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ABSTRACT

This study aims to address the issues of image noise and distortion in machine dial recognition 
via initial denoising. A wavelet local threshold denoising method that combines high-frequency 
wavelet coefficients with wavelet decomposition coefficients in various directions is proposed. This 
method shows good results on 102 images of car dashboards, aircraft instrument panels, spacecraft 
displays, and dial instruments on robots. Although a few denoised images exhibit distortion due to 
intense lighting or heavy contamination, the denoising accuracy for the remaining images is 98.04%, 
demonstrating substantial practical value. Future research will concentrate on addressing complex 
image noise and structures.
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Image denoising is a crucial image processing technique to eliminate noise from images, enhance 
their quality, and render them more suitable for subsequent processing and analysis. Its goal is to 
reduce or eliminate noise in images through appropriate algorithms and techniques, while preserving 
or restoring image details and structure. Image denoising techniques find widespread applications in 
fields such as computer vision, medical imaging, and remote sensing. Traditional image denoising 
methods include filter-based and wavelet-based approaches (Duan & An, 2021). Filter-based methods, 
such as mean filtering, median filtering, and Gaussian filtering, are simple and fast, but they aren’t 
very effective against complex noise (Yuan et al., 2022). Wavelet-based methods perform well in 
addressing high-frequency noise in images.

Currently, many classic and innovative image denoising approaches exist (Wan & Hao, 2022). 
For example, regarding wavelet transform for image denoising, Zhao, X. (2023) investigated adaptive 
image denoising by leveraging wavelet transform and sparse representation techniques, enhancing the 
noise removal efficiency. Abudureheman, A. (2023) also carried out a comparative analysis of various 
wavelet thresholding techniques, evaluating their image denoising effectiveness and providing insights 
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into optimal choices for different scenarios. These two studies focus on the application of wavelet 
transform methods, achieving adaptive image denoising and conducting a comparative analysis of 
different wavelet thresholding techniques for effective noise removal.

In this paper, we introduce a novel image denoising method that improves upon traditional 
techniques and addresses the challenges of image denoising in real-world scenarios. It provides 
innovative methods and technical support to enhance the denoised image quality. The aforementioned 
research has provided outstanding contributions in the field of image denoising, demonstrating 
significant achievements. However, further research is needed, particularly to handle complex noise, 
preserve image details, and refine structural denoising (Yan et al., 2022).

In this paper, we propose a novel image denoising method by integrating features from high-
frequency wavelet coefficients with wavelet decomposition coefficients in different directions. We 
derive a wavelet local threshold denoising approach by comparing the thresholds for multiple wavelet 
coefficients. The advantage of this image denoising method over conventional wavelet denoising 
lies in its ability to handle high-frequency information in different directions more accurately, 
enhancing denoising effectiveness while preserving essential image details and structural features. 
In practical applications, the wavelet local threshold denoising method can significantly enhance 
the denoising effectiveness of car, airplane, and robot dashboard images, thereby improving the 
quality and readability of these images. This enhancement increases the accuracy and reliability of 
visualization and detection tasks within their respective domains, playing a crucial role in accurate 
image recognition in subsequent stages (Sun & Feng, 2022).

The proposed wavelet local threshold denoising method holds vast application potential and 
substantial practical significance in various fields. First, in the realm of image processing, this method 
can effectively enhance image quality by precisely handling high-frequency information in different 
directions. It can play a crucial role in improving clarity in medical imaging, satellite imagery, and 
similar domains (Lv et al., 2021). Second, in signal processing and communication, the application 
of this method can enhance signal transmission quality, mitigate noise interference in communication 
systems, and contribute to the overall information transfer reliability. Overall, this method demonstrates 
outstanding performance in handling complex data, thus providing practical significance and value 
in data processing and analysis across diverse domains (Yan et al., 2021).

MATeRIAlS AND MeThoDS

wavelet-Based Multiresolution Analysis
Wavelet analysis is a branch of mathematics that combines functional analysis, spline analysis, 
harmonic analysis, Fourier analysis, and numerical analysis. It has provided significant breakthroughs 
in nonlinear fields, such as signal processing, image processing, speech analysis, pattern recognition, 
and quantum physics (Sun & Cui, 2020). In 1988, Stéphane Georges Mallat and Yves Meyer 
introduced the concept of multiresolution analysis for the construction of orthogonal wavelet bases, 
clearly illustrating the wavelet’s multiresolution characteristics from a spatial perspective (Yan et al., 
2020). Mallat and Myer combined all previous methods for constructing orthogonal wavelet bases 
to propose a method for constructing orthogonal wavelets and a fast orthogonal wavelet transform 
method, which is known as the Mallat fast wavelet algorithm. This algorithm holds a seminal position 
in wavelet analysis that is similar to that of the fast Fourier transform algorithm in classical Fourier 
analysis (Sun et al., 2020).

Denoising plays a crucial role in the field of image processing and computer vision. First, 
denoising helps to enhance image quality and visual perception, making images clearer and easier 
to understand. Second, it contributes to improving the accuracy and robustness of subsequent image 
processing tasks, such as object detection and image segmentation.
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However, existing denoising techniques still have some shortcomings. Some methods may remove 
noise at the expense of losing image details, resulting in blurred or distorted images. Other methods 
may not perform well on certain types of noise, such as texture or speckle. Additionally, some methods 
may require a significant amount of computational resources or complex parameter tuning, making 
them less efficient or easy to implement. Therefore, discussing the existing denoising techniques and 
their shortcomings is crucial for identifying the development direction of new methods and improving 
existing ones. By analyzing the pros and cons of existing techniques, we can place the contribution 
of new methods within the broader research framework, providing guidance and insights for further 
advancements in the field of image processing (Yan, 2023).

The structure diagram of a three-layer multiresolution tree is shown in Figure 1. The purpose of 
this tree is to provide guidance for constructing orthogonal wavelet bases that closely approximate the 
L2(R) space in terms of frequency, while filters with different bandwidths are equivalent to orthogonal 
wavelet bases with varying frequency resolutions. The figure shows that the multiresolution analysis 
does not consider the high-frequency part, but only deeply decomposes the low-frequency part. The 
relationship is H = C3 + B3 + B2 + B1.

Defining Multiresolution
Multiresolution analysis in space L2(w) refers to a sequence of spaces: Gk}k∈ x in L2(w)(L2(W) is a 
square-integrable real space, as well as a signal space with finite energy, that satisfies the following 
conditions: approximability, scalability, monotonicity, translation invariance, and existence of Riesz 
bases.

Approximability is calculated using the formula shown in equation (1):

k x
k k
G close G L W

∈ −∞

∞
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Scalability is calculated using the formula shown in equation (2):

f t G f t G
k k

( ) ( )∈ ⇔ ∈ +2
1

 (2)

This condition reflects the consistency of scale changes, nearly orthogonal wavelet transformations, 
and spatial variations.

Monotonicity is calculated using the formulas shown in equations (3) and (4):

Figure 1. Structure Diagram of a Multiresolution Tree
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Translation invariance is calculated using the formula shown in equation (5).
For any l ∈ X, there are:
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Existence of Riesz bases is calculated using the formulas shown in equations (6) and (7):

Exist  God( )t Î  (6)

Lead to d 2 1 12− −( ) ∈{ }k t X/  (7)

Equations (6) and (7) yield the Riesz basis that constitutes Gk.
Suppose that the low-frequency and high-frequency parts Bk and CK in the analysis tree 

decomposition are represented by Gk and Pk, respectively. Subsequently, Pk is the orthogonal 
complement of Gk in Gk+1, as shown in equation (8):

G P G k X
k k k
⊕ = ∈+1  (8)

Therefore, the formula in equation (9) can now be used:

G P P P G
k k k k m k m
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  (9)

From equation (9), it can be deduced that the subspace Go of the multiresolution analysis can 
be approximated by a finite subspace, as shown in equation (10):

G G P G P P G P P P P
N N N0 1 1 2 2 1 1 2 1
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Thus, space sequence{Pk│k ∈ X}has the nature shown in equations (11)–(13):
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Similar to Gk, a function for the set ∮(t)∈ P0 is sought by randomly selecting from f ∈ L2(W). 
For each k ∈ X, a space Pk is formed with a standard orthogonal basis function set {∮k, n│n∈X}, as 
calculated in the formula shown in equation (14):

k n
k kt t n

,
/( )

 ∫ ∫= −( )− −2 22  (14)

Now, let fk ∈ Gk represent the approximation of f ∈ L2 (W) at a resolution 2-k obtained using Gk. 
It also represents the low-frequency component of the function f and corresponds to a “coarse image.”

When Ck∈Pk is used, the error of the approximation also represents the high-frequency component 
of the function f, which corresponds to the image “details.”

Therefore, equation (10) can be interpreted as shown in equation (15):

f f f f C C f C C C C C
C N N N N0 1 2 2 1 1 2 2 1

= + = + + = = + + + + + +− −   (15)

Because f = f0, equation (15) can be simplified as shown in equation (16):

f f C
N

i
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∑
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 (16)

The above equations illustrate the concept of the Mallat pyramid algorithm—namely, the 
concept of multiresolution analysis (Hu, et al., 1999, p. 19). Therefore, any function f ∈ L2 (W) can 
be completely reconstructed using the low-frequency component; i.e., the “coarse image” part of f at 
resolution 2-k and the high-frequency component; i.e., the “detail” part of f at resolution 2-k(1≤k≤N).

wAveleT DeNoISINg PRINCIPleS

In this section, we discuss three wavelet denoising methods:
Wavelet threshold denoising: Wavelet threshold denoising is the default threshold for the signal 

generated using the ddencmp function, followed by denoising performed using the wdencmp function 
(Xu et al., 2021).

Hard denoising: When this method is used, all the high-frequency coefficients in the wavelet 
decomposition structure are set to zero, effectively removing the high-frequency components. 
Subsequently, the signal is reconstructed (Ou & Yang, 2023). This method is convenient, resulting 
in a smooth denoised signal, but it may cause a loss of useful signal components.

Given soft (hard) threshold denoising: When this method is used, threshold values can be obtained 
using empirical formulas; these formulas are more reliable than default thresholds (He, 2023).

wavelet Denoising Process
An important application of wavelet analysis is the exploitation of the multiresolution analysis 
properties of wavelets to denoise images and signals. Typically, a noisy two-dimensional image model 
is represented as shown in equation (17):

h i k u i k e i k i m k( , ) ( , ) ( , ) ,... ;= + = =s 1 1  (17)
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In equation (17), h(i,k) represents the observed value (i.e., an image containing noisy content), 
u(i,k) represents the desired image signal (i.e., the real image), e(i,k) stands for higher-order white 
noise N(0,1) with a noise level of 1, and σ denotes the variance (Xu, 2023).

In engineering applications, low-frequency or steady signals typically represent useful signals, 
whereas high-frequency signals usually represent noise signals. Based on the characteristics of these 
common signals, the denoising process can be described as follows:

First, the wavelet signal is decomposed as shown in Figure 1, where C1, C2, and C3 contain the 
noisy components. After appropriate thresholds to the wavelet coefficients are applied, the denoised 
signal is then reconstructed, and finally, the real signal u(i,k) is extracted from h(i,k) (Wang et al., 2023).

Two-Dimensional Image Denoising
In general, the above denoising steps can be divided into the following stages:

First, for the aforementioned wavelet decomposition of the image signal, a wavelet is selected 
and its decomposition order is set to N. Subsequently, the signal h undergoes N levels of wavelet 
decomposition (Yang et al., 2023).

Second, threshold quantization of wavelet decomposition high-frequency coefficients is 
performed; that is, threshold quantization is carried out by choosing a threshold for each layer from 
the first layer to the nth layer (Tang et al., 2023).

Third, two-dimensional wavelet reconstruction is carried out; that is, low-frequency coefficients 
are obtained from the nth layer of wavelet decomposition, followed by obtaining high-frequency 
coefficients from the first layer to the nth layer. Next, two-dimensional image wavelet reconstruction 
is performed on the coefficients (Zheng, 2022).

Of these three stages, the most crucial part is to choose the threshold and quantize it. Note that 
these factors will directly determine the signal denoising quality (Hai et al., 2023).

Design of the wavelet local Threshold Denoising Algorithm
The wavelet local threshold denoising algorithm design is based on a technique of selecting 
two-dimensional wavelet thresholds from images. It determines the local thresholds by using the 
characteristics of different directional high-frequency wavelet coefficients (Wang et al., 2023).

Noise Characteristics Under wavelet Transform
In this section, we describe four theorems related to noise characteristics under wavelet transform.

Theorem 1
Low-frequency signals or relatively smooth signals are often useful signals, whereas high-frequency 
signals are often noise signals. Band limitation is one of the characteristics of useful signals, where 
they are concentrated over a small portion of the phase space. In other words, only a small portion 
of wavelet coefficients contribute to the signal’s energy.

Theorem 2
In wavelet decomposition coefficients, both high/low wavelet coefficients and low/high wavelet 
coefficients contain low-frequency components. The magnitudes of most of these coefficients are 
greater than the magnitudes of high/high wavelet coefficients (Ou & Yang, 2023).

Theorem 3
Let n(i) be a zero-mean white noise sequence so that under the wavelet transform, it remains a zero-
mean sequence. White noise sequences with equal variances are also coefficient sequences under the 
wavelet basis. Specifically, when n(i) is a Gaussian white noise sequence, its wavelet basis coefficients 
are also Gaussian white noise sequences with variance identical to that of the original sequence.
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Theorem 4
The wavelet decomposition coefficients of Gaussian white noise are independent and Gaussian 
distributed (Chen, 2023).

In other words, wavelet coefficients are uniformly distributed across different parts of the phase 
plane, and various wavelet coefficients contain the noise contribution.

Design of Two-Dimensional wavelet Threshold Noise Filter
Let δ(t) ∈ L2(W), where L2(W) is a square-integrable real space as well as a signal space with finite 
energy.

Let the Fourier transform of δ(t) be δ ̂(ω) if δ ̂(ω)satisfies the conditions shown in equation (18):

Q d
wδ

δ ω

ω
ω= <∞∫

( )
2

 (18)

Consider δ(t) as the fundamental or mother wavelet. A wavelet sequence can be obtained by 
translating and scaling the mother functionδ(t).

In the discrete case, the wavelet sequence includes the formula shown in equation (19):
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In the following case, the continuous wavelet transform of function f (t) ∈ L2(W) is given as 
shown in equation (20):
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The above inverse transformation is as shown in equation (21):

f t
Q a

P a b
t b

a
dadb

w w f
( ) ( , )= +

−







∫ ∫

1 1
2

d

d  (21)

From the above equations, note that the algorithm for one-dimensional signal decomposition is 
similar to that for two-dimensional image wavelet decomposition. Both the scaling function and the 
two-dimensional wavelet function are obtained through the one-dimensional wavelet function and 
tensor product transformation (Liu, 2023).

Two-Dimensional wavelet Decomposition
Two-dimensional wavelet decomposition decomposes the low-frequency part of scale function k into 
four parts: the low-frequency part of scale k+1, and the high-frequency parts in three directions: 
vertical, horizontal, and oblique.

Figure 2 shows the basic decomposition steps.
Here is a summary of the symbols in Figure 2:
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• 2 1¯  equals column sampling, retaining even-numbered columns.
• 1 2¯  equals row sampling, retaining even-numbered rows.
• D  equals row convolution, performing convolution operations with. It is low-pass filter.
• D  or T  equals filters.
• T  equals column convolution, performing convolution. It is high-pass filter.
• operations with T  or D  filters.

According to the process illustrated in Figure 2, the input image Bk undergoes the wavelet 
transform, resulting in four sub-images named as the horizontal sub-image Tk+1, the smooth sub-image 
Bk+1, the diagonal sub-image Ck+1, and the vertical sub-image Gk+1.

Subsequently, the horizontal sub-image Tk+1 undergoes two filtering processes that allow low-
frequency components in the horizontal direction and high-frequency components in the vertical 
direction to pass through.

Note that based on the above procedure, the vertical sub-image Gk+1 contains the high-frequency 
and low-frequency components in the horizontal and vertical directions, respectively. The diagonal 
sub-image Ck+1 contains high-frequency components in both the horizontal and vertical directions.

Hence, the horizontal sub-image Tk+1, the vertical sub-image Gk+1, and the diagonal sub-image 
Ck+1 usually contain the noise component. Subsequently, threshold processing is applied to the 
aforementioned wavelet coefficients. Wavelet coefficients greater than this threshold are considered 
as transformations containing both signal and noise, and they can be retained (simply retained or 
subjected to further operations). However, coefficients smaller than this threshold can be regarded 
as entirely derived from noise transformation. Removing these coefficients and then reconstructing 
the signal can achieve denoising results.

Because most of the wavelet signals containing the signal are preserved, the parts of the image 
that contain details are also well retained. Meanwhile, as low-frequency coefficients are obtained 
by wavelet decomposition and contain some noise, threshold processing is also necessary for these 
coefficients (Xu, 2023).

Above is a “m x n” two-dimensional model containing Gaussian white noise, which can be 
represented as shown in equation (22):

Figure 2. Schematic Diagram of Fast Wavelet Algorithm



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

9

h i k u i k n i k i m k n( , ) ( , ) ( , ) , , ; , ,= + = =s  1 1   (22)

Let P denote the transformation matrix of the discrete wavelet transform. Applying the formula 
in equation (22) for wavelet transformation then yields the values shown in equation (23):

H i k U i k N i k( , ) ( , ) ( , )= +  (23)

Equation (23) can be expanded as shown in equation (24):

H i k P i k U i k Pu i k N i k P n i k( , ) ( , ), ( , ) ( , ), ( , ) ( , )= = = s  (24)

A transformation inverse matrix S exists that corresponds to P and satisfies PS = 1. For the order 
û(i,k) (i = 1, ..., m; k = 1, ..., n).

The prediction of u(i,k) (i = 1, ..., m; k = 1, ..., n) based on the criterion of minimizing the mean 
squared error is denoted by û(i,k) (i = 1, ..., m; k = 1, ..., n), which is obtained by minimizing the 
risk function W(u, û) as shown in equation (25):

W u u
m n

E u u
m n

E u u
i
m

k
n  −( ) = ∗

− =
∗

−( )= =∑ ∑1 12

1 1

2

 (25)

Let I n ={1,……,m}, H⊂I m, Kn={1,……,n},V⊂Kn.
The definition is calculated as shown in equation (26):
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In equation (26),(ûHV(ω))ik is a selection estimator and has the elements shown in equation (27):
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H V
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min min
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ik
2 2,s( )  (27)

In equations (26) and (27),(ûHV(ω))ik is a selection estimator.
Estimator selection is used to maintain the value of |u(i,k)| greater than the weight ωik corresponding 

to variance σ, where ωik is estimated from u(i,k). Assume that the noise predominates, then when 
u(i,k) is less than the noise variance σ, it is “removed” and estimated as zero. Attaining a perfect 
estimator is not possible; however, extreme values of the error range can be provided (Xiao, 2023).

Adaptive threshold selection is a crucial step in wavelet threshold denoising methods. Because 
noisy images are decomposed using wavelets, applying the wavelet transform to high-frequency 
coefficients reveals both noise and image details, which have relatively small magnitudes. If a single 
threshold is chosen that is too small, most high-frequency coefficients become zero, resulting in 
the loss of image details. Hence, designing a denoising method that preserves image details while 
reducing image noise is necessary. The key to an effective design lies in the threshold selection. 
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Thus, in the context described above, we propose a method called the wavelet local thresholding, as 
shown in equation (28).

High/high wavelet value:

t N= s 2 log  (28)

In equation (28), N is the number of pixels in the image, and σ is the variance of noise.
The coefficients of low/high wavelets and high/low wavelets have amplitudes greater than those 

of high/high wavelets; thus, the threshold shown in equation (29) is chosen:

t l N= s 2 log  (29)

In equation (29), l is a constant (l > 1) whose value is adaptively chosen based on image quality 
metrics, such as peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) (Huang et al., 2023).

Because the noise level is unknown, the scale is estimated as shown in equation (30):

ˆ
.

s =
S

0 6674
 (30)

In equation (30), the absolute value of the median of appropriately normalized fine-scale wavelet 
coefficients is denoted as ----S. To summarize the above content, the self-determined method can 
be calculated as follows:

First, estimate u(i, k)—that is, the denoised signal u ̂(i, k)—which is obtained via the inverse 
wavelet transform of the thresholded coefficients u ̂(i, k) (Jiang et al., 2023); that is, as shown in 
equation (31):

u i k Su i k ( , ) ( , )=  (31)

Second, for wavelet coefficients Y(i, k), choose a threshold t in the wavelet domain so that the 
coefficients greater than t are set to zero; otherwise, they remain unchanged. Obtain û(i, k).

Third, obtain the wavelet transform of the observation h(i, k), where the wavelet coefficients are 
given as Y(i, k) = P h(i, k).

APPlICATIoN oF MAChINe DIAl ReCogNITIoN

Denoising of Simulated Noisy Images
For this process, we simulated the car dashboard image using MATLAB 6.1. The steps are as follows:

First, we denoised images containing Gaussian white noise with variance between 0 and 1 
using hard thresholding, soft thresholding, median filtering, wdencmp function, and wavelet local 
thresholding method (with l = 3) in this experiment.

Second, we chose two metrics, PSNR and SNR, to test the denoising effectiveness and validate 
the results of the simulation experiment, as shown in equations (32) and (33):
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These equations can be used in the calculation shown in equation (34):
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In equation (34), ui,k and u ̂i,k represent the pixel values of the original and reconstructed images, 
respectively.

Tables 1 and 2 compare actual and denoised experimental data obtained using hard thresholding, 
soft thresholding, median filtering, wdencmp function, and wavelet local thresholding methods (σ = 
0.01, σ = 0.02). Figure 3 shows noise removal results for a car instrument panel image.

Here is a summary of the sections of Figure 3:

(a)  Captured image awaiting experiment
(b)  Original image
(c)  Noisy image
(d)  Image after noise removal using hard thresholding
(e)  Image after noise removal using soft thresholding
(f)  Image after noise removal using wdencmp
(g)  Image after noise removal using median filtering
(h)  The image after wavelet denoising with local thresholding

Note that Figure 3(a) is composed of two separate instrument images cropped from the original 
car instrument image, and Figure 3(b) is the original image for the experiment starting from Figure 
3(a). Figure 3(c) shows the image with noise added to the image shown in Figure 3(b), and Figure 
3(d) is the denoised image obtained using hard thresholding on Figure 3(c). Figure 3(e) is the image 
denoised using soft thresholding on Figure 3(c), and Figures 3(f) and 3(g) are the images denoised 

Table 1. Experimental Data (σ = 0.01, σ = 0.02): Before Noise Reduction, Hard Threshold Noise Reduction, and Soft Threshold 
Noise Reduction

Variance 
Noise elimination method

σ= 0.02 σ= 0.01

PSNR SNR PSNR SNR

Hard threshold noise elimination 16.2046 3.8267 20.077 6.6161

Soft threshold noise elimination 16.2903 3.8352 20.081 6.6213

Before noise reduction 16.2811 3.6384 20.078 6.6162
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using wdencmp and median filtering on Figure 3(c), respectively. Figure 3(h) is the denoised image 
obtained using the method proposed in this paper on Figure 3(c). It is intuitively evident from these 
figures that the denoising performance of the proposed method is optimal.

Specifically, the results in Figure 3(d) show denoising using the hard thresholding method, which 
results in the loss of fine details and image blurring. Figure 3(e) shows the denoising results obtained 
after soft thresholding; these results exhibit loss of some fine features, especially causing blurriness 
in the numerical images on the dial. Figure 3(f) shows the denoising results using wdencmp, which 
involves complex parameter selection and computational overhead that lead to longer denoising 
times and inadequate timeliness. Figure 3(g) represents the images obtained after median filtering 

Table 2. Experimental Data (σ=0.01, σ=0.02): Wdencmp-Based Noise Elimination, Median Noise Cancellation, and Wavelet 
Local Threshold Denoising Method

Variance 
Noise elimination method

σ= 0.02 σ= 0.01

PSNR SNR PSNR SNR

Wdencmp noise elimination 18.1224 5.6572 20.022 6.969

Median noise cancellation 20.2423 7.8032 22.931 9.4771

Wavelet local threshold denoising 
method 20.8083 8.2524 23.721 10.267

Figure 3. Noise Removal Results on the Noisy Image (σ=0.01)
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denoising; these images are smooth with blurry details. Figure 3(h) shows the denoising using the 
proposed wavelet local thresholding method, which demonstrates superior performance with good 
time efficiency. Therefore, the wavelet local thresholding denoising method proposed in this paper 
proves to be the most effective of the various methods used in the experiments.

Figure 4 displays an aircraft instrument panel image.
Here is a summary of the sections of Figure 4:

(a)  Captured image awaiting experiment
(b)  Original image
(c)  Noisy image
(d)  Denoised image after hard thresholding noise reduction
(e)  Denoised image after soft thresholding noise reduction
(f)  Denoised image obtained after noise reduction using wdencmp
(g)  Denoised image after undergoing median noise reduction
(h)  The image after wavelet denoising with local thresholding

Figure 4(a) is composed of two separate instrument images clipped from the original aircraft 
instrument panel image. Figure 4(b) is the original image for the experiment obtained from Figure 

Figure 4. Noise Reduction Results on the Noisy Image (σ=0.01)
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4(a). Figure 4(c) is the noisy image obtained after adding the noise to the image in Figure 4(b). Figures 
4(d) and 4(e) show the denoised images obtained using hard and soft thresholding on the image in 
Figure 4(c), respectively. Figure 4(f) shows the images denoised using wdencmp on Figure 4(c). Figure 
4(g) is the image denoised using median filtering on the image in Figure 4(c), and Figure 4(h) is the 
image denoised using the method proposed in this paper. It is intuitively evident from Figure 4 that 
the method proposed in this paper has the optimal denoising performance.

Specifically, Figure 4(d) shows the denoising results obtained using the hard thresholding 
method, which exhibits the loss of fine details and image blurring. Figure 4(e) shows the denoised 
image obtained using the soft thresholding method, which suffers loss of some fine features, 
especially causing blurriness in the numerical images on the dial. Figure 4(f) shows the denoised 
results obtained using wdencmp that requires complex parameter selection, leading to computational 
overhead that causes longer denoising times and inadequate timeliness. Figure 4(g) represents the 
image after denoising with median filtering, which is smooth, but has blurry details. Figure 4(h) 
shows the denoising results obtained using the proposed method; these results demonstrate superior 
performance with good time efficiency. After comparing the performance of various methods used in 
the experiments, we note that the multiple wavelet coefficient method proposed in this paper proves 
to be the most effective.

Denoising of Real Noisy Images
Using MATLAB 6.1, we applied various custom methods, such as hard thresholding, soft thresholding, 
median filter, and wdencmp function, to images with unknown noise levels. A wavelet-based local 
thresholding method with L = 3 was implemented for denoising. Furthermore, in equation (18), the 
standard deviation σ ̂ of the high/high-frequency coefficients used by the aforementioned denoising 
methods σ ̂ could be considered an estimate of the noise variance σ.

The noise present in actual images is not necessarily additive, and therefore, in this case, the 
denoising effects of the aforementioned methods are not very pronounced, as seen in Figure 4. We 
further considered the case of binary images, where the binarization effect of the denoised image 
becomes crucial. Next, we show the binarization of the corresponding images obtained using the 
Otsu method, as well as the denoising performance of the aforementioned methods on these images. 
Figure 5(a) shows the panel image of a flying machine’s dial.

Here is a summary of the sections of Figure 5:

(a)  Actual panel image
(b)  Image to be processed
(c)  Original graphical binary image
(d)  Binary image after hard threshold denoising
(e)  Binary image after adaptive denoising
(f)  Binary image after soft threshold denoising
(g)  Binary image after median denoising
(h)  Binary image after denoising using the proposed method

Figure 5(b) is the image obtained by cropping the aircraft instrument panel image into two separate 
instrument images. Figure 5(c) shows the binarized version of the image in Figure 5(b). Figures 5(d) 
and 5(e) are the binary images after hard threshold and adaptive denoising of the image in Figure 
5(c), respectively. Figures 5(f)–5(h) are the binary images obtained using soft threshold denoising, 
median denoising, and the proposed denoising method on the image shown in Figure 5(c), respectively.

Figure 5(d) shows the results of hard threshold denoising; these results can suffer from the loss 
of detailed information in the presence of high noise or rich image details. Figure 5(e) shows the 
results of adaptive denoising. These results have high computational complexity and may not be 
flexible enough for certain images. Figure 5(f) shows the results of soft threshold denoising, which 
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may fail to completely eliminate noise in the presence of high noise levels. Figure 5(g) shows the 
median denoising results. These results may have some impact on the overall brightness of the image 
in certain situations. Figure 5(h) shows the results of the denoising method proposed in this paper. 
This method exhibits better denoising performance and is more time-efficient than the other methods. 
Considering the various methods compared in Figure 5, we note that the wavelet-based local threshold 
denoising method proposed in this paper proves to be more effective.

Figure 6a shows an image of a robot’s dial.
Here is a summary of the sections of Figure 6:

(a)  Image to be processed
(b)  Binarized actual image after adding noise
(c)  Binarized image after hard threshold denoising
(d)  Binarized image after adaptive denoising
(e)  Binarized image after soft threshold denoising
(f)  Binarized image after median denoising
(g)  Binarized image after denoising using the proposed method

Figure 5. Denoising Performance on Binarized Images of a Flying Machine’s Dial
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For images affected by intense lighting, the performance degradation could have been caused 
owing to uneven illumination or overexposure, leading to abnormally high pixel values in certain 
areas. In the case of heavily contaminated images, the contaminants could obscure or distort image 
information, making it challenging for the denoising algorithm to accurately recover the original image. 
An in-depth analysis of these failure cases could help in identifying shortcomings of the proposed 
algorithm and guide future improvements. Potential enhancements to the algorithm might include 
incorporation of more complex denoising models to address the effects of lighting and contamination, 
as well as optimizing threshold selection strategies to adapt to different types of image noise and 
distortion (Zhou & Bu, 2023).

Table 3 compares the performance of the proposed method with that of other denoising techniques.
Note from Table 3 that the wavelet local threshold denoising method performs well in terms of 

denoising accuracy, but slightly lags deep learning denoising methods in handling complex noise. 
Furthermore, the method demonstrates high computational efficiency and interpretability. However, 

Figure 6. Denoising Performance on Binarized Images of a Robot’s Dial

Table 3. Comparison of Wavelet Local Thresholding, Median Filtering, Deep Learning Denoising Methods, and Wavelet 
Thresholding

Method Denoising 
accuracy (%)

Computational 
efficiency Interpretability Ability to handle complex 

noise

Wavelet local 
threshold 98.04 Second highest Strong Moderate

Median filtering 97.50 Lowest Weak Strong

Deep learning 
denoising methods 96.80 Highest Moderate Strong

Wavelet 
thresholding 98.20 Second highest Strong Excellent
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because of the lack of direct comparison data with other state-of-the-art methods, its performance 
evaluation in specific contexts requires further research and analysis (Zheng, 2022).

Denoising plays a crucial role in the field of image processing and computer vision. It enhances 
image quality and visual perception, making images clearer and more interpretable. It also improves 
the accuracy and robustness of subsequent image processing tasks, such as object detection and image 
segmentation. However, existing denoising techniques have certain shortcomings. Some methods may 
remove noise at the expense of image details, resulting in blurry or distorted images. Other methods 
may not perform well on certain types of noise, such as texture noise or speckle noise (Yang, et al. 
2023). Additionally, some methods may require significant computational resources or complex 
parameter tuning, making them inefficient or difficult to implement. Therefore, evaluating the existing 
denoising techniques and their shortcomings for identifying the development direction of new methods 
and improving existing ones is crucial. An analysis of the pros and cons of existing techniques can 
better place the contributions of new methods within the broader research framework, providing 
guidance and insights for further advancements in the field of image processing (Xu, et al., 2021).

The wavelet local threshold denoising method has specific pros and cons compared with the 
latest deep learning methods.

The wavelet local threshold denoising method includes the following pros:

• Simple implementation: It is relatively simple, easy to implement and understand, requires a 
lower amount of annotated data, and has simple model structures.

• High computational efficiency: Compared with deep learning methods, the wavelet local threshold 
denoising method typically has a higher computational efficiency, especially when dealing with 
small-scale image data.

• Strong interpretability: The wavelet local threshold denoising method is more transparent. Its 
principles and denoising steps are easier to interpret, aiding in understanding the denoising 
process and results.

The wavelet local threshold denoising method includes these cons:

• Limited denoising effect: The wavelet local threshold denoising method may not be able to 
effectively handle complex noise and image structures. This limitation results in relatively poor 
denoising performance, especially in cases of high noise intensity or complex image details.

• Weak generalization ability: It typically requires manual selection of thresholds or parameters, 
resulting in a weak generalization ability and limited adaptability to different types and degrees 
of noise.

• Inadequate handling of complex noise: The wavelet local threshold denoising method may not 
effectively handle non-Gaussian noise or specific types of noise, such as texture noise or speckle noise.

In summary, although the wavelet local threshold denoising method has advantages such as 
simplicity, efficiency, and strong interpretability, it has limitations in handling complex image noise 
and structures (Sun, et al. 2020). In contrast, the latest deep learning methods can denoise complex 
image noise and structures more effectively with a higher generalization ability, but require more 
computational resources. Therefore, it is necessary to weigh the pros and cons of each image denoising 
method based on the specific situation and make a choice accordingly.

CoNClUSIoN

In this study, we focused on the image segmentation and recognition tasks for the dashboards of 
automobiles, airplanes, spacecrafts, and robotic instruments. We delved into the critical issues of 
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image preprocessing, specifically addressing noise reduction and distortion factors. We proposed and 
applied a method that used wavelet local thresholding for noise reduction to generate clear, undistorted 
images. This method provided a more reliable foundation for subsequent segmentation and recognition 
tasks. Initially, we recognized the crucial importance of denoising in image processing. The presence 
of noise could cause instability in segmentation and recognition algorithms, affecting the accuracy 
of the final results. By introducing the wavelet local thresholding method, we successfully reduced 
noise in the images, increasing the accuracy and reliability of subsequent processing.

The key innovation behind the proposed method was the fusion of features from different 
directional high-frequency wavelet coefficients with wavelet decomposition coefficients. The aim 
of this strategy was to precisely handle high-frequency information in different directions because 
different types of images might exhibit specific features in different directions. By integrating 
these features, we simultaneously improved the denoising performance and successfully preserved 
important image features, ensuring that high-quality images would be available as input to the final 
segmentation and recognition process.

Experimental results demonstrated the efficacy of our proposed wavelet local thresholding method 
in handling images of automobiles, airplanes, spacecrafts, and robotic instrument dashboards. One 
image out of a total of 102 images suffered significant distortion after denoising owing to intense 
lighting during capture. Because of strong light shining on the dashboard, another image was severely 
disturbed, resulting in incorrect image recognition. This is typically caused by light reflection and 
refraction, light spots and halos, reduced contrast, as well as light glare and shadows. However, the 
remaining instrument images resulted in highly satisfactory outcomes, with a denoising accuracy of 
98.04%. Overall, compared to traditional denoising methods, our approach not only enhanced the 
image quality but also exhibited better performance in handling high-frequency information in different 
directions. This achievement could positively impact image segmentation and recognition accuracy.
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