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Preface

What do you picture when you hear the term neural networks with high-dimensional parameters? Naturally, all 
neural networks can receive and send two or more signals, process high-dimensional data, and have a large number 
of parameters. Why are they specified to have high-dimensional parameters? This book describes neural networks 
with parameters (weights and threshold values) that are high-dimensional, such as complex numbers, quaternions, 
and N-dimensional vectors. The neural network with high-dimensional parameters is high-dimensional in this 
sense. But what is the significance of creating neural networks with high-dimensional parameters? The answer 
can be found in (Hirose, 2003, 2006; Nitta, 2008), and in every chapter of this book together with descriptions 
of possible developments. I had the idea of creating neural networks with high-dimensional parameters in April 
1990, when I started to work at the Electrotechnical Laboratory (now National Institute of Advanced Industrial 
Science and Technology (AIST)) and was looking for a theme to study. During a seminar for newcomers, I learned 
about a study on a complex autoregressive model by Dr. Otsu (presently an AIST Fellow) (Sekita, Kurita, & Otsu, 
1992), mentioning that complex regression coefficients form rotation invariant for two-dimensional figures, and 
was inspired by his comment that it went well when it was extended to complex numbers. The complex autore-
gressive models were later extended to quaternionic models, and so forth. (Tanaka, 1996). The section to which I 
was assigned was working on neural networks, and I started to study complex-valued neural networks under the 
supervision of Dr. Furuya (presently Professor of Toho University) (Nitta, & Furuya, 1991). At that time in 1990, 
I assumed I was the first in the world to extend neural networks to complex-valued models but I was wrong, as 
described below. 

	 Up to the early 1980s, there were many studies on symbolic processing. I was also engaged in R&D of the 
Expert shell. Along with the development of Von Neumann-type computers, studies started on information pro-
cessing different from symbolic processing but similar to that in the human brain. The neural network is one of 
such processes. Neural network is a network composed of artificial neurons and can be trained to find nonlinear 
relationships in data. Because there are many introductory references (for example, (Rojas, 1996)), only typical 
examples are outlined in this Preface. The first study on neural networks was reported by MacCulloch and Pitts in 
1943. Stimulated by the results of anatomical and physiological studies, they proposed a network model consisting 
of a small number of very simple neurons and showed that the model could be used for logical calculations, and 
so forth. The original model of the present neural network was proposed by Rosenblatt in 1958 and was called 
Perceptron. In 1969, Minsky and Perpert showed mathematically that Perceptron cannot solve linearly non-sepa-
rable problems (Minsky, & Papert, 1969), which requires identifying multi-dimensional data that are mutually 
interrelated. Perceptron was shown to be applicable only to simple problems. A feedforward neural network is a 
network in which signals are transmitted only in one direction. Rumelhart, Hinton, and Williams (1986) proposed a 
learning algorithm called back-propagation (BP), which was applicable to multilayer feedforward neural networks 
(Multilayer Perceptron). Multilayer feedforward neural networks with BP attracted attention as they could solve 
linearly non-separable problems, which could not be solved by Perceptron. By learning, the multilayer feedfor-
ward neural network acquires the ability to generalize. With this helpful ability, the network can output a sort of 
answer to unlearned patterns. This generalization ability is very useful when using the network in various fields. 
Hopfield proposed a kind of fully connected recurrent neural network (Hopfield, 1984; Hopfield & Tank, 1985). 
In fully connected recurrent neural networks, signals are transmitted not only in one direction but also in the op-
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posite direction, and the signals can pass through the same neurons not only once but many times. The operation 
of the network is very simple. First, an arbitrary neuron is selected, and a simple computation is performed. Then 
the result of the computation is transmitted to all neurons in the network. Hopfield defined an index for showing 
the behavior of a fully connected recurrent neural network as a whole and called it energy function. He proved 
mathematically that the energy function decreases monotone with time and showed that combinational optimiza-
tion problems could be quickly solved by approximation by using the monotone decreasing characteristic of the 
energy function. Kohonen (1995) showed that concept formation can be achieved using a neural network. Concept 
formation means automatic classification of a large amount of data. Two two-dimensional planes installed with 
two or more neurons are used. One plane is for receiving the input pattern (the input layer), and the other outputs 
the results (the output layer). The neurons on the input and output layers are weighted with weight parameters. 
The weight value is modified by Hebbian learning, which involves changing the value of the weight parameter 
according to the activity of the neuron, and a larger change is made at a higher activity.

	 The usual real-valued neural networks have been applied to various fields such as telecommunications, robotics, 
bioinformatics, image processing, and speech recognition, in which complex numbers (2 dimensions) are often used 
with the Fourier transformation. This indicates that complex-valued neural networks, whose parameters (weights 
and threshold values) are all complex numbers, are useful. In addition, in the human brain, an action potential may 
have different pulse patterns, and the distance between pulses may be different. This suggests that it is appropriate 
to introduce complex numbers representing phase and amplitude into neural networks. Furthermore, it is obvious 
that vectors with more than 2 dimensions are used in the real world to represent a cluster of something, for example, 
a 4-dimensional vector consisting of height, width, depth and time, and an N-dimensional vector consisting of N 
particles and so on. Thus, a model neuron that can deal with N signals as a cluster, is useful. 

	 Aizenberg, Ivaskiv, Pospelov, and Hudiakov (1971) (former Soviet Union) proposed a complex-valued neuron 
model for the first time, and although it was only available in the Russian literature at the time, their work can now 
be read in English (Aizenberg, Aizenberg & Vandewalle, 2000). Prior to that time, most researchers other than 
Russians had assumed that the first persons to propose a complex-valued neuron were Widrow, McCool, and Ball 
(1975). Interest in the field of neural networks started to grow around 1990, and various types of complex-valued 
neural network models were subsequently proposed. Since then, their characteristics have been researched, mak-
ing it possible to solve some problems which could not be solved with the real-valued neuron, and to solve many 
complicated problems more simply and efficiently. From 2001, several special sessions on complex-valued neural 
networks have been organized in several international conferences (KES, 2001, 2002, 2003; ICONIP, 2002, 2004; 
ICANN/ICONIP, 2003; IJCNN, 2006, 2008; ICANN, 2007). 

	 There appear to be several approaches for extending the real-valued neural network to higher dimensions. 
One approach is to extend the number field, that is, from real numbers x (1 dimension), to complex numbers z = x 
+ iy (2 dimensions), to quaternions q = a + ib + jc + kd (4 dimensions; see Chapter XVI), to octonions (8 dimen-
sions), to sedenions (16 dimensions), and so forth (Weyl, 1946; Nitta, 1995; Arena, Fortuna, Muscato, & Xibilia, 
1998; Pearson, 2003; Nitta, 2005; Buchholz, & Sommer, 2008). In this approach, the dimension of the input 
signal fed into the neural network is restricted to the form of 2n, n = 1, 2, …, that is, 1, 2, 4, 8, 16, … Another 
approach is to extend the dimension of the threshold values and weights from 1 dimension to N dimensions using 
N-dimensional real-value vectors. In this approach, the dimension of the input signal fed into the neural network 
takes a natural number, that is, N = 1, 2, 3, 4, … Moreover, there are two types of the latter approach: (a) weights 
are N-dimensional matrices (Nitta, & Garis, 1992; Nitta, 2006), or (b) weights are N-dimensional vectors (Nitta, 
1993, 2007; Kobayashi, 2004). Also, there is an approach using hyperbolic numbers (2 dimensions) (Buchholz, & 
Sommer, 2000; Nitta, & Buchholz, 2008). Hyperbolic numbers, which are closely related to the popular complex 
numbers, are numbers of the form z = x + uy where x, y are real numbers and u is called unipotent which has the 
algebraic property that u ≠ ± 1 but u2 = 1 (Sobczyk, 1995). Quantum neural networks can be viewed as one type 
of complex-valued neural network (see Chapters XIII-XV). 
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	 This book describes the latest developments in the theories and applications of neural networks with high-
dimensional parameters which have been progressing in recent years. Graduate students and researchers will eas-
ily acquire the fundamental knowledge needed to be at the forefront of research, while practitioners will readily 
absorb the information required for applications. This book also provides a snapshot of current research and thus 
serves as a workbench for further developments in neural networks with high-dimensional parameters.

The following four books related to neural networks with high-dimensional parameters have been published: 
(Arena et al., 1998; Aizenberg et al., 2000; Hirose, 2003; Hirose, 2006). (Arena et al., 1998) was the first monograph 
on neural networks with high-dimensional parameters, and described the results of research on complex-valued 
neural networks, vectorial neural networks, and quaternary neural networks. The results of research up to 1997 are 
well organized in the monograph. The detailed descriptions of the function approximation capabilities of complex-
valued neural networks with an analytic activation function and networks with a non-analytic activation function 
are excellent. (Aizenberg et al., 2000) is a comprehensive book on the complex-valued neuron models proposed 
by the authors, and is well organized from theories to applications. (Hirose, 2003) is an edited book which contains 
14 chapters on complex-valued neural networks written by various authors. The chapter on the Clifford neural 
network written by Pearson is of interest to the complex-valued neural network community. (Hirose, 2006) is a 
translation of a book in Japanese (Hirose, 2005) that systematically describes complex-valued neural networks in 
the first half, and application examples obtained by the author’s laboratory in the second half.

	 It took a long time for mathematicians to accept complex numbers (Ebbinghaus, et al., 1988). During the 
Renaissance, when complex numbers were first discovered, they were called quantitates impossibiles. They 
were carefully calculated but were not recognized in mathematics. In the mid 19th century mathematicians finally 
recognized the real power of complex numbers. Today, physicists do not hesitate to speak of complex numbers 
as physical targets. Complex numbers appear in Schrödinger’s equation of quantum mechanics and are used in 
electrical engineering quite naturally. Complex numbers, which were once called quantitates impossibiles, are 
now firmly established in all fields of natural science and engineering, and scientists and engineers do not hesitate 
to use them in calculations. Unlike complex numbers, complex-valued neural networks were easily accepted in 
general. In my experience, I received only several negative comments in 1991 when I first proposed a complex-
valued neural network. This quick recognition was likely because studies have focused on the engineering useful-
ness of complex-valued neural networks. Actually, most studies on complex-valued neural networks have been 
on engineering applications (usefulness) and were independent from those on the brain. It will be interesting to 
understand the actual relationships with the neural network of the brain. Neural networks are frequently grouped in 
soft computing together with evolutionary computation and fuzzy computation. Hybridizing neural networks with 
high-dimensional parameters with evolutionary computation or fuzzy computation looks promising (Chapter XV 
describes an example) for extending the potential of neural networks with high-dimensional parameters. In practice, 
there are many more study results and fields of application than are described in this book. Initially, this book was 
to contain 26 chapters, but the number was reduced to 16 for various reasons. It is a pity that we could not include 
the study on chaos by Nemoto and Saito (2002) and the studies on fractals by Miura and Aiyoshi (2003). For the 
special issue on complex-valued neural networks of the International Journal of Neural Systems (Rao, Nitta, & 
Murthy, 2008), for which I served as guest editor, 24 papers were submitted. Special sessions on complex-valued 
neural networks are also held in many international conferences as described above. We hope that readers all over 
the world will find this book both useful and enjoyable. 

OrGANIZATION OF THE BOOK
	

The book is divided into three main sections: Complex-Valued Neural Network Models and Their Analysis (Chapters 
I-VI), Applications of Complex-Valued Neural Networks (Chapters VII-XII), and Models with High-Dimensional 
Parameters (Chapters XIII-XVI). 
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	 A brief description of each of the chapters follows.
Chapter I applies information geometry to complex-valued Boltzmann machines. The author of this chapter 

constructs the complex-valued Boltzmann machines, and investigates the structure of the complex-valued Boltzmann 
manifold. The author also derives an effective learning algorithm, called an em algorithm, for complex-valued 
Boltzmann machines with hidden neurons. Some important notions of information geometry, exponential families, 
mixture families, Kullback-Leibler divergence, connections, geodesics, Fisher metrics, potential functions and so 
on are explained for readers who are unfamiliar with information geometry. 

Chapter II introduces the complex-valued network inversion method to solve inverse problems with complex 
numbers. The original network inversion is applied to usual multilayer neural networks with real-valued inputs 
and outputs, which solves inverse problems to estimate causes from results using a multilayer neural network. 
Regularization for the complex-valued network inversion is explained, which solves difficulties attributable to 
the ill-posedness of inverse problems. 

Chapter III attempts to extend the clustering ensemble method and the Kolmogorov’s Spline Network to 
complex numbers, in the context of adaptive dynamic modeling of time-variant multidimensional data. The chapter 
is intended to provide an introduction to these subjects and to stimulate the participation of both young and expe-
rienced researchers in solving challenging and important problems in theory and practice related to this area. 

Chapter IV describes a complex-variable version of the Hopfield neural network (CHNN), which can exist in 
both fixed point and oscillatory modes. In the fixed-point mode, CHNN is similar to a continuous-time Hopfield 
network. In the oscillatory mode, when multiple patterns are stored, the network wanders chaotically among pat-
terns. It is shown that adaptive connections can be used to control chaos and increase memory capacity. Electronic 
implementation of the network in oscillatory dynamics, with fixed and adaptive connections, shows an interesting 
tradeoff between energy expenditure and retrieval performance. Some interesting applications are presented. 

Chapter V presents global stability conditions for discrete-time and continuous-time complex-valued recurrent 
neural networks, which are regarded as nonlinear dynamical systems. Global asymptotic stability conditions for 
these networks are derived by suitably choosing activation functions. According to these stability conditions, there 
are classes of discrete-time and continuous-time complex-valued recurrent neural networks whose equilibrium 
point is globally asymptotically stable.

Chapter VI presents models of fully connected complex-valued neural networks which are complex-valued 
extensions of Hopfield-type neural networks and discusses methods of studying their dynamics. In particular, the 
author investigates existence conditions of energy functions for complex-valued Hopfield-type neural networks. 
As an application of the energy function, a qualitative analysis of the network by utilizing the energy function is 
shown and a synthesis method of complex-valued associative memories is discussed. 

Chapter VII addresses a grey-box approach to complex-valued RBF modeling and develops a complex-valued 
symmetric RBF (SRBF) network model. The application of this SRBF network is demonstrated using nonlinear 
beamforming assisted detection for multiple-antenna aided wireless systems that employ complex-valued modu-
lation schemes. Two training algorithms for this complex-valued SRBF network are proposed. The effectiveness 
of the proposed complex-valued SRBF network and the efficiency of the two training algorithms in a nonlinear 
beamforming application are demonstrated. 

Chapter VIII illustrates the application of various types of complex-valued neural networks such as radial 
basis function networks (RBFN), multilayer feedforward networks and recurrent neural networks for training 
sequence-based as well as blind equalization of communication channels. The structures and algorithms for these 
equalizers are presented and performances based on simulation studies are analyzed, highlighting their advantages 
and the important issues involved.

Chapter IX presents the complex backpropagation (BP) algorithm for complex backpropagation neural networks 
(BPN) consisting of suitable node activation functions having multi-saturated output regions. The complex BPN is 
used as a nonlinear adaptive equalizer that can deal with both quadrature amplitude modulation (QAM) and phase 
shift key (PSK) signals of constellations of any size. In addition, four nonlinear blind equalization schemes using 
complex BPN for M-ary QAM signals are described and their learning algorithms are presented.
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Chapter X presents new design methods for the complex-valued multistate Hopfield associative memories 
(CVHAMs). The stability of the presented CVHAM is analyzed by using the energy function approach which 
shows that in synchronous update mode a CVHAM is guaranteed to converge to a fixed point from any given 
initial state. Next, a generalized intraconnected bidirectional associative memory (GIBAM) is introduced, which 
is a complex generalization of the intraconnected BAM (IBAM).

Chapter XI proposes a method for automatically estimating nuclear magnetic resonance (NMR) spectra of 
metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or com-
plicated calculations. In the method, the problem of NMR spectrum estimation is transformed into the estimation 
of the parameters of a mathematical model of the NMR signal. To estimate these parameters, the author designed 
a complex-valued Hopfield neural network, noting that NMR signals are essentially complex-valued. 

Chapter XII introduces an independent component analysis (ICA) approach to the separation of linear and 
nonlinear mixtures in the complex domain. Source separation is performed by an extension of the INFOMAX 
approach to the complex environment. The neural network approach is based on an adaptive activation function, 
whose shape is properly modified during learning. A simple adaptation algorithm is derived and several experi-
mental results are shown to demonstrate the effectiveness of the proposed method. 

Chapter XIII introduces the authors’ qubit neural network, which is a multilayered neural network composed 
of quantum bit neurons. In this description, it is indispensable to use the complex-valued representation, which is 
based on the concept of quantum bits (qubits). The authors clarify that this model outperforms the conventional 
neural networks via computer simulations such as a bench mark test. 

Chapter XIV shows the effectiveness of incorporating quantum dynamics and then proposes a neuromorphic 
adiabatic quantum computation algorithm based on the adiabatic change of Hamiltonian. The proposed method 
can be viewed as a complex-valued neural network because a qubit operates like a neuron. Next, the performance 
of the proposed algorithm is studied by applying it to a combinatorial optimization problem. Finally, the authors 
discuss learning ability and hardware implementation. 	

Chapter XV studies neural structures with weights that follow the model of the quantum harmonic oscillator. 
The proposed neural networks have stochastic weights which are calculated from the solution of Schrödinger’s 
equation under the assumption of a parabolic (harmonic) potential. The learning of the stochastic weights is ana-
lyzed. In the case of associative memories the proposed neural model results in an exponential increase of pattern 
storage capacity (number of attractors). 

Chapter XVI describes two types of quaternionic neural network model. One type is a multilayer perceptron 
based on 3D geometrical affine transformations by quaternions. The operations that can be performed in this net-
work are translation, dilatation, and spatial rotation in three-dimensional space. The other type is a Hopfield-type 
recurrent network whose parameters are directly encoded into quaternions. The fundamental properties of these 
networks are presented. 
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