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Preface

With the emergence of the Java 3D API, the creation of high quality 3D animated graphics 
for Java applications and applets has become a possibility. Being a high-level API based 
on OpenGL and DirectX, Java 3D allows developers to produce object-oriented graphics 
applications that are platform-independent. Numerous applications in fields ranging from 
business, science, medical to education have been implemented based on this technology. 
One well known example is the Maestro project, which allows users to navigate the 3D 
world of Mars from a desktop computer based on inputs from eight 360-degree cameras 
onboard the rover.

In one of our research projects in this area, we have used Java 3D to develop a Web-based 
real time 3D oscilloscope experimentation system, which has been launched at National 
University of Singapore. This application enables users to carry out a physical electronic 
experiment that involves the use of an actual oscilloscope, a signal generator, and a circuit 
board remotely through the Internet. Specifically, the control of the various instruments are 
carried out in real time through the use of a Java 3D based interface on the client side, with 
the results of the experiment being also reflected or displayed appropriately on 3D instru-
ments in the same interface.

In this application, Java 3D is used to create a virtual 3D world or room in which the 
3D instruments reside. The mouse is used for both navigation in this world as well as for 
operating the instruments through, say, dragging a sliding control or a rotary control or 
clicking or switching appropriate buttons on the instruments. Associated commands that 
cause the real instruments in a remote physical laboratory to operate accordingly are then 
sent through the Internet in real-time. Experimental results corresponding to, say, a change 
in the real oscilloscope display, are then sent from the instrument control server back to the 
Java 3D client to result in a real-time change in the display of the virtual 3D oscilloscope 
in the virtual 3D world.
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Apart from the room and instrument geometry, three important and difficult issues that have 
been tackled are navigating behavior, collision detection and picking behavior. Specifically, 
navigating behavior controls how the user is able to walk around in the virtual laboratory 
as well as the positions and angles of the view platform, as when the user attempts to get 
a better view. The use of appropriate collision detection ensures that the user is not able to 
traverse any solid objects such as walls, tables and instruments, while a customized picking 
behavior is necessary for the user to adjust the controls on the instruments precisely.

To satisfy these requirements and noting that the users will not be familiar with the use 
of special keys for 3D navigation, a more sophisticated and customized navigating system 
has been designed and developed. In this system, navigation can be done by using either 
the mouse or the keyboard. Specifically, the position and direction of the view platform or 
viewpoint can be changed by simply using the mouse to press two specially designed groups 
of control objects, a navigating speed slider, a translation, and a rotation icon. 

To change the user’s “walking” speed through the 3D virtual laboratory, the navigating 
speed slider can be adjusted. This will change the delays used in the main processing steps of 
the navigating function. An icon with six straight arrows allows the user to move in a straight 
translational manner. Pressing a ball in the center of the icon will reset the viewpoint to its 
initial position. The other icon with four curved arrows allows the user to rotate around the 
current position. The ball in the center will reset the viewpoint to a horizontal one.

With 3D scene-based navigation and manipulation implemented, the system is able to 
provide a more realistic 3D feel to users who are conducting real-time Web-based experi-
mentations. In the course of designing and developing this application, a large number of 
Java 3D example and program codes has been written, and an API library for the creation 
of similar Web-based 3D experiments has been developed. Specifically, the library includes 
a series of code segments and classes for defining the geometry and appearance of control 
buttons, knobs, sliders, clips and scope displays as well as their behavior in a 3D world.

This has culminated in the writing of this book, which aims to provide programmers 
with a simple but yet complete, comprehensive, and detailed coverage of all the important 
topics in Java 3D. 

In particular, this book includes a large number of programming examples for the reader 
to master this graphics API to develop sophisticated Java 3D graphic programs. Specifically, 
the use and significance of keywords, syntax, classes, methods, and features that make up 
the API are illustrated with 300 figures, 200 code fragments, and 100 examples throughout 
the 450 pages of the book to provide an easy-to-read and easy-to-use learning experience. 

All of the important Java 3D topics, including geometry, appearance, navigation, pick-
ing, animation, interaction, texture, light, background, fog, shade, input device, sound, and 
advanced view will be covered. Both novice and advanced graphics programmers, including 
those who know Java but do not have any background in computer graphics, will find the 
book useful from the large number of working examples provided. In addition, each chapter 
is written in a relatively independent manner so that readers with specific interests can make 
use of the examples in certain chapters without the need to read through other chapters.
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In total, the book consists of 13 chapters covering the various topics, and is organized 
in a step-by-step style. Discussions on basic 3D graphics, Java 3D overview, 3D geometry, 
appearance, texturing, animation, and interaction are discussed in the first six chapters. 
Subsequently, more advanced topics on navigating, picking, input device and are explored. 
The use of more complicated multiple views and audio are then discussed, culminating in 
the last chapter, which presents the Web-based 3D experiment application in detail. The 
following gives a brief synopsis on each of the chapters.

Chapter I provides an overview of interactive 3D graphics, OpenGL, virtual reality, 
VRML, Java 3D and mixed reality. The main purpose is to give an outline on the relation-
ship between these related technologies and applications. This also serves to place Java 
3D in the appropriate context from the general perspective of 3D graphics creation and 
presentation. 

Although many programming languages are available for creating 3D graphical applica-
tions, only Java 3D, VRML and the subsequently developed X3D are suitable for Web-based 
virtual reality development. As a result, while other tools are also briefly introduced, this 
chapter will discuss, analyze and compare VRML and Java 3D in detail.  Subsequent chapters 
in this book will focus on various aspects of Java 3D with an aim to provide a comprehensive 
experience in terms of understanding and programming using Java 3D technology.

From the discussions in this chapter, the differences between VRML and Java 3D will 
be better appreciated. It will be pointed out that, as one of the two important development 
tools for Web-based virtual reality, Java 3D has established itself as an important model-
ing and rendering languages for more specialized applications that involve, for example, 
database accesses, customized behaviors and home use mobile devices such as PDA, mobile 
phone, and pocket PC. 

Chapter II is a relatively short chapter laying the ground work for the creation of a 
virtual world in Java 3D. This chapter introduces the programming paradigm or the scene 
graph approach. Specifically, after providing some basic knowledge on VirtualUniverse, 
SimpleUniverse, Locale, BranchGroup, and TransformGroup objects, which form the 
virtual world framework, this chapter outlines how one can build a virtual world through 
specifying a scene graph.

The scene graph in Java 3D is for the purpose of describing the objects in a virtual 3D 
world, and is a tree like structure consisting of a hierarchy of nodes containing information 
on objects or groups of objects on geometries, shapes, lights, sounds, interactions, and so 
on. Specifically, the root of the scene graph is a virtual universe that may have several local 
branches. Also, each locale may hold related objects that are next to one another at a certain 
location in the 3D world, and may be made up of many branch and transform groups. 

Each branch group is a subgraph of the scene graph, and can be compiled for rendering 
efficiency. Also, by setting certain capabilities, branch groups can be attached or removed for 
interaction with the user during run time. In addition to the content branch, which describes 
the visual objects in the virtual world, the scene graph also needs at least a viewing branch 
for describing the how the user views the 3D world. The setting up of this branch can be 
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carried out easily by invoking a simple universe. Alternatively, multiple views of the same 
virtual world can be obtained for applications involving multiple displays.

Chapter III focuses on creating shapes and 3D objects that can be rendered by Java 3D 
using both core and utility classes. Different approaches to object creation will be explored, 
helping programmers to construct complex shapes using simple building blocks. 

In this chapter, several basic geometry classes that can be used to specify the geometry of 
visual objects in Java 3D will be introduced and discussed. Specifically, PointArray, LineAr-
ray, TriangleArray, and QuadArray are useful for building objects using a series of points, 
lines, triangles and quadrilaterals, while for structures where the series of lines or triangles 
are adjacent to each other in a certain manner, the use of LineStripArray, TriangleStripArray, 
and TriangleFanArray may be more convenient and lead to faster rendering. 

The problem of requiring certain vertices to be repeated when these basic classes are used 
can be overcome through using their indexed versions, where the sequence of vertices can 
be supplied via some integer indexing arrays. Complex objects can also be created through 
appropriately combining objects built from different classes. Also, simple geometrical shapes 
such as boxes, spheres, cones or cylinders can be easily generated using some predefined 
utility classes in Java 3D.

In Chapter IV, the appearance of the created 3D objects is discussed, including some 
parameters that control how they will be presented to the user. Important appearance attributes 
are illustrated by using examples so that the effected changes can be better appreciated. 

For most virtual reality or game applications, point, line and polygon are the basic 
primitives for constructing objects in the 3D world. The chapter therefore gives an in depth 
account of the various basic attribute settings, including rendering modes, visibilities, colors 
and material properties, that can be applied to these primitives. 

Although extensive use of basic attributes such as color and material will be able to 
make an object realistic to the human user, the amount of programming codes needed will 
in general be very lengthy and time consuming to develop if the object has complicated 
geometry or appearance. As an example, to create an object with many color patterns on, 
say, a curve surface, many zones or strips may need to be individually defined using the 
appropriate color or material properties. Since this is time consuming, Java 3D allows the 
use of what is known as texturing and image mapping, which will be discussed in the next 
chapter.

Building on Chapter IV, Chapter V describes the technique of texture mapping to add 
realism to virtual scenes. The use of texture modes and attributes in Java 3D, which is 
relatively straightforward and effective for adding color and realistic details to the surface 
of a visual object, will be presented to give programmers a reasonable palette of texturing 
techniques with which to work on. 

Specifically, texture objects are referenced by appearance objects, and have a variety of 
parameters that can be adapted to suit different needs through the Texture and TextureAt-
tributes classes. The mapping of a texture image to a surface can be performed manually by 
using setTextureCoordinate to set texture coordinates. It can also be automatically carried 
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out through the TexCoordGeneration class. The application of multiple textures to a surface 
can give a very realistic visual effect on the visual objects created in the virtual universe.

Chapter VI explores other issues that lead to better environmental realism. These includ-
ing lighting, fog, and background that can be used to further enhance the appearance of the 
virtual world. In general, these environmental factors affect the appearance of the object 
through their interaction with its material attribute. 

Specifically, the use of ambient, directional, point and spot lights will be presented. 
Topics involving material and normal settings, which determine how light will be reflected, 
will also be discussed. Some examples on the use of linear and exponential fog to smooth 
a scene and to prevent the sudden appearance of distant objects so as to enhance its emo-
tional appearance will be given. Then, the use of simple color, image, and geometry based 
backgrounds will be illustrated. 

Chapter VII discusses the use of interpolators and alpha classes for object animation 
in the virtual world. Simple animated movements such as rotation, translation and their 
combinations will be covered. More advanced animation techniques such as scaling, trans-
parency, and morphing will also be discussed. In addition, The billboard and the level of 
detail (LOD) classes, which are useful for creating animation at a reduced rendering level, 
will be presented.

The various animation classes provided by Java3D are usually quite complete in terms 
of their functionality. Very often, just a few parameters will be sufficient to implement a 
variety of simple and basic animation in Web-base virtual reality applications. For more 
complex scenarios, these classes can be further defined with more specific codes to give 
rise to more complicated movements. 

The movements of objects in a 3D world are very often the result of the user manipulat-
ing these objects or just navigation through them. As an example, the animation that allows 
a 3D clock hand to turn may need to be re-initiated if the user presses a certain reset button 
in the 3D world. The issue of interactions is therefore closely related to animation and is 
the main concern of the next chapter. 

To detect and deal with interactions from the user, Chapter VIII delves into some basic 
issues on event detection and processing. These include capturing the key pressed, mouse 
movement, finding changes in the state of the virtual object and time lapsed. In Java 3D, the 
detection of these events or detection conditions are based on examination of the appropriate 
components of the behavior class of an object.

Specifically, to specify and implement an interaction, it is necessary to make use of 
some special behaviors and events that Java 3D provides or to refine or customize these 
interaction functions. In general, through the construction of custom wakeup conditions 
and criteria, the system will be able to provide changes to the virtual 3D scene and objects 
through some appropriate processStimulus methods when the relevant stimulus or trigger 
condition is received. Complicated behavior can be handled by creating specialized wakeup 
triggers that respond to combinations of wakeup conditions, by having behaviors that post 
events, by detecting object collisions as well as the entry and exit of objects and viewing 
platforms into certain spatial bounds.
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After giving a basic foundation of event detection and processing, the next two chapters 
provide a more advanced coverage of the topic in two important interaction scenarios. These 
correspond to the picking of objects and use navigation in the 3D world. 

Chapter IX discusses the use of the picking behavior class for the purpose of picking 
objects of interest. Using simple utility classes such as PickRotationBehavior, PickTrans-
lateBehavior, and PickZoomBehavior is straightforward, although the picking behavior may 
not be flexible enough for most applications. 

In general, the simple operation of picking an object in the real world is actually very 
complicated and involves many senses. To allow the user to pick objects in the virtual 3D 
world as realistically as possible, Java 3D has a variety of picking shapes, such as PickRay, 
PickConeRay PickCylinder and PickBounds, that can be used to customize the picking 
behavior. After discussing these in some detail in this chapter, an application example 
involving the use of the controls in a 3D instrument panel will be provided.

Chapter X is on another important interaction behavior, that for the user to navigate or 
move in the virtual world. At the beginning of this chapter, the basic navigation classes 
provided by Java 3D are introduced. Due to the fact that they are not very flexible, these 
classes cannot be used for navigating in most virtual reality applications. 

As a result, there is a need to make use of Java 3D utility classes as well as more special-
ized user-defined behavior classes for designing customized navigation behavior in many 
virtual reality applications. This chapter will discuss how rotation and translation matrices 
can be used for calculating the position and orientation of the objects as the viewpoint 
changes. The use of navigation tools for moving and turning with the help of keyboard, 
mouse, joystick, and other external devices will also be presented.  In addition, another 
important issue, that involves the collisions of objects and how these can be handled, will 
be discussed in this chapter.

In Chapter XI, some advanced topics needed for generating multiple views of the virtual 
universe in Java 3D will be discussed. Illustrated with examples on configuring the viewing 
window to the virtual world, one will be able to see the virtual world from different per-
spectives, resulting in customizing viewpoints. Real life applications such as portal view in 
immersive virtual reality environment and video wall configuration will be introduced.

In Chapter XII, how 3D sound sources and aural characteristics can be integrated into 
the virtual world built using Java 3D will be outlined. Java 3D supports three types of sound 
sources, BackgroundSound, PointSound, and ConeSound, which will become audible if the 
activation radius intersects with the scheduling bounds of the sound. Controls can also be 
made available to turn a sound source on or off, set its gain, release style, continuous playback 
style, looping, priority, and scheduling bounds. In addition, by creating a SoundScape object 
with appropriate AuralAttributes, a special acoustical environment can be simulated.

In the last chapter, we provide some detailed design and discussions on an application 
where Java 3D is used in a Web-based real time 3D oscilloscope experimentation system. 
Outlined earlier, this application enables users to carry out a physical electronic experi-
ment that involves the use of an actual oscilloscope, a signal generator, and a circuit board 
remotely through the Internet. 
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