
vi

Preface

In order to establish itself as a branch of engineering, a profession must under-
stand its accumulated knowledge. In addition, software engineering as a branch
of engineering must take several basic steps in order to become an established
profession, highlighting understanding of the nature of its knowledge.
Software engineering experts always have used proven ideas. Concretely, in
the object-oriented (OO) design knowledge field, the practical experience of it
has been crucial to software engineers, and it is in the last years when these
ideas, materialized in items such as patterns or refactorings have reached their
biggest popularity and diffusion. And in this regard, the software engineering
community has advanced greatly and we currently have numerous and defined
chunks of knowledge, including standards, methodologies, methods, metrics,
techniques, languages, patterns, knowledge related to processes, concepts, and
so forth. Although these different areas of knowledge relate to the construction
of an OO system, there is a lot of work still to be done in order to systematize
and offer this knowledge to designers in such a way that it can be easily used in
practical cases.
A software architecture is a description of the subsystems and components of
a software system and relationships between then.1 Usually, the software ar-
chitecture is subdivided into macro and micro architecture. Whereas macro
architecture describes the metamodel of design, this that provides the high-
level organization, the micro architecture describes details of a design at a lower
level.

 vii

OO design is a software design technique, which is expressed in terms of ob-
jects and relationships between those; at the level of micro architecture it in-
cludes elements such as classes, its relationships, responsibilities, refactorings,
and so on.
OO micro architectural knowledge is built upon design experiences, such as
problem solving, or lessons learned. Therefore, the OO micro architectural de-
sign knowledge has grown with time and the increasing complexity of soft-
ware. This knowledge expands and accumulates when it is stored in books and
other media for the use of designers.
In addition, the major part of OO design knowledge is difficult to identify and
use. The experience has demonstrated that design often omits common prin-
ciples, heuristics, and so on, with a consequent major loss of experience. Con-
sequently, actually, serious difficulties are still encountered when we tackle the
construction of OO systems. Although designers have accumulated a body of
knowledge that they apply during these processes, this is very implicit. Fortu-
nately, it is now being specified and popularized in different forms: principles,
heuristics, patterns, and more recently, refactoring techniques. However, today,
the difference between these concepts is generally unclear and not all of them
have received the same amount of attention or have reached the same degree
of maturity. In addition, a strong knowledge does not exist on items such as
design principles, best practices, or heuristics. The problem confronting the
designer is how to articulate all this explicit knowledge and to apply it in an
orderly and efficient way in the OODA, in such a way that it is really of use to
him or her. In fact, in practice, even such advanced subjects like OO patterns
have this problem
Design knowledge and best practices are stored in individual expert minds, or
implicitly encoded and documented in local organisational processes. It has
always been true that a significant part of design knowledge resides in the
minds of the experts that make it up. However, communities and companies are
beginning to find that it is easy to lose a vital element of their intellectual prop-
erty: corporate design knowledge. Therefore, we can say that the major part of
the design knowledge today is tacit knowledge: it in the form of project experi-
ences, heuristics, or human competencies that are difficult to be captured and
externalised.
The effective management of this knowledge is today a significant challenge.
For knowledge management to be effective, this knowledge should be orga-
nized and classified. In addition, with this purpose, developing unified cata-
logues of knowledge, ontologies, empirical studies, and so on, books and studies
such as those we present here, are very important issues to improve the use of
OO design knowledge.
Therefore, in this context, we present this book whose main objective is to give
a global vision of micro-architectural design knowledge, exposing the main tech-
niques and methods, and analyzing several aspects related to it.

viii

The subject matter in this book is divided into ten chapters. The chapters seek
to provide a critical survey of the fundamental themes, problems, arguments,
theories, and methodologies in the field of OO micro architectural design knowl-
edge. Each chapter has been planned as a self-standing introduction to its sub-
ject.
Therefore, in Chapter I Javier Garzás and Mario Piattini present an introduc-
tion to “The Object-Oriented Design Knowledge,” where they show the main
issues and problems of the field. In OO micro-architectural design knowledge,
design patterns are the most popular example of accumulated knowledge, but
other elements of knowledge exist such as principles, heuristics, best practices,
bad smells, refactorings, and so forth, which are not clearly differentiated; in-
deed, many are synonymous and others are just vague concepts.
An essential issue to building an OO design knowledge discipline is organizing
this knowledge. In Chapter II, titled “The Object-Oriented Design Knowledge
Ontology,” Javier Garzás and Mario Piattini show an ontology that organize and
relation the OO knowledge. The authors propose an ontology in order to struc-
ture and unify such knowledge. The ontology includes rules (principles, heuris-
tic, bad smells, etc.), patterns, and refactorings. They divide the knowledge on
rules, patterns, and refactorings and they show the implications among these.
Moreover, they show an empirical validation of the proposed conclusions.
Chapter III, “Using Linguistic Patterns to Model Interactions,” by Isabel Díaz,
Oscar Pastor Lidia Moreno, and Alfredo Matteo, is a pivotal chapter that changes
the focus of the book to more technical information systems issues. This chap-
ter shows an elegant example of how highly relevant clinical questions can be
addressed in a scientific manner. In this chapter, heuristic-oriented techniques
and linguistics-oriented techniques proposed by several authors to model inter-
actions are analyzed. In addition, a framework to facilitate and to improve the
interaction modeling is described. This framework was conceived to be inte-
grated into automatic software production environments. It uses linguistic pat-
terns to recognize interactions from use case models. The validation process
used and the main results are also presented.
In Chapter IV, Manoli Albert, Marta Ruiz, Javier Muñoz and Vicente Pelechano
show “A Framework Based on Design Patterns: Implementing UML Associa-
tion, Aggregation and Composition Relationships in the Context of Model-Driven
Code Generation.” The chapter proposes a framework based on design pat-
terns to implement UML (Unified Modeling Language) association, aggrega-
tion, and composition relationships, and for it they propose a semantic interpre-
tation of these concepts that avoids the ambiguities introduced by UML.
Therefore, in “Design Patterns as Laws of Quality” Yann-Gaël Guéhéneuc,
Jean-Yves Guyomarc’h, Khashayar Khosravi, and Houari Sahraoui, Chapter
V, show how design patterns can be used as facts to devise a quality model and
they describe the processes of building and of applying such a quality model.

 ix

The chapter highlights the need for principles in software engineering, where
these can be laws or theories formalizing and explaining observations realized
on software.
For the sake of completeness in this book, automatic verification of design
knowledge is addressed in Chapter VI. Andres Flores, Alejandra Cechich, and
Rodrigo Ruiz present “Automatic Verification of OOD Pattern Applications.”
Chapter VII, “From Bad Smells to Refactoring: Metrics Smoothing the Way”,
is authored by Yania Crespo, Carlos López, María Esperanza Manso Martínez,
and Raúl Marticorena. This chapter discusses one of the current trends in
refactorings: when and where we must refactor. From the bad smell concept, it
is possible to discover their existence from an objective viewpoint, using metrics.
The chapter presents a study on the relation of refactorings, bad smells and
metrics, including a case study on the use of metrics in bad smells detection.
The chapter leads to the determination where refactoring is the basis of heuris-
tics and metrics, which is likely to be the single most important factor at the
moment of use refactorings in the maintenance phase.
Therefore, in Chapter VIII, “Heuristics and Metrics for OO Refactoring: A
Consolidation and Appraisal of Current Issues,” Steve Counsell, Youssef
Hassoun, and Deepak Advani cover this topic in great depth. They look at
some of the issues which determine when to refactor (i.e., the heuristics of
refactoring) and, from a metrics perspective, open issues with measuring the
refactoring process. They thus point to emerging trends in the refactoring arena,
some of the problems, controversies, and future challenges the refactoring com-
munity faces.
A key point to building a OO design knowledge field is to understand the sev-
eral contributions to it. Since several OO metrics suites have been proposed to
measure OO properties, such as encapsulation, cohesion, coupling, and abstrac-
tion, both in designs and in code, in Chapter IX, titled “A Survey of Object-
Oriented Design Quality Improvement,” Juan José Olmedilla reviews the lit-
erature to find out to which high level quality properties are mapped and if an
OO design evaluation model has been formally proposed or even is possible.
The chapter is an excellent example of how performing a systematic review of
the estate of art.
At last, in Chapter X, “A Catalog of OOD Knowledge Rules for OO Micro-
Architecture,” by Javier Garzás and Mario Piattini, several types of knowledge
such as principles, heuristics, bad smells, and so on, are unified in a rules cata-
log.
In summary, these chapters constitute an evidence of the importance of micro-
architectural design knowledge, representing important ideas in different soft-
ware design areas. These are intended to be useful to a wide audience, includ-
ing software engineers, designers, project managers, software architects, IS/IT
managers, CIOs, CTOs, consultants, and software students.

x

We hope that the practical vision, scientific evidence and experience presented
in this book will enable the reader to use the design knowledge within the field
of software engineering and to help the field of software engineering answer
how software engineers might acquire its rich and essential accumulated knowl-
edge.

Javier Garzás and Mario Piattini, Editors
Ciudad Real, Spain
January 2006

Endnote

1 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
A system of patterns: Pattern-oriented software architecture. Addison-
Wesley.

	Preface

