensemble. Each training set was scaled using the fit_transform() method, and the 
training parameters were reused to scale the corresponding test set using the transform() method. 
The autoencoder RMSEs were plotted chronologically for each destination port.

Figure 9. Tuesday FTP traffic RMSE distribution
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EVALUATION

In this section various categories of malicious activity and their impact on the RMSE distributions 
were examined. As explained earlier, the RMSEs were plotted with respect to time using Matplotlib’s 
(Hunter, 2007) plot_date() method.

Brute Force Attacks on FTP and SSH
Brute-force attacks consist of an attacker attempting to guess passwords and gain unauthorized access 
by trial and error. FTP is a standard protocol used for data transfer. It establishes two connections 
between the hosts, one for data transfer and the other for control information. Port 21 is used for the 
control connection and port 20 for the data connection. The FTP server receives authentication over 
port 21. We therefore analyze traffic to port 21 to identify brute force attacks on FTP. SSH is a network 
protocol used to remotely access and manage a device. Its predecessor was telnet. The key difference 
between telnet and SSH is that the latter uses encryption. SSH uses TCP port 22 by default. Patator 
was the tool used to execute these attacks during the time windows shown in Table 7. Scatter plots (a) 
and (b) of Figure 10 are representative of activity on TCP ports 21 and 22. Brute force attempts on 
FTP and SSH noticeably stand out within their respective time-slots in the working hours of Tuesday.

Scatter Plots (c) and (d) of Figure 10 show activity on all ports in the well-known range. In this 
case, a deviation in FTP and SSH traffic has no effect the other protocols. However, in certain cases, 
as demonstrated in the section on ‘Infiltration and Portscan’, malicious activity over one protocol 
can cause a deviation in the behavior of other protocols. This correlation is based on usage and not 
by design, as was explained in the section on ‘Autoencoder Ensemble’.

Attacks Over HTTP
Figure 11 is representative of the entire week’s activity on TCP Port 80. Table 8 shows the time 
windows during which each category of attack was executed. Monday’s scatter plot shows benign 
user activity, which is representative of the normal or expected behavior of the HTTP protocol (in 
this network). Activities on TCP Port 80 from Tuesday through Friday were analyzed to identify 
datapoints that did not conform to this expected behavior.

On Tuesday, no attacks were executed over HTTP. The scatter plot of Tuesday in Figure 11 
therefore looks similar to Monday’s plot. On Wednesday morning, various Denial-of-Service 
(DoS) attacks were executed. These attacks cause unavailability of services by making a server or 
resource temporarily unavailable (Mantas, et al., 2015). They are typically orchestrated by flooding 
the target with several illegitimate requests. The overloaded server then places legitimate requests 
on hold while it is busy processing the malicious requests (Purwanto, 2014). There are several tools 
available for orchestrating DoS and DDoS attacks. Slowloris and Slowhttptest let a single machine 
keep connections open with minimal bandwidth to consume the web server resources. In this dataset 
the attacker was a Kali Linux system, and the victim was an Ubuntu 16.04 system running Apache 
web server. GoldenEye is a simple tool that attempts to exhaust the resource pools of Hyper Text 
Transfer Protocol (HTTP) servers. HTTP Unbearable Load King (HULK) is another DoS tool which 

Table 7. Brute Force Attack Windows

Day Start Time Stop Time Malicious Activity

Tuesday 9:20 AM 10:20 AM FTP-Patator

Tuesday 2:00 PM 3:00 PM SSH-Patator
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was originally written for research. It works by generating large volumes of obscure traffic bypassing 
the cache memory and targeting the web server’s primary resources.

Wednesday’s scatter plot in Figure 11 shows that DoS attack-types HULK and GoldenEye stand 
out very distinctly in their respective time slots. Slowloris and Slowhttptest do not seem to be apparent 

Figure 10. Brute Force attacks on FTP and SSH
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at first sight, but they can be identified too. In the next section on ‘Modelling RMSEs with respect 
to time’, some tools for statistically modelling these results are explored to eliminate dependence on 
visual inspections.

Figure 11. Weekly Activity on TCP Port 80
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On Thursday morning, web-attacks (SQL injection, cross-site-scripting and brute force over 
HTTP) were executed. As is apparent from Thursday’s scatter plot in Figure 11, our model was 
unable to identify these attacks. These attack types are discussed under the section on ‘Limitations’.

Distributed Denial-of-Service (DDoS) attacks were executed on Friday. These attacks are similar 
to DoS attacks, but they involve deployment of multiple systems to launch a coordinated attack. 
The objective is to flood the bandwidth and/or resources of the victim. The Low Orbit Ion Cannon 
(LOIC) tool was used to orchestrate these attacks on a target ubuntu machine in the victim’s network 
(Sharafaldin, et al., 2018). This tool works by sending several illegitimate HTTP GET Requests. 
As seen in the scatter plot of Friday in Figure 11, these illegitimate requests vividly stand out from 
genuine requests.

Infiltration and Portscan
Infiltration is different from the other attacks because it is executed from inside the victim’s network. 
As described in Table 9, this attack is carried out in two phases. In the first phase, the attacker exploits 
a vulnerable software in the victim’s network to gain access. In the second phase, the attacker uses the 
exploited machine to discover more loopholes and conduct various attacks. In this dataset, the first 
phase began when an infected file was downloaded from dropbox to a windows machine. The file was 
also copied from a USB flash drive to a Macintosh machine. Usually, in the real world an unsuspecting 
user inadvertently downloads the infected file. The attacker then uses the backdoor to execute the 
infected file inside the victim’s network. As shown in plot (b) of Figure 12, traffic generated by the 
file download on the windows machine resembles benign traffic and cannot be interpreted using this 
approach. The action of copying an infected file from a USB flash drive to the Macintosh machine 
occurs locally and is indubitably not expected to be visible in network traffic data. In the second 
phase, the attacker executed the infected file from inside the victim’s network between 3:04 PM and 
3:45 PM on Thursday. This attack changed the behavior of traffic to other well-known TCP ports, as 
shown in plot (b) of Figure 12. For comparison, Monday’s benign user activity is represented in plot 

Table 8. Time windows of attacks over HTTP

Day Start Time Stop Time Malicious Activity

Wednesday 9:47 AM 10:10 AM DoS Slowloris

Wednesday 10:14 AM 10:35 AM DoS Slowhttptest

Wednesday 10:43 AM 11:00 AM DoS HULK

Wednesday 11:10 AM 11:23 AM DoS GoldenEye

Thursday 9:20 AM 10:00 AM Web attack (brute force)

Thursday 10:15 AM 10:35 AM Web attack (XSS)

Thursday 10:40 AM 10:42 AM Web attack (SQL Injection)

Friday 3:56 PM 4:16 PM Distributed Denial-of-Service - LOIC

Table 9. Infiltration attack windows

Day Start Time Stop Time Malicious Activity

Thursday 2:19 PM 2:35 PM Victim downloads infected file (Windows)

Thursday 2:53 PM 3:00 PM Infected file is copied from USB flash drive (Mac)

Thursday 3:04 PM 3:45 PM Attacker executes file using backdoor
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(a) of Figure 12. The attacker also used the backdoor to execute a port scan, which can be identified 
by a scatter plot of destination ports with respect to time as shown in plot (c) of Figure 12. Another 
Portscan (unrelated to intrusion) was executed on all the windows machines on Friday afternoon and 
can be identified using the same methodology as shown in Figure 13.

Figure 12. Infiltration
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MODELLING RMSES WITH RESPECT TO TIME

This section explores the likelihood of mathematically modelling the results rather than relying on 
a visual inspection. HTTP traffic is a suitable candidate for this evaluation because attacks on other 
protocols had very little or no influence on the RMSEs of HTTP flows (in this dataset). An added 
advantage is that most attack types in this dataset were orchestrated over the HTTP protocol.

Data Resampling and Moving Averages
An effective method for smoothing out a curve or filtering out noise is to compute the Moving Average 
(MA) over a sliding window. MAs can reveal hidden patterns that are not apparent in the original 
visualization. However, directly applying a sliding window over the recorded RMSEs would have 
resulted in varying time window lengths. Since the time windows should have constant length, the 
RMSEs were resampled into bins of 1-minute intervals. The mean of the instances in each bin was 
the representative value for that bin and was used for the calculation of the Moving Average over a 
sliding window of 5 minutes. The resulting graph corresponding to the reference benign traffic of 
Monday is shown in plot (a) of Figure 14. The entire week’s activity is shown in plot (b) of Figure 14.

Generically, the resampling rate and sliding window length depend on the data. They are optimized 
by trial and error and need to be fine-tuned for each network. Choosing a very large window can 
increase the chances of missing out on certain anomalies (higher False Negatives), while a smaller 
window can increase the False Positive rate. A resampling rate of 1 minute with a sliding window of 

Figure 13. Portscan
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5 minutes was a perfect fit for this data. The maximum recorded RMSE calculated from Monday’s 
benign data was set as the upper threshold and is the shaded region shown in Figure 14, Figure 15, 
Figure 16, and Figure 17. In this evaluation, we have used a single threshold for all time windows. 
However, for some networks it may be prudent to have different thresholds for different time windows 
depending on the variation in network activity during the course of an average working week.

Figure 14. Moving Averages of resampled activity on TCP port 80
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Results and Discussion
As shown in plot (b) of Figure 14, the entire week’s benign traffic follows a regular pattern. In general, 
the Moving Averages are higher at the beginning and during the middle of each working day. For 
the final evaluation, time windows of 5 minutes were taken as individual instances. The results are 
shown in Table 10. The results are also displayed in Figure 15, Figure 16, and Figure 17 using bar 
charts for a more intuitive visual interpretation.

Each timestamp is representative of the sliding window spanning the previous 5 minutes 
(including itself). For example, the instance labelled as 9:05 AM is representative of the network 
activity from 9:01 AM to 9:05 AM. The upper threshold is the value of the maximum RMSE of the 
autoencoder when data that is confirmed to be benign is passed through it. The maximum recorded 
RMSE calculated from Monday’s benign data was 0.060369874. When the Moving Average of the 
RMSE in a specific instance exceeded this threshold, then that instance was flagged as anomalous. 
For example, on Wednesday, Denial-of-Service attack Slowloris was executed at 9:47 AM. The 
Moving Average exceeded the threshold in the instance labelled 9:50 AM, thus triggering an alert 3 
minutes after the attack was initiated. Similarly, DoS Slowhttptest which orchestrated at 10:15 AM 
raised an alert at 10:20 AM, Dos Hulk started at 10:43 AM and triggered an alert at 10:45 AM, DoS 
GoldenEye was initiated at 11:10 AM and triggered an alert at 11:15 AM. On Friday, Distributed 
Denial-of-Service LOIC which began at 3:56 PM triggered an alert at 4:00 PM. The triggering of 
an alarm, or the dispatch of a warning email/SMS can thus be automated using an if-else statement 
on any platform.

LIMITATIONS

Limitations of the Methodology
This methodology was successful in identifying FTP/SSH Patator, Infiltration, Portscan, Denial-of-
Service and Distributed Denial-of-Service attacks. However, as is apparent from Thursday’s scatter 
plot in Figure 11, the results in Table 10, and the bar charts in Figure 15, this model was unable to 
detect web attacks (SQL injection, cross-site-scripting and brute force over HTTP) that were carried 
out on Thursday morning. These activities are best identified at the user level of abstraction within 
the application layer. It is therefore beneficial to use an application-based IDS in combination with 
a host-based and/or network-based IDS to effectively identify all categories of malicious activity 
(Bace & Mell, 2001). Secondly, the training data must always consist of traffic that is confirmed to be 
benign, which may be challenging to determine in some cases. Also, benign traffic characterizations 
are likely to change over time as the organization grows and/or adopts newer technologies.

Limitations Due to Insufficient Data
Heartbleed
Heartbleed attacks were simulated between 3:12 PM and 3:32 PM on Wednesday over TCP port 444. 
Monday’s data which is our reference benign dataset does not have any traffic to TCP port 444, and 
therefore the model has nothing to compare. However, the presence of this new, previously unseen 
traffic is an anomaly in itself.

Botnets
A python-based tool called Ares was used to simulate a botnet from a machine running Kali Linux 
in the attack-network (Sharafaldin, et al., 2018). The compromised hosts were five windows systems 
in the victim-network. Most of the communication occurred over TCP port 8080 on Friday morning 
between 10:00 AM and 11:00 AM. Although Port 8080 is outside the well-known port range, the 
organization’s stakeholders can choose to include any open port for monitoring. However, the system 
was unable to successfully model benign behavior of the source and targets because there were very 
few corresponding traffic flows in the benign reference dataset of Monday.
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continued on following page

Table 10 Moving Average of RMSEs at each time delta

Time 
stamp

Tue - Moving 
Average

http 
Alert

Wed - Moving 
Average

http 
Alert

Thu - Moving 
Average

http 
Alert

Fri - Moving 
Average

http 
Alert Analysis

9:05:00 0.020847209 No 0.014328677 No 0.041541612 No 0.037371122 No NA

9:10:00 0.025295857 No 0.01655897 No 0.028180685 No 0.036815131 No NA

9:15:00 0.023581333 No 0.015536295 No 0.018668727 No 0.02494111 No NA

9:20:00 0.017015163 No 0.010630559 No 0.017157275 No 0.027812653 No NA

9:25:00 0.01750865 No 0.01448835 No 0.013538537 No 0.024425144 No NA

9:30:00 0.023109026 No 0.016562796 No 0.012105407 No 0.016109139 No NA

9:35:00 0.021421095 No 0.017980863 No 0.012520637 No 0.01544746 No NA

9:40:00 0.017780809 No 0.013856654 No 0.012525574 No 0.016981501 No NA

9:45:00 0.017550061 No 0.015130079 No 0.011670313 No 0.023464237 No NA

9:50:00 0.018428486 No 0.060967029 Yes 0.011644239 No 0.014277122 No DoS Slowloris

9:55:00 0.018088079 No 0.155330098 Yes 0.012430511 No 0.014287967 No DoS Slowloris

10:00:00 0.017186532 No 0.147033574 Yes 0.014191753 No 0.014941086 No DoS Slowloris

10:05:00 0.017940336 No 0.120722249 Yes 0.014814505 No 0.019442427 No DoS Slowloris

10:10:00 0.014992501 No 0.305027645 Yes 0.014431325 No 0.021597939 No DoS Slowloris

10:15:00 0.016493992 No 0.053976289 No 0.015108427 No 0.017217883 No NA

10:20:00 0.014349707 No 0.364110756 Yes 0.016355929 No 0.017913549 No DoS Slowhttptest

10:25:00 0.017891589 No 0.414629967 Yes 0.011513249 No 0.016421421 No DoS Slowhttptest

10:30:00 0.016441851 No 0.191375438 Yes 0.010606256 No 0.016287065 No DoS Slowhttptest

10:35:00 0.014525729 No 2.897972356 Yes 0.013210102 No 0.014576473 No DoS Slowhttptest

10:40:00 0.016220545 No 2.506264515 Yes 0.015424516 No 0.015893383 No DoS Slowhttptest

10:45:00 0.015245464 No 0.08750155 Yes 0.013538301 No 0.032527468 No DoS Hulk

10:50:00 0.014375294 No 0.155219534 Yes 0.017466935 No 0.03208323 No DoS Hulk

10:55:00 0.017026313 No 0.155316513 Yes 0.014703867 No 0.019356065 No DoS Hulk

11:00:00 0.016325732 No 0.120197817 Yes 0.012485062 No 0.019518671 No DoS Hulk

11:05:00 0.016497396 No 0.023118038 No 0.01678113 No 0.019815539 No NA

11:10:00 0.015704948 No 0.029374764 No 0.013098751 No 0.017716582 No NA

11:15:00 0.017419385 No 0.06686989 Yes 0.014394598 No 0.013247587 No DoS GoldenEye

11:20:00 0.013435849 No 0.055037229 No 0.014394598 No 0.015600761 No NA

11:25:00 0.013767989 No 0.016126773 No 0.013213233 No 0.013703662 No NA

11:30:00 0.01381433 No 0.013197265 No 0.015281041 No 0.016215749 No NA

11:35:00 0.016055289 No 0.017669729 No 0.015277145 No 0.013261606 No NA

11:40:00 0.014669773 No 0.015177098 No 0.013358552 No 0.012704738 No NA

11:45:00 0.01865842 No 0.014734833 No 0.011071499 No 0.016426482 No NA

11:50:00 0.027399118 No 0.012013667 No 0.014767911 No 0.01088404 No NA

11:55:00 0.016699046 No 0.010883489 No 0.012412032 No 0.013872191 No NA

12:00:00 0.019793156 No 0.01422689 No 0.016667781 No 0.01256546 No NA

12:05:00 0.017203743 No 0.01339747 No 0.01703911 No 0.029616728 No NA

12:10:00 0.027799047 No 0.012806246 No 0.012179812 No 0.01677992 No NA

12:15:00 0.02731358 No 0.018240456 No 0.014284565 No 0.013951379 No NA

12:20:00 0.02731358 No 0.0114273 No 0.014026377 No 0.014248773 No NA

12:25:00 0.02731358 No 0.009139874 No 0.020076919 No 0.014248773 No NA

12:30:00 0.023009137 No 0.012176661 No 0.01290051 No 0.023006035 No NA

12:35:00 0.018561422 No 0.014449099 No 0.01290051 No 0.038536968 No NA

12:40:00 0.018561422 No 0.025189552 No 0.036766224 No 0.030140646 No NA

12:45:00 0.019206095 No 0.025189552 No 0.012136974 No 0.044242744 No NA

12:50:00 0.018884053 No 0.010763139 No 0.012136974 No 0.044242744 No NA

12:55:00 0.019620901 No 0.021328012 No 0.017620767 No 0.034350028 No NA

13:00:00 0.022711594 No 0.011689964 No 0.02028767 No 0.02002678 No NA

13:05:00 0.014473567 No 0.01006506 No 0.02028767 No 0.030219897 No NA

13:10:00 0.013524122 No 0.019051494 No 0.010779811 No 0.02185234 No NA

13:15:00 0.018350596 No 0.015707001 No 0.016778072 No 0.014551365 No NA
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Time 
stamp

Tue - Moving 
Average

http 
Alert

Wed - Moving 
Average

http 
Alert

Thu - Moving 
Average

http 
Alert

Fri - Moving 
Average

http 
Alert Analysis

13:20:00 0.018350596 No 0.012409015 No 0.018047935 No 0.011193792 No NA

13:25:00 0.01298271 No 0.013501127 No 0.014157051 No 0.015688704 No NA

13:30:00 0.017299762 No 0.01152637 No 0.016666969 No 0.026201335 No NA

13:35:00 0.01959681 No 0.013839557 No 0.012414099 No 0.013206884 No NA

13:40:00 0.01963901 No 0.019304 No 0.015354228 No 0.019178543 No NA

13:45:00 0.016991771 No 0.010901467 No 0.01513657 No 0.017581025 No NA

13:50:00 0.01510094 No 0.014175772 No 0.015207586 No 0.013098006 No NA

13:55:00 0.013502764 No 0.015590941 No 0.01790338 No 0.017275409 No NA

14:00:00 0.016562281 No 0.013687344 No 0.013335975 No 0.013424484 No NA

14:05:00 0.019211438 No 0.013518545 No 0.013315761 No 0.01366843 No NA

14:10:00 0.021214669 No 0.016944097 No 0.013284187 No 0.017785488 No NA

14:15:00 0.017326409 No 0.014779793 No 0.015228897 No 0.022185409 No NA

14:20:00 0.016465677 No 0.011026433 No 0.015698968 No 0.013487472 No NA

14:25:00 0.016022472 No 0.012747546 No 0.022304765 No 0.016030065 No NA

14:30:00 0.01817747 No 0.014807982 No 0.011101968 No 0.014115236 No NA

14:35:00 0.016245059 No 0.018863539 No 0.015872006 No 0.016996768 No NA

14:40:00 0.023266713 No 0.015945974 No 0.012024261 No 0.015879084 No NA

14:45:00 0.022556657 No 0.015154699 No 0.013702124 No 0.014776022 No NA

14:50:00 0.014645266 No 0.014458937 No 0.017021316 No 0.017327795 No NA

14:55:00 0.01427266 No 0.017133605 No 0.018956942 No 0.01216101 No NA

15:00:00 0.01465962 No 0.01503446 No 0.016973293 No 0.015053288 No NA

15:05:00 0.012460618 No 0.011417894 No 0.019933331 No 0.011340355 No NA

15:10:00 0.019802635 No 0.015638259 No 0.01872585 No 0.014904481 No NA

15:15:00 0.020399877 No 0.015009487 No 0.015470637 No 0.011970053 No NA

15:20:00 0.016783451 No 0.015370065 No 0.014247208 No 0.013771911 No NA

15:25:00 0.015995054 No 0.012931118 No 0.014020859 No 0.015845037 No NA

15:30:00 0.016803567 No 0.01320917 No 0.01373286 No 0.01876419 No NA

15:35:00 0.012929789 No 0.016213767 No 0.017042525 No 0.028122824 No NA

15:40:00 0.018449361 No 0.022277113 No 0.016702212 No 0.016867416 No NA

15:45:00 0.025035134 No 0.012893061 No 0.015367035 No 0.023163113 No NA

15:50:00 0.013329089 No 0.018667849 No 0.013294592 No 0.023114841 No NA

15:55:00 0.018267723 No 0.015882054 No 0.014060704 No 0.011802883 No NA

16:00:00 0.014386572 No 0.014782704 No 0.011974471 No 0.103792391 Yes DDoS LOIC

16:05:00 0.017699595 No 0.013088339 No 0.015112642 No 0.104784445 Yes DDoS LOIC

16:10:00 0.017667455 No 0.013981654 No 0.018289962 No 0.106361733 Yes DDoS LOIC

16:15:00 0.021519672 No 0.01206987 No 0.015152539 No 0.094676598 Yes DDoS LOIC

16:20:00 0.018430018 No 0.013677279 No 0.020633343 No 0.022133552 No NA

16:25:00 0.018489833 No 0.013872635 No 0.014281971 No 0.022572033 No NA

16:30:00 0.019598572 No 0.014758112 No 0.016419537 No 0.01387552 No NA

16:35:00 0.016627805 No 0.013621997 No 0.014221272 No 0.011042435 No NA

16:40:00 0.014223864 No 0.015548746 No 0.013728461 No 0.016334799 No NA

16:45:00 0.019103901 No 0.038630103 No 0.016138728 No 0.017543214 No NA

16:50:00 0.013572844 No 0.014609358 No 0.015736958 No 0.015096923 No NA

16:55:00 0.014005773 No 0.016282156 No 0.015518796 No 0.015602825 No NA

17:00:00 0.015394644 No 0.013817556 No 0.013837513 No 0.014285207 No NA

Table 10 . Continued
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SUMMARY AND CONCLUSION

This paper has proposed an anomaly-based intrusion detection approach which suggests that it is 
unnecessary to classify each individual observation. The results support the premise that a subset of 
network traffic originating due to malicious activity in the application layer is similar in structure to 
benign traffic when observed in the lower layers and cannot be differentiated without explicit labels 
regardless of the complexity of the neural network or the diversity within the data. The results also 
support the hypothesis that timestamps, which occur naturally in network traffic data can be used in 
conjunction with representation learning to identify deviations from the normal or expected behavior 
of the network. This can be done by tracking irregularities in autoencoder reconstruction errors that 
are consistent over a pre-determined time-window. A traffic flow is not necessarily mapped 1:1 to a 
specific transport connection. A solitary packet can appear benign when analyzed in isolation, but it 
could be part of a structured denial-of-service attack. Based on these observations and the results of the 
experiments conducted in this study, it can be concluded that the overlap in autoencoder reconstruction 

Figure 15. Morning - Moving Average of RMSEs at each time delta
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errors of benign and malicious traffic cannot be eliminated but analyzing their distributions with 
respect to time can provide a different perspective, and it is an important factor to consider while 
profiling user activity on a network.

FUTURE DIRECTIONS

The proposed methodology has shown promising results, but its validity is confined to the CICIDS2017 
dataset. The solution needs to be evaluated on other datasets and live networks. The data can be 
pruned for better results. Other metrics like entropy analytics and e-similarity can be explored. 
Simulated attacks over HTTPS must be tested to provide useful insights about the effectiveness of 
the methodology on encrypted communication. Data from audit logs in the application layer can be 
included in the analysis to overcome the limitations mentioned in the previous sections. And finally, 
a provision can be made to accommodate the phenomenon of data drift, so that the models can be 
retrained as and when traffic characterizations change naturally with time.

Figure 16. Afternoon - Moving Average of RMSEs at each time delta
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