
vii

As software systems become more and more critical in every aspect of
the human society, so does the demand to secure these systems. This is mainly
because private information is stored in software systems and without enough
security guarantees, organizations (and individuals) are not willing to share
information or even use the technology. Even though security is an important
issue, it is usually treated superficially and the usual security process is to add
a standard set of security mechanisms, such as authentication, into the system.

However, it has been identified in many cases that securing software systems is not
only about providing a set of standard security mechanisms. Fitting security enforcement
mechanisms into an existing design, can lead to serious design challenges that usually
translate into the emergence of computer systems afflicted with security vulnerabilities.

Providing adequate security requires the capability of reasoning about security.
This means that software systems must be designed and deployed not only to meet cer-
tain functional requirements, but also to comply with the security requirements of the
companies and/or organizations they are deployed at. In other words, security consider-
ations must be integrated within software engineering practices to allow software sys-
tem developers to consider security from the early stages of the development process.

Traditionally, software engineering deals with security as a non-functional
requirement and usually considers it after the definition of the system. One of the rea-
sons is that the research areas of software engineering and security engineering work
independently. On one hand, software engineering techniques and methodologies do
not consider security as an important issue, although they have integrated concepts
such as reliability and performance, and they usually fail to provide precise enough
semantics to support the analysis and design of security requirements and proper-
ties. On the other hand, security engineering research has mainly produced formal
and theoretical methods, which are difficult to understand by non security experts
and which, apart from security, they only consider limited aspects of the system.

preface

viii

This separat ion of work has resul ted in an abstract ion gap
that makes the integration and practical application of security issues on
modelling languages and software engineering methodologies difficult.

This book aims to provide the first step towards narrowing the gap between
security and software engineering. To achieve this aim, this book (1) introduces
the field of secure software engineering, a branch of research investigating the
integration of security concerns into software engineering practices, which draws
expertise from the security and the software engineering community; (2) introduces
the problems and the challenges of considering security during the development
of software systems; (3) it provides readers an understanding of the predominant
theoretical and practical approaches that integrate security and software engineer-
ing by describing current secure software engineering approaches; and (4) it dis-
cusses future visions and directions for the field of secure software engineering.

ORGANIZATION.OF.THIS.BOOK
This book is organized into three main sections: Security Requirements En-

gineering, Modelling and Developing Secure Software Systems Using Patterns,
and Modelling Languages and Methodologies for Secure Software Development.
The Security Requirements Engineering section (Section I) is organized into three
chapters, Chapters II, III, and IV. The Modelling and Developing Secure Software
Systems Using Patterns section (Section II) includes two chapters, Chapters V and
VI. The Modelling Languages and Methodologies for Secure Software Development
section (Section III) is organized into five chapters, Chapters VII, VIII, IX, X, and XI.

Additionally to these, we have the first chapter that introduces the
problem of integrating security and software engineering, and a conclu-
sive chapter that illustrates and explores challenges and future research di-
rections of the field. A brief description of each of the chapters follows.

Chapter.I (Integrating Security and Software Engineering: An Introduction)
by H. Mouratidis and P. Giorgini, is an introduction to the current advances in the
development of secure software systems. It provides an overview of the problem
from the perspectives of security and software engineering, and introduces the field
of Secure Software Engineering as a new branch of research concerned with the
development of secure software systems, which integrates security and software
engineering. Secure software engineering results in a situation where security is
considered as part of the development process leading to the development of more
secure software systems. In particular, the chapter discusses the research areas
of software and security engineering are and it emphases the characteristics of
these areas. Then the current state of the art on software and security engineering
is presented, emphasizing the latest approaches to secure software engineering.

Chapter.II.(Arguing Satisfaction of Security Requirements) by C. B. Haley,
R. Laney, J. D. Moffett, and B. Nuseibeh proposes an approach to carry out security
requirements engineering, namely the process of eliciting, specifying, and analyzing

the security requirements for a system. The approach is founded on four main com-
ponents. The first component is a framework that provides a systematic statement of
the roles and relationships of security goals, security requirements, and security func-
tions, and their relationships with other system and software requirements. The sec-
ond is a way of describing threats and their interactions with the system. The third is a
precise definition of security requirements. The fourth is a two-layer set of arguments
to assist with validating the security requirements within the context of the system,
to determine that the system is able to meet the security requirements placed upon it.

Chapter.III (Identifying Security Requirements Using the Security Quality
Requirements Engineering (SQUARE) Method) by N. R. Mead describes general
issues in developing security requirements, methods that have been useful, and
emphasize the system quality requirements engineering (SQUARE) method, which
was developed by the CERT Program at Carnegie Mellon University’s Software
Engineering Institute, that can be used for eliciting, analyzing, and documenting
security requirements for software systems. The method provides means for elicit-
ing, categorizing, and prioritizing security requirements for information technology
systems and applications. The SQUARE method seeks to build security concepts
into the early stages of the development life cycle. The model may also be use-
ful for documenting and analyzing the security aspects of fielded systems and
could be used to steer future improvements and modifications to these systems.

Chapter.IV (A Social Ontology for Integrating Security and Software Engineer-
ing) by E. Yu, L. Liu, and J. Mylopoulos describes the i* agent-oriented modelling
framework and how it can be used to treat security as an integral part of software sys-
tem requirements engineering. The framework offers a set of security requirements
analysis facilities to help users, administrators, and designers better understand the
various threats and vulnerabilities they face, the countermeasures they can take, and
how these can be combined to achieve the desired security results within the broader
picture of system design and the business environment. The security analysis process
is integrated into the main requirements process, so that security is taken into account
from the earliest moment. The technology of smart cards and the environment sur-
rounding its usage provides a good example to illustrate the social ontology of i*.

Chapter.V (A Methodology to Develop Secure Systems Using Patterns) by E.
B. Fernandez, M. M. Larrondo-Petrie, T. Sorgente, and M. Vanhilst presents a meth-
odology to build secure software for complex applications where patterns are used to
help to apply security principles. The methodology considers the whole software life-
cycle, uses security patterns, and is applied at all the architectural levels of the system.
A main idea is that security principles should be applied at every stage and that each
stage can be tested for compliance with security principles. The methodology shows
how security patterns can be added to conceptual models in the analysis phase and how
these analysis models are converted into design models with the addition of distribu-
tion and multiple architectural levels. Two running examples about a financial institu-
tion and a hospital are used to illustrate the different aspects of the proposed approach.

Chapter.VI.(Modelling Security Patterns Using NFR Analysis) by M. Weiss
presents an approach where the main idea is to use non-functional requirements (NFR)

ix

analysis to describe both the contributions patterns have on forces, and their design
context. The level of structuring provided by NFR analysis can help to represent pat-
terns in a more objective manner, and decide which patterns to apply in a given design
context. The chapter describes how security requirements can be represented by this
approach, but it also shows how the approach allows developers to consider security in
the context of other non-functional requirements such as performance and scalability.

Chapter.VII (Extending Security in Agile Software Development Meth-
ods) by M. Siponen, R. Baskerville, and T. Kuivalainen analyzes and out-
lines the requirements for security techniques to integrate seamlessly into
agile methods. The analysis is presented through an example of an approach
for adding security into agile information systems and software development
methods. The chapter shows how this approach also offers a promising solu-
tion for adding security in agile information systems and software develop-
ment, expanding earlier work that adapts it into the phases of agile methods.

Chapter.VIII (Modelling Security and Trust with Secure Tropos) by P.
Giorgini, H. Mouratidis, and N. Zannone describes how the integration of two
prominent software engineering approaches, one that provides a security-ori-
ented process and one that provides a trust management process results in the
development of a methodology that considers security and trust issues as part of
its development process. Such integration represents an advance over the current
state of the art by providing the first effort to consider security and trust issues
under a single software engineering methodology. Both approaches are exten-
sions of Tropos, an- agent-oriented software development methodology. A case
study from the health care domain is used to illustrate the result of the integration.

Chapter.IX (An Integrated Security Verification and Security Solution Design
Trade-Off Analysis Approach) by S. H. Houmb, G. Georg, J. Jürjens, and R. France
describes a method that integrates security verification and security solution design
trade-off analysis techniques. The security verification technique is used to verify
that the solution has the required security level. The trade-off analysis technique
is used to determine the best of the known solutions. The security requirements
are precisely specified using UMLsec, an extension to UML for secure systems
development. The security level of a solution can then be verified using UMLsec
tool support. To evaluate the security solutions separately, the approach proposes
to model them as security aspects using an aspect-oriented modelling (AOM)
technique. These aspects are then evaluated and trade-off decisions are made based
on computed Return on Security Investment (RoSI) for each security solution.

Chapter. X (Access Control Specification in UML) by M. Koch, F. Pa-
risi-Presicce, and K. Pauls discusses a methodology to integrate the specifica-
tion of access control policies into UML. The methodology, along with the
graph-based formal semantics for the UML access control specification, allows
to reason about the coherence of the access control specification. The chapter
also presents a procedure to modify policy rules to guarantee the satisfaction of
constraints, and shows how to generate access control requirements from UML

x

diagrams. The main concepts in the UML access control specification are il-
lustrated with an example access control model for distributed object systems.

Chapter.XI (Security Engineering for Ambient Intelligence: A Manifesto)
by A. Mana, C. Rudolph, G. Spanoudakis, V. Lotz, F. Massacci, M. Melideo, and
J. S. Lopez-Cobo describes SERENITY, a comprehensive approach to overcome
problems related to the design and engineering of secure and dependable systems
for Ambient Intelligence applications. The key to success in this scenario is to cap-
ture security expertise in such a way that it can be supported by automated means.
SERENITY’s integral model of S&D considers both static and dynamic aspects.
The combination of these innovations lays the foundations of an integrated, solid,
flexible, and practical S&D framework for Ambient Intelligence ecosystems. The
chapter aims at clarifying the challenges introduced in ambient intelligence eco-
systems and pointing out directions for research in the different areas involved.

Finally, Chapter.XII (Integrating Security and Software Engineering: Future
Vision and Challenges) by H. Mouratidis and P. Giorgini concludes the book. The
chapter lists and discusses nine challenges necessary for the advance of the secure
software engineering field. The main idea behind each challenge is presented in a short
sentence followed by a discussion which indicates why the challenge is important
and in some cases the discussion provides ideas of how the challenge could be met.

Paolo Giorgini, Italy
Haralambos Mouratidis, UK
January 2006

xi

