
x

��� �$�

Building software to solve contemporary business problems is no easy task.
Over the last decade there has been an increasing focus on object-oriented
notations and modelling languages, perhaps at the expense of a full method-
ological approach to solving the problem and giving software developers the
tools they need to comprehensively create applications within management and
market constraints—money, time, quality, and so forth. With increasingly so-
phisticated applications being demanded by businesses aiming for a competitive
market advantage, object technologies are being supplemented and comple-
mented by agent technologies. This is especially true in areas such as ambient
intelligence, e-business, Web services, peer-to-peer networks, and
bioinformatics. These areas demand software that is robust, can operate within
a wide range of environments, can evolve over time to cope with changing
requirements, is highly customizable to meet the needs of a wide range of us-
ers, and is sufficiently secure to protect personal data and other assets on be-
half of its stakeholders. To fulfil these requirements, builders of systems need
an appropriate agent-oriented methodology—the topic of this book.
Agent technology, increasing in popularity over the last decade, represents a
concrete response to these new requirements. The main reason for this is that
the agent paradigm, along with its definition of agent as an autonomous and
proactive system capable of interacting with other agents in order to satisfy its
objectives, provides a natural evolution for software systems. Agent-based sys-
tems call for new concepts, tools, and techniques for engineering and managing
software. In particular, we need new software development methodologies that
support the design and implement organizations of agents able to interact with
one another in order to achieve some common or individual goal. However, in

 xi

contrast to the history of object-oriented methodologies, in which industry played
and is currently playing the major role, most of the agent-oriented methodolo-
gies are proposed by academic researchers and many of them are still in an
early stage of maturity. Nevertheless, the time is ripe for an evaluation of the
state-of-the art of agent-oriented methodologies, before they descend into the
depths of a methodology jungle (as happened with object-oriented methodolo-
gies) that leads to industry rejection—spoiled for choice leads to “no choice”
because it is unclear whether any of the individualistically proposed methodolo-
gies have any industrial future beyond the PhD scholarship or research grant
supporting them in their (typically academic) research phase.
The intent of this book is therefore to give readers an understanding of the
predominant and tested agent-oriented methodologies. The book characterizes
each of these methodologies and compares them in terms of their main fea-
tures. The book is organized as follows. Chapter I introduces what an agent-
oriented methodology is, and it illustrates briefly the ten methodologies described
in the rest of the book. Chapters II through XI, ably summarized by Jim J. Odell
in the Foreword, then describe the methodologies, whereas Chapter XII pre-
sents an evaluation of all ten with a comparison of the methodologies based on
the features-analysis approach. Finally, Chapter XIII illustrates how to create
an agent-oriented methodology using method engineering based on the OPEN
metamodel.
For each methodology, we asked the originators of that methodology to de-
scribe their work in the same way for each chapter. Within the space con-
straints we had given them (in order to maintain a balance across the book), we
asked them to describe the current version of the methodology and then to
illustrate this with a small case study. We also asked them to end their chapter
with a short section to evaluate (from their viewpoint) what the strengths and
weaknesses of their methodological approach are. After all, the authors are
generally in the best position to know what critical issues they, and they alone,
address – which is why they put the effort into creating the methodology in the
first place. They are also in a good position to know the weaknesses, even if
these are often hidden in more “marketing” presentations. Sometimes, omis-
sions are purposeful yet seen by readers as “errors.” So, we also asked the
authors to state what they had omitted and knew they had omitted. When
using abstraction techniques, which underpin methodologies as much as model-
ling, it is inevitable that some omissions and approximations will be used. Stat-
ing such constraints, say of restricted applicability to certain lifecycle stages or
to certain classes of problems, makes the methodology even more valuable
when applied in situations for which it has been designed.
We did not try to rationalize the notation. For many AO methodologies, UML or
extensions thereof are selected. (We take the liberty of assuming that the reader
is familiar with UML and therefore do not define it in this book.) Many in the

xii

community are exploring some more formal extensions to UML, such as Agent
UML (AUML); others eschew these proposals and develop their own notation.
Indeed, there is still some debate about whether extended an object-oriented
notation like UML is the right way to go or whether the requirements of the
agent community cannot be satisfied by waiting for the Object Management
Group (OMG) to agree upon an agent-oriented extension to UML (although
such efforts are indeed being discussed in the OMG in collaboration with the
Foundation for Intelligent Physical Agents [FIPA]). We did ask that when au-
thors used non-UML-like notations that they defined them in situ.
While the OO basis of many of these AO methodologies is evident (and dis-
cussed in more detail in Chapter I), it should be noted that a group of method-
ologies use the Rational Unified Process (RUP) as its basis. The terminology
used in RUP, and therefore used in Chapters VII through IX, is not identical to
the terminology used in the other chapters. Again, because of the different
heritage we have not tried to rationalize these differences. We felt that had we
done so, we would have destroyed the very essence of these three method-
ological approaches.
We are aware that much of the agent-oriented methodology development work,
as reported here, has occurred in the realms of academe. Yet, one aim is to be
able to transition these research results into industry. Particularly through our
experiences in chairing various agent-oriented workshops (AOIS, AOSE,
OOPSLA), we have become all too painfully aware of the challenge of
transitioning agent technology into mainstream software development. The
AO community is seen from outside as being undecided as to the basic charac-
teristics of an agent, for example, whether or not to include proactivity and
mobility and, if so, whether this is a binary characteristic or on a grey scale.
From our previous experience with OO methodologies both in research and
industry adoption, it is clear that there is a need for methodology developers to
become aware of each others’ work, to collaborate, to standardize, and to come
up with a generally agreed approach to software development using their pro-
posed new technology—here, agent technology. This book aims to be a first
step in that direction. By presenting each methodology in as similar a light as
possible and by undertaking a feature analysis, we can hope to gain insights, as
researchers, into what works and what doesn’t. As coalescence is encouraged,
these ideas need to be tried out “for real” in industry applications. This is al-
ready beginning to happen, as is reported in some of the chapters in this book.
Nevertheless, a concerted community effort is needed if industry adoption is to
follow successfully.
In addition to presenting each methodology in an easy-to-understand way supple-
mented by an independent analysis (Chapter XII), we also propose a way for-
ward for such a collaborative venture: situational method engineering. Chapter
XIII offers insights into how this might work in the development of more flex-

 xiii

ible and coherent agent-oriented methodologies. The creation of a standard
repository of method fragments, each of which captures the essence of some
part of the methodology, allows industry adopters to “roll their own” methodol-
ogy and thus establish an agreed in-house methodology specifically suited to
their own peculiar circumstances. There are, to our knowledge, at least two
international projects that are moving in this direction as well as significant
research and standards development in the area of methodology metamodeling
to underpin such a repository in a more formal way. Once established, it would
be anticipated that the necessary tools would be built by third-party software
developers/vendors. When all these pieces fall into place, we can then claim
that agent-orientation is mainstream. At what date in the future this will occur,
we hesitate to forecast; yet, we believe it is inevitable.
In closing, we wish to gratefully acknowledge the authors for their contribu-
tions and their patience in assisting us in putting together this book. We also
owe them double thanks, since all chapters were reviewed by two people—the
chapter authors again. In addition, we wish to thank, as valuable additional
reviewers, John Debenham and Cesar Gonzalez-Perez of the University of
Technology, Sydney. We trust that our joint effort will be a stimulus for industry
in accepting and adopting the agent paradigm in the development of software
systems.

Brian Henderson-Sellers, Sydney, Australia
Paolo Giorgini, Trento, Italy

