
 vii

Preface

The main objective of this book is to teach students and practitioners to analyze
and design information systems (IS) using the functional and object oriented
methodology (FOOM),1 which combines the functional (process-oriented) ap-
proach with the object oriented (OO) approach.
The functional approach to IS development (sometimes also termed the tra-
ditional approach) was popular in the 1980s and 1990s of the 20th century.
The development life cycle of this approach is based on the waterfall model
(or its variations), according to which the IS development is essentially a se-
quential process, with the possibility of repetitions and iterations, thus making it
look more like a spiral process. This approach views the IS as made of func-
tions (processes), interconnected in a complex manner. The analysis of the IS
focuses on discovering and defining the functions which the system needs to
perform, and the flow of data to and from those functions. Two of the notable
methodologies supporting this approach are structure system analysis (SSA)
and system structure design (SSD) (DeMarco, 1978; Gane & Sarson, 1979;
Yourdon, 1989). The SSA methodology is based on the use of data flow dia-
grams (DFDs) which describe the various functions of the system; the data
stores in which the data are saved; the external entities which are the source of
data input to the system and the destination of output information; and the
dataflows which connect all of these components. According to the SSD meth-
odology, the DFDs created in the analysis phase are transformed into a modu-
lar description of application programs, expressed by structure charts (Yourdon
& Constantine, 1979).
With the development of the relational data model on the one hand, and concep-
tual data models on the other hand, more emphasis was given to the analysis
and design of the system’s database. The entity relationships (ER) model and
its entity relationship diagram (ERD) (Chen, 1976) had become a common mean

viii

for modeling the data and creating a conceptual data model, thus playing a
complementary role to the role of DFDs in functional analysis. In the design
phase, the ERD is mapped into a relational database schema. Simultaneously,
the functional model is mapped, as mentioned previously, into structure charts
of the application programs.2

One of the main problems with the traditional development methodologies such
as SSA and SSD is the difficulty of transition from the analysis phase to the
design phase. The transition is not smooth and causes difficulties because of
the need to translate DFDs, which are a network structure, into structure charts,
which are hierarchical. Another problem is the gap between the functional
modeling aspect on one hand (leading to the creation of the application pro-
grams), and the data modeling aspect on the other hand (leading to the creation
of the database schema of the application). In order to address these issues,
Shoval developed the ADISSA methodology, which closes the gap between
analysis and design phases and enables a smooth transition from the former to
the latter phase (Shoval, 1988, 1991). The smooth transition from analysis to
design is made possible by introducing a new construct in the DFDs: transac-
tions. From a user’s point of view, a transaction is a process performed by the
IS to support a user’s task, which is activated as a result of an event in the real
(user) world. The transactions of the system are identifiable in the DFDs, and
based on them it is possible to design all components of the system as a natural
continuum of the analysis phase. The products of the design include, according
to ADISSA, detailed descriptions of the application programs; a database
schema; the user interfaces (menus trees) and the input/output screens; and
reports.
The OO approach for IS development became popular in the early 1990s. The
success of object oriented programming languages (OPL) motivated the pen-
etration of the objects approach also to the area of analysis and design method-
ologies. In the last 15 years many OO analysis and design methodologies have
evolved, and many techniques and diagram types which support these method-
ologies have been created, enabling the modeling of a system from various
perspectives. Some examples of early OO methodologies can be found in Booch
(1994), Coad and Yourdon (1990, 1991), Jacobson (1992), Martin and Odell
(1993), Rumbaugh (1995), Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen
(1992), Shlaer and Mellor (1992), and Wirfs-Brock, Wilkerson, and Wiener
(1990).3

The huge number of techniques and diagram types which evolved until the mid
1990s was a main driving force for proposing and adopting the unified modeling
language (UML) as the “standard” for OO systems modeling.4 UML is a col-
lection of visual notation, that is, diagrammatic techniques. In spite of its great
popularity and the advantage of having standardized techniques, UML has limi-
tations. One of them is that UML includes many techniques with a certain

 ix

degree of overlapping between them. Some techniques enable developers to
achieve the same goal in different ways;5 but it is not always clear which tech-
nique should be preferred. Clearly, multiplicity of techniques and notations makes
learning UML difficult and complicates the development process because of
the need to move from one model/diagram type to another while keeping all
models consistent (Siau & Qing, 2001).
Ever since the use of development methodologies for the creation of IS, soft-
ware developers had to deal with two main problems: (1) the gap between
process and data; and (2) the gap between analysis and design. The gap be-
tween process and data was manifested in traditional methodologies by the fact
that DFDs emphasize process (functional) modeling, neglecting somewhat the
modeling of data. A remedy to this gap came with the introduction of concep-
tual data models, notably the ER model, which complement DFDs as tools for
defining the users’ requirements. In early OO methodologies, the gap between
process and data modeling was manifested by putting most of the emphasis on
data (objects) modeling, while process modeling played a minor role only. To
compensate for this deficiency, various techniques were added over time to
deal with the functional aspects; but the result was, as said, a multitude of
techniques with no well-defined interconnection among them.
The gap between analysis and design is expressed by the fact that the transition
from analysis to design is not always clear and natural. In the analysis phase
we define what the system ought to do as based on the users’ needs, while in
the design phase we deal with how the system will do that. Although it is clear
that the design should be a direct continuation of the analysis, analysis and
design methodologies have not always succeeded in doing so; some methodolo-
gies do not make it clear what “belongs” to analysis and what to design, or
when does one phase end and the other begins, or (especially) what to do with
the products of the analysis phase in the design phase. A solution to this void
was offered, as said, by the ADISSA methodology, which defines and derives
transactions from the DFDs and uses them as the basis for designing the appli-
cation programs, the user interface, and the inputs and outputs of the system
(Shoval, 1988, 1990, 1991). Some OO methodologies have tried to bridge the
gap between the analysis and design by making the borders between the two
phases “fuzzy,” that is, treating the design as a refinement of analysis (e.g.,
Coad & Yourdon, 1990, 1991). Some OO methodologies do not specify what
activity belongs to which phase, or where one phase ends and the other begins,
or which of the possible techniques should be used in each of these phases. Yet,
some methodologies view design as a refinement of analysis.
FOOM methodology (initially presented in Shoval & Kabeli, 2001) combines
the functional and objects approaches and gives them an equal stand in both
phases. In the analysis phase, the users’ requirements are defined by creating
two complementary models: a data model, expressed in the form of an initial

x

class diagram, and a functional model, expressed in the form of object oriented
DFDs (OO-DFD). The two models are synchronized and used in the design
phase in order to design the various components of the system. The design
products include a complete class diagram; detailed descriptions of the class
methods; user interfaces and input/output screens; and reports. The products
of the design phase facilitate the construction (programming) of the system in
an OO development environment.

Organization of This Book

This book is aimed for students of IS, computer science, management, and
other fields which include a concentration on IS. It is intended to be a textbook
of an advanced course (possibly in an undergraduate or graduate program),
after the students have had at least one course in the fields of computer sci-
ence or IS. In addition, it is recommended that the students take a course on
databases (mainly being familiar with the relational model, data normalization,
and the ER model). A course on IS analysis and design is not a prerequisite.
However, familiarity with IS development methodologies, either from the func-
tional or objects approach, is an advantage.
The book is divided into three learning sections, each consisting of three to five
chapters. The first section deals mainly with the objects model and class dia-
grams; the second section deals with system analysis, and the third with system
design. The material in each chapter includes many examples. At the end of
each chapter there are review questions, which are meant to help the students
in digesting and understanding the material. In some chapters there are also
assignment questions which require solving practice-oriented problems. In ad-
dition to working on such assignments, it is recommended to include in the
course a guided project, in which teams of two to three students perform the
tasks of analysis and design of an IS for an organization in a real-world envi-
ronment (as much as possible). If this is not possible an alternative is to per-
form a similar project on a case study that will be prepared for the students.6

The content of the book is as follows:

Section I (The Objects Model and Class Diagrams) provides a preview of
the objects approach in general, and elaborates on the objects model and class
diagrams in particular. The section consists of five chapters.

• Chapter I (Introduction to the Objects Approach in Software) pre-
sents the principles and characteristics of OO software in the objects
approach, and common terms in OO programming.

 xi

• Chapter II (The Objects Model and the Class Diagram) describes in
detail the components of the objects model (including objects, classes,
attributes, relationships, and functions), and the class diagram which rep-
resents them.

• Chapter III (Creating Class Diagrams) discusses considerations and
rules for identifying classes, attributes, relationships, and functions and
presents case study examples (problems), that is, descriptions of users’
data requirements, along with their class diagram solutions.

• Chapter IV (Mapping Entity Relationship Diagrams to Class Dia-
grams) explains why it might be preferred to first create an ERD and
then map it to a class diagram. The chapter then describes the mapping
rules and demonstrates the mapping process with several comprehensive
examples.

• Chapter V (Mapping Class Diagrams to Relational Schemas) ex-
plains the need to map a class diagram to a relational schema. Most of the
chapter is dedicated to presenting and demonstrating the mapping rules
for converting a class diagram into a relational schema which is made of
normalized relations. The mapping process is demonstrated with several
comprehensive examples.

Section II (Functional and Object Oriented Analysis) starts with present-
ing a background for the development of UML, and then explains the motiva-
tion for the development of FOOM, which combines the objects and functional
approaches. Most of the section is dedicated to learning how to analyze a sys-
tem according to FOOM. The section consists of four chapters.

• Chapter VI (Object Oriented Methodologies and UML) reviews the
evolution of OO methodologies and UML. Most of the chapter is dedi-
cated to presenting and demonstrating the various techniques and dia-
grams which make up UML, and then it provides a detailed example of IS
modeling using a UML-based methodology.

• Chapter VII (Combining the Functional and Object Oriented Ap-
proaches: Introduction to FOOM) starts by introducing the motivation
for the development of a combined methodology. Then it presents the
stages, substages, and products of FOOM.

• Chapter VIII (Information Systems Analysis with FOOM) elaborates
on the activities and products of the analysis phase. The products of analysis
include a data/objects model (in the form of an initial class diagram) and a
functional model (in the form of hierarchical OO-DFDs. The two diagram
types are synchronized in order to verify the correctness and complete-
ness of the two models. The chapter presents various examples of dia-
grams of both types.

xii

• Chapter IX (Data Dictionary) explains the roles of a data dictionary in
the development of the IS and describes its components. The chapter
presents a possible implementation of the data dictionary both with the
relational and with the OO models.

Section III (Information System Design with FOOM) is about the design
phase. The products of the design include: (1) a complete class diagram, con-
taining (in addition to the data classes) the interface, inputs, outputs, and trans-
actions class; (2) detailed descriptions of the various class methods; (3) the
menus of the user interface; (4) the input and output screens and reports. The
section includes three chapters.

• Chapter X (Transactions and Their Top-Level Design) describes what
a transaction is and explains how to identify and extract the transactions
from the OO-DFDs. Then it explains how to map transaction diagrams to
top-level descriptions which details their components and process logic.

• Chapter XI (Designing of the Man-Machine Interface: Menus, In-
puts, and Outputs) presents a method for the design of user interfaces—
menus trees—for the entire system as well as for its subsystems. Then it
describes how to design the inputs and outputs/reports of the systems.

• Chapter XII (Detailed Design of the Transactions and Class Meth-
ods) describes how to map top-level descriptions of transactions to de-
tailed descriptions, and then how to “decompose” these detailed descrip-
tions into various methods, which are attached to proper classes. Two
equivalent techniques for the description of methods are provided: pseudo
code and message charts. The chapter ends with a review on the products
of the design phase, which serve as input to the system construction (pro-
gramming) stage.

References

Avison, D., & Fitzgerald, G. (1988). Information systems development: Meth-
odologies, techniques and tools. Oxford, UK: Blackwell.

Booch, G. (1994). Object-oriented analysis and design with applications
(2nd ed.). Redwood City, CA: Benjamin/Cummings.

Chen, P. (1976). The entity-relationship model—Toward a unified view of data.
Transactions on Database Systems, 1(1), 9-36.

Coad, P., & Yourdon, E. (1990). Object oriented analysis. Englewood Cliffs,
NJ: Prentice Hall.

 xiii

Coad, P., & Yourdon, E. (1991). Object oriented design. Englewood Cliffs,
NJ: Prentice Hall.

DeMarco, T. (1978). Structure analysis and system specification. Englewood
Cliffs, NJ: Prentice Hall.

Gane, C., & Sarson, T. (1979). Structured systems analysis, tools and tech-
niques. Englewood Cliffs, NJ: Prentice Hall.

Jacobson, I. (1992). Object-oriented software engineering: A use case driven
approach. New York: Addison Wesley.

Jayaratna, N. (1994). Understanding and evaluating methodologies:
NIMSAD, a systematic framework. London: McGraw Hill.

Martin, J., & Odell, J. (1993). Object-oriented analysis and design. Englewood
Cliffs, NJ: Prentice Hall.

Olle, W., Sol, H., & Verrijn-Stuart, A. (Eds.). (1986). Information system de-
sign methodologies—Improving the practice. North Holland: Elsevier
Science Publishers; IFIP.

Rumbaugh, J. (1995). OMT: The dynamic model, the functional model, the ob-
ject model. Journal of Object-Oriented Programming, 7(9), 6-12; 8(1),
10-14; 7(8): 21-27.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1992).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice
Hall.

Shlaer, S., & Mellor, S. (1992). Object lifecycles—Modeling the world in
states. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Shlaer, S., & Mellor, S. (1992). Object-oriented systems analysis: Modeling
the world in data. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall.

Shoval, P. (1988). ADISSA: Architectural design of information systems based
on structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within structured
system development. International Journal of Man-Machine Studies,
33, 537-556.

Shoval, P. (1991). An integrated methodology for functional analysis, process
design and database design. Information Systems, 16(1), 49-64.

Shoval, P. (1998). Planning, analysis and design of information systems
(Vols. 1-3). Tel-Aviv, Israel: Open University Press. (Original work pub-
lished)

Shoval, P., & Kabeli, J. (2001). FOOM: Functional and object-oriented analysis
and design of information systems—An integrated methodology. Journal
of Database Management, 12(1), 15-25.

Shoval, P., & Kabeli, J. (2005). Essentials of functional and Object-oriented
methodology. In M. Khosrow-Pour (Ed.), Encyclopedia of information
science and technology (pp. 1108-1115). Hershey, PA: Idea Group.

xiv

Siau, K., & Qing, C. (2001). Unified modeling language (UML)—A complexity
analysis. Journal of Database Management, 12(1), 26-34.

Wieringa, R. (1998). A survey of structured and object-oriented software speci-
fication methods and techniques. ACM Computing Surveys, 30(4), 459-
527.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-ori-
ented software. Englewood Cliffs, NJ: Prentice Hall.

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ:
Prentice Hall.

Yourdon, E., & Constantine, L. (1979). Structured design. Englewood Cliffs,
NJ: Prentice Hall.

Endnotes

1 FOOM was developed by Peretz Shoval, the author of this book, with the
assistance of his doctoral student Judith Kabeli (Shoval & Kabeli, 2001,
2005). FOOM is based on and expands the ADISSA methodology, which
Peretz Shoval has developed as a functional development methodology
(Shoval, 1988, 1991, 1998).

2 More background and surveys of traditional IS development methodolo-
gies can be found, among others (in Avison and Fitzgerals (1988), Jayaratna
(1995), Olle, Sol, and Verrijn-Stuart (1986), and Wieringa (1998)).

3 For a survey of both structured and early object-oriented methodologies
see Wieringa (1998).

4 UML Web sites are detailed in the References.
5 For example, sequence diagrams and collaboration diagrams.
6 It is also recommended that the students will build (program) the system

(or parts of it) in a proper development environment. This can be done in
a follow-up course or exercise.

