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ABSTRACT

For accurately diagnosing the severity of brain tumors in MRI images, Glioma segmentation is a 
significant step. The Glioma segmentation is due to noise and weak edges of organs in medical images. 
The geodesic active contour model (GACM) is a standard method for the segmentation of complex 
organ structures based on edge maps. The GACM performs poorly due to this noise and weak edges. 
So, the authors propose a method that uses adaptive kernels instead of a constant kernel for creating 
strong edge maps for GACM. The kernels used in phase congruency are Log Gabor kernels, which 
resemble similar anisotropic properties like Gabor kernels. They have replaced these with adaptive 
kernels. This adaptive kernel-based phase congruency provides a robust edge map to be used in GACM. 
Experimentation shows that when compared with state-of-the-art edge detection techniques, adaptive 
kernels enhance the weak as well as strong edges and improve the overall performance. Moreover, the 
proposed methodology substantially requires fewer parameters compared to existing ACM methods.

Keywords
Active Contour Model, GACM, ICA, Kernel, Medical Image Segmentation, Phase Congruency

1. INTRODUCTION

Medical image segmentation is a method for partitioning or distinguishing organ boundaries in medical 
images. Although traditionally, radiologists use experience and judgment to perform diagnostics, 
automatic and semi-automatic image segmentation methods are needed to assist them.

For medical images like CT scans, exposure of radiation is in the range of 1 mSv(millisievert) up 
to 15 mSv. Within this range, the harm to the patient’s body is minimal. However, prolonged exposure 
to CT scans can be hazardous. So, MRI images are more preferred for soft tissues (Images, n.d.). As 
our work is focused on Glioma segmentation, we have preferred MRI data. The dataset used for our 
experimentation is from the BRATS competition (Menze et al., 2014).

Even though MRI provides details of tissues, they still suffer from weak edges for gliomas. 
Image segmentation of these weak edges is challenging as thresholding methods may fail (Global 
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thresholding, n.d.). Researchers have used Active methods for segmentation for these kinds of weak 
boundary problems.

Active methods are based on the philosophy of curve evolution and they are called active, because, 
the curves in these methods dynamically alter their shape and position while seeking a minimal energy 
state (Kass et al., 1988). Active methods are categorized into two parts: template-based methods and 
seed-based methods.

In active methods, there are template-based methods which is used to segment organs with a 
well-defined structured shape, size, and texture of organs. The template-based methods such as the 
active shape model (ASM) (Cootes et al., 1995) and the active appearance model (AAM) (Cootes et 
al., 1998), are based on statistical models of shapes and appearance (texture). Using training data, 
these models learn about the variation of shape and appearance. The curves of these models alter 
their shape to fit an example of the object for a new image. So, template-based methods are mainly 
used in areas like knee segmentation (Vincent et al., 2010), liver segmentation (Heimann et al., 2006).

The seed-based methods need seed point to create contours or initial entry points. The first seed-
based method is Kass’s Active contour method (ACM). ACM is based on the energy minimization 
principle. The total energy is defined by, ‘internal energy’ which is based on the initialization of 
contour and ‘external energy’ is defined utilizing image properties of the object of interest. Generally, 
external energy is based on an edge map, which stops on the boundary of the object. The edge map 
is generated using a constant gradient kernel is used, like Prewitt, Sobel, and Canny. The Gradient 
kernels are constant kernels and due to which the modelling of weak edges is not satisfactory.

To get a robust segmentation, ACM requires an edge map with strong edges, else the contour 
boundaries do not stop at ROI during evolution. Though most of the research in literature is towards 
proposing new methodologies of curve evolution or Internal energy. Research on external energy 
definition is mostly based on, use of constant kernel edge detector. The constant kernel edge detector 
fails to capture weak edges, hence there is a need to develop methods to extract a robust edge map.

In this paper, we have proposed a novel biologically vision inspired method based on Adaptive 
kernels extracted using Independent Component Analysis (ICA) for extracting an edge map. The 
ICA-based Adaptive kernels in phase congruency methods are used along with Phase congruency, 
to create robust edge maps. These edge maps when compared with other traditional edge detection 
techniques to define external energy for GACM, has improved the segmentation performance of 
Active methods.

For experimentation, we have used the BRATS dataset (Menze et al., 2014) of brain tumors 
for Glioma (Brain tumor) segmentation. However, as this approach is not based on the Deep 
learning approach, we have not compared it with current Deep learning methods present on 
BRATS’ leaderboard.

The remainder of this paper is as follows: The contribution of our paper is explained in1.1. The 
proposed methodology is discussed 3 and based on the methodology experiments are shown in3.1. 
Finally, we discussed the conclusions and future scope in section 4.

1.1 Our Contribution
Here, we have proposed an adaptive kernel framework for active methods in which, the mask or 
kernel will be learned from images with less manual intervention.

The ICA bases give a response like a Gabor wavelet (Lee, 1996) when convolved with a given 
image. While using the Gabor wavelet, the Gabor kernel is modified by the manual setting of 
parameters like scale, frequency, and orientation, as per the required anisotropic properties. But, in 
the case of ICA, the basis is having learned scale, frequency, and orientation. The ICA bases when 
convolved with a given image, generate texture maps in different directions and strengths. These 
textures are linearly separable, so the extracted texture maps can be combined by summation operation. 
ICA-based kernels not only found strong edges but also weak edges. These weak edges, when added 
to the original image, enhance the original image, which will be used for GACM.
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We have also proposed a method in which, we have used ICA-based kernels for the Phase 
congruency method by (Kovesi, 1999). Phase is an important property of an image (Huang et al., 
1975); however, most of the edge detection techniques are based on intensity values. Phase congruency 
is based on phases extracted using sine and cosine filters present for edge detection. For using sine 
and cosine components, log Gabor kernels (Fischer et al., 2007) are used. As these log Gabor kernels 
are constant kernels, which do not consider image information of a given image; we have replaced 
Log Gabor kernels with ICA kernels.

2. RELATED WORK

2.1 Adaptive Kernels
The concept of the adaptive kernel was proposed by, Olshausen and field (1996). In their study of 
the visual synapses the brain, they have created a mathematical model of the receptive fields. This 
mathematical model gives a set of codes which are called sparse codes, as they are active only for 
only some regions. The sparse codes are proposed to create a dictionary, which can be used for image 
coding and compression, which can have receptive fields similar to humans. The human receptive 
field is the first section of the visual cortex. The visual cortex is divided into 5 categories. The part of 
the visual cortex that receives the sensory inputs from the thalamus is the number one visible cortex, 
additionally recognized as visible area 1 (V1), and the striate cortex. The extra-striate regions consist 
of visible regions 2 (V2), three (V3), 4 (V4), and 5 (V5). The V1 area is for extracting the edges, 
curves from a given picture. whereas, the V2 to V5 are for complicated operations, like creating a 
structure from edges and knowledge of it.

The sparse codes extracted by Olshausen and field are similar to the receptive fields present in 
V1. Ideally, these sparse co des should be localized, oriented, bandpass. However, these properties 
were not satisfied with the methodology proposed by Olshausen and Field.

Based on the theory of independent component analysis (ICA), which was proposed by 
Aapo Hyvarinen (2000), the sparse codes should have statistical independent properties. 
Although ICA has been proposed to solve the problem of source separation (BSS), it can be 
used to extract Adaptive kernels.

2.2. Active Contour Model
The first ACM or snake algorithm was proposed by Kass (1988), which is defined using the geometric 
properties of contour and image content. In Kass ACM, external energy is defined with two factors: 
1) the combination of the forces due to the image itself, in simple terms it the edge strength of the 
boundaries and 2) the constraint forces introduced by the user.

The combination of forces for Kass ACM is nothing but the edge strength of the given image. 
This edge strength is calculated by constant kernel gradient operators like Prewitt (1970), Sobel 
(2012), and Canny (1986). After this, snake or contour lock onto the nearby edges and localize them.

However, Kass ACM cannot handle topology changes and is unable to evolve on a convex shape, 
due to first and second-order derivative functions. So, to handle topology changes, a new methodology 
was proposed by (Caselles et al., 1997) named Geodesic active contour.

In Geodesic active contour, the internal energy is based on Riemannian space. So, this method is 
also called the geometric active contour model. The geometric active contour model or geodesic active 
contour model (GACM) is the ACM that can split, and merge based on the interior and exterior region. 
The contour evolution is based on the geodesic distance in the Riemannian space. The convergence 
criterion of ACM and GACM is generally defined using a gradient-based edge map, using which the 
contour gets locked on the nearby edges.

Instead of a gradient operator, (Xu & Prince, 1998) proposed a gradient vector flow function, 
to define external energy for the ACM. The significance of gradient vector flow is that it aids to 
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process di cult boundary cavities. But gradient vector flow is again depending on the edge strength 
of the boundaries, which will fail for weak boundaries. Chan and Vese (2002) proposed a method 
for ACM, without using edge information. They have proposed to have a mean curvature motion and 
Mumford Shah model for defining energy of the contour. This model evolves the contour based on 
the internal and external region, so, stopping criteria do es not depend on the gradient of the image. 
However, the Chan Vese method is used mostly for foreground and background subtraction and cannot 
segment a particular object of interest.

The general ACM methodology relies upon the quality of edges. These edges are calculated 
using constant kernel gradient operators. However, these gradient operators are having low sensitivity 
for weak edges and are unable to capture directional information in all directions. The fundamental 
problem with the gradient operator is that they have a fixed kernel, which considers directional 
information only for two directions: vertical and horizontal. Due to this, they are very poor in 
localizing an edge, and thus chances of finding a false edge or loss of a weak edge are higher. So, to 
capture directional (Anisotropic) information in more directions, multiresolution approaches have 
been proposed.

For capturing directional information, multiresolution methods like Wavelet have been proposed 
by (Liu & Hwang, 2003), which use the wavelet transform to have directional information in three 
directions namely vertical, horizontal, and diagonal. (Shan & Ma, 2010) proposed to use a curvelet 
to define the external energy for active contour. Curvelet transform is used to have a set of kernels, 
in more than three directions, which localizes edges effectively than wavelet transform.

C. Sagiv (2006) proposed to use of Gabor filters in the GACM theory. Gabor kernels are modeled 
as simple cells in the visual cortex. Gabor wavelet is used to find the texture and as an edge indicator 
function using the Beltrami framework as a submanifold. This submanifold is having a Riemannian 
structure that forms full spatial feature space. The determinant of the manifold is treated as a gradient 
in Gabor space. Gabor filters provide visual information in combined form as frequency and space.

(Xu et al., 2020) proposed to use signed pressure force function, whereas (Joshi et al., 2021) 
defined global signed pressure and K-means clustering based on local correntropy with the exponential 
family (GSLCE) for external energy definition. Another pressure force function has been proposed 
(Liu et al., 2020).

A density-based methodology has been proposed in (Yin et al., 2020) which deals with density-
oriented BIRCH (balanced iterative reducing and clustering using hierarchies) clustering method. 
(Han & Wu, 2020) proposed a new local and global active contour model based on Jereys divergence.
(Niaz et al., 2020) formulates by combining the statistical information of both the local and global 
region-based energy fitting models.

The edge preservation method technique for ACM (Jiang & Jiang, 2020) is based on matrix 
factorization and the use of local spectral histograms. However, the edge detection is not consistent 
as the calculation of the local histogram is highly parametric. Also, it is based on intensity-based edge 
preservation, hence weak edges cannot be modelled. All the above methods are based on intensity 
values or in the spatial domain, which is not sufficient to model the weak edges. The weak edge 
modeling is more suitable for phase values or in the frequency domain.

2.3 Phase Congruency
Methods based on the local energy models (Concetta Morrone & Burr, 1988), like Phase congruency 
(Esteves et al., 2012) are based on phase values for edge detection. Phase congruency has been used for 
external energy creation (Cinar et al., 2017),(Karn et al., 2018). However, in this approach to capture 
required directional information using multiresolution methods, parameters like scale, space, and 
orientation must be tuned for log Gabor kernels. This tuning is done by brute force and judgment. So, 
instead of tuning the parameters, we have proposed to improve the weak edges employing Adaptive 
kernels and then compare the performance with previous methods.
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Though deep learning methods for edge detection have been developed recently (Xie & Tu, 
2015),(Liu et al., 2019),(Soria et al., 2020); our approach is based on shallow learning. So, we are 
not comparing results with deep learning methods. Due to shallow learning (Chauhan et al., 2019), 
the computational power required for our method is less, which is another requirement for hospitals 
in the Indian subcontinent.

3. PROPOSED METHODOLOGY

As shown in Fig. 1, ACM requires that seed points are placed around the region of interest. These 
seed points are joined into a single contour or multiple contours. These contours are then grown or 
evolved based on the energy minimization principle.

Before energy minimization, the energy of contour should be first defined using the attributes 
of contour and image properties. The energy of the contour is distinguished into two parts: internal 
energy and external energy. Internal energy is used to control the movement of the contour. External 
energy controls how the contour gets attracted to the image boundary. The contour evolves along the 
direction and magnitude of the sum of internal energy and external energy. After defining energy, the 
energy is minimized using gradient descent which decides the rate of contour evolution. This energy 
minimization results in contour evolution. In simple terms, the energy of the contour is the magnitude 
with which the contour points shift towards the object of interest. The energy minimization performs 
the contour shrinking to get a boundary.

This contour evolution rate should decrease near the boundaries such that it will finally stop at 
the boundary. However, to stop the contour evolution at the boundary, either the parameters chosen 
should be selected with extreme care or the boundary should be well defined. As the convergence or 
stopping criteria of ACM depends on the boundary or edge, external energy is an important entity 
in contour evolution. External energy is generally defined using the edge map of the given image. 
These edge maps are extracted using a constant kernel method.

Researchers have proposed different techniques to define, internal and external energy of the 
contour. Our approach is to define external energy in a robust way for strong as well as weak edges, 
with the consideration of the philosophy of Directional Filter Bank (Bamberger & Smith, 1992) and 
adaptive kernels. Instead of using Gabor kernels as it is, we have learned kernels that have similar 

Figure 1. Adaptive kernel framework block diagram
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Anisotropic properties like Gabor kernel. These kernels are learned from statistical properties of 
image or set of image patches is necessary, because these kernels find directional information in all 
directions, to extract strong as well as weak edges. These kernels are called Adaptive kernels as they 
evolve as per the image. The algorithm is mentioned in fig 2.

We have proposed to use the ICA kernels to improve the edge strength. Also, we have used 
the isotropic information extracted using ICA with the Phase congruency method, which results in 
improved boundary extraction as intensity and phase information are combined.

3.1 ICA Based Edge Detection
Using the theory of Adaptive kernels, an image can be represented as a linear combination of basis, 
as follows:

x A y A y A y A y A y
i

N

i i N N
= ⋅ = ⋅ + ⋅ + ⋅ + + ⋅

=

−

− −∑
0

1

0 0 1 1 2 2 1 1
� 	 (1)

Here, Ai is the ith basis function, and yi is the coefficient. [1] can be written as:

x A y= ⋅ 	 (2)

where y is a coefficient vector, yi is an element of y, and the weighted coefficient of projecting a patch 
image into the ith basis function ‘Ai’. ‘A’ is a matrix of ICA basis functions and Ai is the ith column 
vector of the ICA basis matrix.

As we want to find edges, we should address the local part of the image. So, we will extract the 
patches. We have to find the sources or basis present from the image patches, such that combining 
only the source part will result in an edge map. As we have to find sources or bases for images, this 
problem can be solved as a blind source separation problem. i.e., the information of sources is not 

Figure 2. Algorithmic steps
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known prior. The ICA is performed by finding a matrix W which estimates the coefficients y being 
as statistically as independent as possible over data x, as shown in eq [3]:

y W x= ⋅ 	 (3)

The ICA components y may be permuted and rescaled. For that, a neural learning algorithm for 
ICA was proposed in (Bell & Sejnowski, 1995) and (Bell & Sejnowski, 1997), in which the joint 
entropy is maximized by using a stochastic gradient ascent. The updating formula for W is:

∆W I g y y WT= + ( ) ⋅( ) ⋅ 	 (4)

where, T represents the transformation of a matrix; y=W×x, the transformation function of the 

coefficient vector for y is g y
y

( ) =
+( )−

2

1 exp
. The input data should be normalized and so whitening 

is performed for that using eq [5]:

x W x m
x

= ⋅ −( )0
	 (5)

So, the new transformation is done using a product of the whitening matrix and learned matrix, 
as shown in eq. 6:

W W W
I
= ⋅

0
	 (6)

After the transformation, the basis needs to be completed and orthogonal, so the ICA 
transformation matrix WI needs to be orthogonalized using eq. [7]:

W W W W
I I

T
I

= ⋅ ⋅( )
−1

2 	 (7)

As edge detection is performed using High pass filtering, where edges are high changes in intensity. 
So, selecting proper bases can be selected using sparsity values; which can be found using eq. 8:

Figure 3. Input image (Brain tumor MRI) along with its annotation of Tumor
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where p<1.
This is lp norm, where Ai (i=0, 1, 2, 3,⋯, N-1) is the ith basis function and Aij is the jth coefficient 

of ith basis. The smaller the value of Ai, the sparsity will be more. If Ai=0, then that base is completely 
sparse. The ICA bases are rearranged according to sparseness value and then components with low 
sparsity are ignored.

After finding out the ICA basis, these ICA bases are multiplied with the given image patches. 
These transformed patches are reconstructed, and we get texture maps for each kernel:

texture map A y

A y A y A y
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(9)

where m is the number of basis functions, should be greater than or equal to 1.
Using eq. 9, we have to remove the components with edges at different orientations by comparing 

sparsity values.
For a given image the image patches are extracted with the patch size of ‘8’. These patches are 

converted into a single row vector and then stacked into a matrix. This is the y matrix as discussed in 
eq [2]. After this, the ICA algorithm is applied to this as per equations [5] to [7]. These procedures 
give us 64 basis functions, as shown in fig. 4.

As you can see in fig 5, all basis functions are not localized and oriented. Some bases are showing 
low pass properties. However, the value of other basis elements is varied and can be larger and smaller 
in zero local range; the value of another place is near to zero. As edge detection is performed using 
High pass filtering, where edges are high changes in intensity. So, selecting proper bases with high 
pass property will do edge detection. These bases can be selected using sparsity values; which can 
be found using eq [8].

After finding out the ICA basis, these ICA bases are convolved with the given image patches. 
These transformed patches are reconstructed, and we get texture maps for each kernel. If all texture 
maps are added, then the original image will get reconstructed. As we have to find an edge map, we 

Figure 4. 64 ICA kernels
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have to drop the isotropic texture maps. After dropping the isotropic part, the remaining texture maps 
should be added. After taking absolute values of this texture map using eq. [9], we will get the edge 
map of a given image as shown in fig 3. We have also shown the original image along with its Canny 
output.Thus, we are getting a good edge map in terms of covering all the components. But instead 
of using an edge map for natural images, we have experimented on a medical dataset of the BRATS 
competition. We have compared our method with canny edge detection with the help of an overlap 
measure of annotation and extracted image segment.We also considered medical image enhancement 
methods proposed by Perona (1990) and Nyul (2000). Perona proposed a diffusion-based method 
of anisotropic diffusion, where a Gaussian kernel is diffused to enhance strong edges and remove 
weak edges. As tumor edges are mostly weak edges compared to other brain components, anisotropic 
diffusion is not used. Whereas, in Nyul normalization, the basic requirement is training data should 
be there to find the percentiles. The percentiles are required to find the histogram of all the images 
and how it is distributed. Based on these percentiles, the images are enhanced in a given image range 
using interpolation. But this method is highly parametric and also tedious to improve weak as well 
as strong edges. As this method learns percentiles using all the data, our method improves the edge 
information without the need for complete training data.

3.2 ICA Based Phase Congruency
Our proposed work is also involved in the incorporation of Phase information using ICA kernels and 
Phase congruency, to find weak boundaries of glioma. The use of only intensity values for finding 
weak edges in segmentation makes the problem a bit challenging. So, experimentation has been done 
based on phase-based edge detection. The phase-in image is defined as the change in intensity values 
while going from x-direction or y-direction.

Phase congruency is a method based on the local energy model, proposed by Morrone. This 
model is based on thresholding in the frequency domain. The given image is transformed into the 
frequency domain using Fourier transform. In the frequency domain, the edge will have all the Fourier 
components in phase. Thus, the component is said to be congruent, and hence phase congruency 
value is maximum at edges:

PC x
A x

Ax

n n n

n n

( ) =
⋅ ( )−( )

( )  
∈

∑
∑

max
cos

,φ π

φ φ

0 2
	 (10)

where An is the amplitude of nth Fourier component of a 1D signal I x A x
n

n n( ) = ( )∑ cosφ .

Figure 5. Convolution output with kernels
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ϕn is local phase component.
Though Phase congruency calculation in the 1D domain is simple using eq [10], the calculation 

in 2D is complicated.
Peter Kovesi simplified the calculation in images, by proposing the use of a filter bank of 

quadrature logarithmic filter. Here, there are two filters namely odd and even filters are used for this 
method, which is 90o phase-shifted from each other. This phase shift is based on Hilbert transform 
approximation. Their definitions are as follows:

F x I x M
n

n
e( ) = ( ) ⋅∑ 	 (11)

H x I x M
n

n
o( ) = ( ) ⋅∑ 	 (12)

where, M
n
e  is even filter and M

n
o  is odd filter.

The sum of amplitudes of frequency component in F(x) is given by:

n
n

n
n
e

n
oA x I x M I x M∑ ∑( ) = ( ) ⋅( ) + ( ) ⋅( )

2 2
	 (13)

Using the above equations [11],[12],[13], the Phase congruency was defined as:

PC x
E x

A x
n n

( ) = ( )
( )+ ∈∑

	 (14)

where E x F x H x( ) = ( ) + ( )2 2
 is a small constant for preventing the eq [14], becoming unstable.

Phase congruency used Log Gabor filters to perform edge detection. The Log Gabor filters proposed 
by Field (1987), are an alternative to the Gabor function. Field suggests that natural images are better 
coded by filters that have Gaussian transfer functions when viewed on the logarithmic frequency 
scale. On the linear frequency scale, the log-Gabor function has a transfer function of the form:
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where, w
0
 is the filter’s center frequency k

w
0

 must also be held constant for varying w
0
, such that 

the filters will get constant shape for edge detection. In our experiment, we replace the even filter 
M
n
e( )  and the odd M

n
o( )  filter with the ICA kernel. As the ICA components are extracted from the 

image and changes for each image, this methodology is termed as Adaptive Phase congruency.
As the first adaptive kernel after finding sparsity values is carrying the information about intensity 

changes. This kernel resembles the isotropic properties of the Log Gabor kernel. The even filter used 
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in Phase congruency is calculated on the assumption that the log Gabor component is present in that 
image. As ICA kernels extracted from the given image, using ICA kernels instead of constant Log 
Gabor kernels is justifiable. Based on this hypothesis, we have done experimentation for glioma 
segmentation. The results of which are discussed in the next section.

4. EXPERIMENTATION

We have considered the BRATS database of brain tumor segmentation to compare the results of the 
Canny edge detector and ICA-based edge detector with the Geodesic Active contour method. The 
evaluation metric used is the dice score which is the overlap between the annotated image segment 
and image segment extracted from the image segmentation algorithm. The formula for dice score is:

Dice score
A B

A B
 =

∩

+

2
	

where A B∩  represents the common elements between sets A and B, and A  represents the number 
of elements in set A (and likewise for set B).

In the BRATS database, the labels are provided for different tumor regions. These regions are 
evaluated based on the region of the tumor i.e., complete tumor, core tumor, and enhanced tumor. Also, 
there are 4 modalities present in this dataset, namely T1, T2, T1C, and Flair. Due to four modalities, 
the problem becomes four-channel single-segmented output with multiple classes.

To reduce the complexity of the problem, we evaluated our algorithm for a full tumor, as an initial 
challenge. The Full tumor is visible in the Flair modality, so we have performed our experimentation 
on the Flair modality only. Now the underlying problem becomes a two-class pixel classification 
or binary class problem with a single-channel image, where the classes are tumor and non-tumor.

Instead of using the traditional active contour method. We have used ’Geodesic Active contour’ 
with level sets. The geodesic active contour model requires two inputs along with parameter tuning. 
The two inputs are a seed image and an edge map. The seed points are extracted based on the labels 
provided in the database and kept the same for all the methods. The parameter tuning is a crucial part 
as the finding of the optimal parameter varies according to the edge map. To have a fair comparison 
of the mentioned algorithms, these parameters are tuned using the particle swarm optimization 
method. These methods are applied with the same range of parameters for geodesic active contour 
and, to get the optimum results.

The tumor is having minute intensity variations along with it, so they are having weak edges 
compared to other brain components. The methods like anisotropic diffusion are used for improving 
the strength of strong edges, but it removes all the weak edges, which is not desirable. Whereas, 
the ICA edge map extracts all the relevant edges i.e., weak as well as strong edges. We added those 
edges in the original image and normalized the edges, such that the difference in the strength of 
weak edges and strong edges is minimal. The result of geodesic active contour using Canny edge 
detection is shown in 6.

The results in the figure 6 show that the edges are not clear enough after performing canny edge 
detection. Whereas, in figure 7, the change in the frequency of tumor boundary is getting improved. 
Due to which, we get crisp edges of the tumor. These edges are improving the overall performance 
of the Geodesic active contour method.

We have compared our results on BRATS 2013 dataset with 20 patients of high-grade glioma 
(HGG) and 10 patients of low-grade glioma (LGG), from training data. Each MRI contains around 150 
slices each.For having the same contrast ratio with a matched histogram, there is another method named 
Nyul normalization. Nyul normalization performs histogram matching by first finding percentiles 
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and then interpolate them. This is a widely used method for MRI histogram normalization. Nyul 
method requires a training phase, to find percentiles in the image, and then this phase will be used 
to transform the image into a normalized domain. Whereas, our method does not require a specific 
training phase and can be used in cases where data is less. We have compared the GACM with Canny 
edge detector, Canny with Nyul normalization, and ICA-based edge detection. The comparison of 
results is in table 1.

After the use of ICA edge information to improve the weak edges of the tumor, the next stage was 
to use ICA based Phase congruency model. This method is based on incorporating adaptive kernel from 
ICA instead of Log Gabor kernel. The output of Adaptive Phase congruency is shown in figure (4).

As shown in above figure 8, the tumor region can be extracted with a good edge difference. But, 
still, there is some pre-processing needed to remove the outer boundary of the brain, as it is also gets 
considered as an edge. Though the segmented output and manually annotated output is having a high 
dice score (around 0.9), for comparison with other techniques, we have used the GACM pipeline along 
with ICA-based Phase congruency. After combining, the adaptive kernel on ICA, we have used this 
output for Geodesic Active contour methodology, to incorporate intensity information along with 
curvature also. The results are compared with the Canny and traditional Phase congruency model.

Figure 6. Tumor segmentation using canny edge detection

Figure 7. Tumor segmentation for ICA with canny

Table 1. Comparison of Canny edge, Nyul normalization and ICA edge operator with GACM

Glioma Type Canny edge operator Nyul Normalization ICA edge operator

LGG 0.758 0.785 0.803

HGG 0.669 0.703 0.708

Average Dice score 0.714 0.744 0.756
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For checking if the improved results are consistently better every time, we have recalculated the 
seed points and calculated the dice calculation for 4 methods, which are, Canny edge detector, ICA 
based edge detection, Phase congruency with Log Gabor kernels, and Phase Congruency with ICA 
based kernels. The results are in table 2.

The results of ICA-based edge detection and ICA-based Phase congruency, are much better 
than Canny and Phase congruency methods. The box plot for the given output is shown in Figure 9.

The box plot for Low-grade glioma is as shown in the above figure. As you can see the traditional 
methods for external energy are having a low median value when compared to ICA based adaptive 

Figure 8. (a) Given image; (b) ICA based Phase congruency output; (c) Manual annotation

Table 2. Comparison of Canny, ICA edge detection, Phase congruency and ICA based Phase congruency

Glioma type Canny edge 
operator

ICA edge 
operator Phase congruency ICA phase 

congruency

LGG 0.783 0.810 0.799 0.839

HGG 0.729 0.783 0.781 0.797

Average Dice score 0.756 0.797 0.790 0.818

Figure 9. Box plot for LGG
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kernel method. As the tumor edges are weak for the LGG case, the adaptive kernel method can boost 
the weak edges. Thus, there is a good improvement in the overall dice score.

Ideally, the box plot shown in fig 10, should have fewer outliers, and the width of the box should 
be small. The box plots are showing these characteristics when compared to traditional methods. As 
the tumor boundaries are quite visible in High-grade cases, the improvement in dice score is minimal 
when compared to LGG.After looking at both LGG and HGG cases, we can observe that the overall 
performance has improved with fewer outliers.

5. CONCLUSION

The adaptive kernel-based method proposed in this paper improves the performances of Glioma 
segmentation by robustly detecting weak edges. Weak edges are difficult to capture because of very 
minute intensity variation. Earlier methods use constant kernels to solve the segmentation problem, 
whereas, the proposed method based on biological vision, adaptively generates kernels for each image 
using Independent Component Analysis.

For initial experimentation, ICA-based kernels are used to perform edge detection. However, the 
next experiments are performed along with Phase congruency. The incorporation of image-specific 
kernels instead of Log Gabor kernels, in the Phase congruency method, improves the segmentation 
performance by accurately separating the Glioma boundary.

We have compared adaptive kernel-based edge detection techniques with Canny and Phase 
congruency, for defining the external energy of Geodesic Active contour. The adaptive kernel-based 
edge detection techniques have shown an improved average dice score of 0.979 (ICA edge detection), 
0.818 (ICA-based Phase congruency) compared to 0.756 (Canny),0.790(Phase congruency).

In the future, we propose to investigate, if Adaptive Phase congruency can be used in other 
segmentation domains like aerial image segmentation, carotid ultrasound segmentation (Azzopardi 
et al., 2020). Deep learning losses based on Active contour (Tan et al., 2021) can be modified by 
incorporating Adaptive phase congruency.

ACKNOWLEDGMENT

This research is funded by Prime Minister Fellowship for Doctoral research, with Persistent System Ltd. 
as Industry partner and Department of Technology, Savitribai Phule Pune University as Academic Partner.

Figure 10. Box plot for HGG



International Journal of Computer Vision and Image Processing
Volume 12 • Issue 1

15

REFERENCES

Azzopardi, C., Camilleri, K. P., & Hicks, Y. A. (2020). Bimodal automated carotid ultrasound segmentation 
using geometrically constrained deep neural networks. IEEE Journal of Biomedical and Health Informatics, 
24(4), 1004–1015. doi:10.1109/JBHI.2020.2965088 PMID:31944969

Bamberger, R. H., & Smith, M. J. (1992). A filter bank for the directional decomposition of images: Theory and 
design. IEEE Transactions on Signal Processing, 40(4), 882–893. doi:10.1109/78.127960

Bell & Sejnowski. (1997). The independent components of natural scenes are edge filters. Vision Research, 
37(23), 3327-3338.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind 
deconvolution. Neural Computation, 7(6), 1129–1159. doi:10.1162/neco.1995.7.6.1129 PMID:7584893

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, PAMI-8(6), 679–698. doi:10.1109/TPAMI.1986.4767851 PMID:21869365

Caselles, Kimmel, & Sapiro. (1997). Geodesic active contours. International Journal of Computer Vision, 
22(1), 61-79.

Chauhan, S., Vig, L., De Filippo De Grazia, M., Corbetta, M., Ahmad, S., & Zorzi, M. (2019). A 
comparison of shallow and deep learning methods for predicting cognitive performance of stroke 
patients from MRI lesion images. Frontiers in Neuroinformatics, 13, 53. doi:10.3389/fninf.2019.00053 
PMID:31417388

Chen, Y.-W., Zeng, X.-Y., & Lu, H. (2002). Edge detection and texture segmentation based on independent 
component analysis. In Object recognition supported by user interaction for service robots (Vol. 3). IEEE.

Cinar, A., Barhli, S., Hollis, D., Flansbjer, M., Tomlinson, R., Marrow, T., & Mostafavi, M. (2017). An autonomous 
surface discontinuity detection and quantifcation method by digital image correlation and phase congruency. 
Optics and Lasers in Engineering, 96, 94–106. doi:10.1016/j.optlaseng.2017.04.010

Concetta Morrone, M., & Burr, D. (1988). Feature detection in human vision: A phase-dependent energy model. 
Proceedings of the Royal Society of London. Series B, Biological Sciences, 235(1280), 221–245. doi:10.1098/
rspb.1988.0073 PMID:2907382

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models. In European conference on 
computer vision (pp. 484-498). Springer.

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape models-their training and application. 
Computer Vision and Image Understanding, 61(1), 38–59. doi:10.1006/cviu.1995.1004

Esteves, T., Quelhas, P., Mendonca, A. M., & Campilho, A. (2012). Gradient convergence filters and a phase 
congruency approach for in vivo cell nuclei detection. Machine Vision and Applications, 23(4), 623–638. 
doi:10.1007/s00138-012-0407-7

Field. (1987). Relations between the statistics of natural images and the response properties of cortical cells. 
Josa A, 4(12), 2379-2394.

Fischer, S., Sroubek, F., Perrinet, L., Redondo, R., & Cristobal, G. (2007). Self-invertible 2d log gabor wavelets. 
International Journal of Computer Vision, 75(2), 231–246. doi:10.1007/s11263-006-0026-8

Global thresholding: An overview. (n.d.). https://www.sciencedirect.com/topics/engineering/global-thresholding

Han, B., & Wu, Y. (2020). Active contour model for inhomogeneous image segmentation based on Jeffreys 
divergence. Pattern Recognition, 107, 107520. doi:10.1016/j.patcog.2020.107520

Heimann, T., Wolf, I., & Meinzer, H.-P. (2006). Active shape models for a fully automated 3d segmentation of 
the liver-an evaluation on clinical data. In International Conference on Medical Image Computing and Computer-
Assisted Intervention (pp. 41-48). Springer. doi:10.1007/11866763_6

Huang, T., Burnett, J., & Deczky, A. (1975, December). The importance of phase in image processing filters. 
IEEE Transactions on Signal Processing, 23(6), 529–542. doi:10.1109/TASSP.1975.1162738

http://dx.doi.org/10.1109/JBHI.2020.2965088
http://www.ncbi.nlm.nih.gov/pubmed/31944969
http://dx.doi.org/10.1109/78.127960
http://dx.doi.org/10.1162/neco.1995.7.6.1129
http://www.ncbi.nlm.nih.gov/pubmed/7584893
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://www.ncbi.nlm.nih.gov/pubmed/21869365
http://dx.doi.org/10.3389/fninf.2019.00053
http://www.ncbi.nlm.nih.gov/pubmed/31417388
http://dx.doi.org/10.1016/j.optlaseng.2017.04.010
http://dx.doi.org/10.1098/rspb.1988.0073
http://dx.doi.org/10.1098/rspb.1988.0073
http://www.ncbi.nlm.nih.gov/pubmed/2907382
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1007/s00138-012-0407-7
http://dx.doi.org/10.1007/s11263-006-0026-8
https://www.sciencedirect.com/topics/engineering/global-thresholding
http://dx.doi.org/10.1016/j.patcog.2020.107520
http://dx.doi.org/10.1007/11866763_6
http://dx.doi.org/10.1109/TASSP.1975.1162738


International Journal of Computer Vision and Image Processing
Volume 12 • Issue 1

16

Hyvarinen, , & Oja, . (2000). Independent component analysis: Algorithms and applications. Neural Networks, 
13(4), 411–430. PMID:10946390

Images, H. (n.d.). MRI vs. CT scan | health images. https://www.healthimages.com/mri-vs-ct-scan

Jiang, J., & Jiang, X. L. (2020). An improved matrix factorization based active contours combining edge 
preservation for image segmentation. IEEE Access: Practical Innovations, Open Solutions, 8, 223472–223481. 
doi:10.1109/ACCESS.2020.3044881

Joshi, A., Khan, M. S., Niaz, A., Akram, F., Song, H. C., & Choi, K. N. (2021). Active contour model with adaptive 
weighted function for robust image segmentation under biased conditions. Expert Systems with Applications, 
175, 114811. doi:10.1016/j.eswa.2021.114811

Karn, P. K., Biswal, B., & Samantaray, S. R. (2018). Robust retinal blood vessel segmentation using hybrid 
active contour model. IET Image Processing, 13(3), 440–450. doi:10.1049/iet-ipr.2018.5413

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of 
Computer Vision, 1(4), 321–331. doi:10.1007/BF00133570

Kovesi, P. (1999). Image features from phase congruency. Videre: Journal of Computer Vision Research, 1(3), 
1-26.

Lee, T. S. (1996). Image representation using 2d gabor wavelets. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 18(10), 959–971. doi:10.1109/34.541406

Liu, Fang, Zhang, & Lin. (2020). A novel active contour model guided by global and local signed energy-based 
pressure force. IEEE Access, 8, 59412-59426.

Liu & Hwang. (2003). Active contour model using wavelet modulus for object segmentation and tracking in 
video sequences. International Journal of Wavelets, Multiresolution and Information Processing, 1(1), 93-113.

Liu, Y., Cheng, M.-M., Hu, X., Bian, J.-W., Zhang, L., Bai, X., & Tang, J. (2019, August). Richer convolutional 
features for edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8), 1939–1946. 
doi:10.1109/TPAMI.2018.2878849 PMID:30387723

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., 
Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-A., Arbel, T., Avants, B. B., Ayache, N., Buendia, P., Collins, D. L., 
Cordier, N., & Van Leemput, K. et al. (2014). The multimodal brain tumor image segmentation benchmark (brats). 
IEEE Transactions on Medical Imaging, 34(10), 1993–2024. doi:10.1109/TMI.2014.2377694 PMID:25494501

Niaz, Rana, Joshi, Munir, Kim, Song, & Choi. (2020). Hybrid active contour based on local and global statistics 
parameterized by weight coefficients for inhomogeneous image segmentation. IEEE Access, 8, 57348-57362.

Nyul, L. G., Udupa, J. K., & Zhang, X. (2000). New variants of a method of mri scale standardization. IEEE 
Transactions on Medical Imaging, 19(2), 143–150. doi:10.1109/42.836373 PMID:10784285

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse 
code for natural images. Nature, 381(6583), 607–609. doi:10.1038/381607a0 PMID:8637596

Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 12(7), 629–639. doi:10.1109/34.56205

Prewitt, J. M. (1970). Object enhancement and extraction. Picture Processing and Psychopictorics, 10(1), 15-19.

Sagiv, C., Sochen, N. A., & Zeevi, Y. Y. (2006). Integrated active contours for texture segmentation. IEEE 
Transactions on Image Processing, 15(6), 1633–1646. doi:10.1109/TIP.2006.871133 PMID:16764287

Seger, O. (2012). Generalized and separable sobel operators. Machine vision for three-dimensional scenes, 347.

Shan, H., & Ma, J. (2010). Curvelet-based geodesic snakes for image segmentation with multiple objects. Pattern 
Recognition Letters, 31(5), 355–360. doi:10.1016/j.patrec.2009.10.018

Soria, Riba, & Sappa. (2020). Dense extreme inception network: Towards a robust CNN model for edge detection. 
Academic Press.

http://www.ncbi.nlm.nih.gov/pubmed/10946390
https://www.healthimages.com/mri-vs-ct-scan
http://dx.doi.org/10.1109/ACCESS.2020.3044881
http://dx.doi.org/10.1016/j.eswa.2021.114811
http://dx.doi.org/10.1049/iet-ipr.2018.5413
http://dx.doi.org/10.1007/BF00133570
http://dx.doi.org/10.1109/34.541406
http://dx.doi.org/10.1109/TPAMI.2018.2878849
http://www.ncbi.nlm.nih.gov/pubmed/30387723
http://dx.doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501
http://dx.doi.org/10.1109/42.836373
http://www.ncbi.nlm.nih.gov/pubmed/10784285
http://dx.doi.org/10.1038/381607a0
http://www.ncbi.nlm.nih.gov/pubmed/8637596
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1109/TIP.2006.871133
http://www.ncbi.nlm.nih.gov/pubmed/16764287
http://dx.doi.org/10.1016/j.patrec.2009.10.018


International Journal of Computer Vision and Image Processing
Volume 12 • Issue 1

17

Tan, L., Ma, W., Xia, J., & Sarker, S. (2021). Multimodal magnetic resonance image brain tumor segmentation 
based on acu-net network. IEEE Access: Practical Innovations, Open Solutions, 9, 14608–14618. doi:10.1109/
ACCESS.2021.3052514

Vincent, Wolstenholme, Scott, & Bowes. (2010). Fully automatic segmentation of the knee joint using active 
appearance models. Medical Image Analysis for the Clinic: A Grand Challenge, 1, 224.

Xie & Tu. (2015). Holistically-nested edge detection. Academic Press.

Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 
7(3), 359–369. doi:10.1109/83.661186 PMID:18276256

Xu, L., Zhu, Y., Zhang, Y., & Yang, H. (2020). Liver segmentation based on region growing and level set 
active contour model with new signed pressure force function. Optik (Stuttgart), 202, 163705. doi:10.1016/j.
ijleo.2019.163705

Yin, Li, Liu, & Karim. (2020). Active contour modal based on density-oriented birch clustering method for 
medical image segmentation. Multimedia Tools and Applications, 79(41), 31049-31068.

http://dx.doi.org/10.1109/ACCESS.2021.3052514
http://dx.doi.org/10.1109/ACCESS.2021.3052514
http://dx.doi.org/10.1109/83.661186
http://www.ncbi.nlm.nih.gov/pubmed/18276256
http://dx.doi.org/10.1016/j.ijleo.2019.163705
http://dx.doi.org/10.1016/j.ijleo.2019.163705

