
viii

�������

An Introduction to the Subject Area

High quality software is of vital importance for the survival and success of
companies where many manual tasks are now automated through software,
which can provide increased speed, accuracy, assurance, reliability, robustness,
and productivity. Software is often a key component of companies’ strategic
plans for gaining and sustaining competitive advantage. A single undetected
error or omission during the software development process could have disas-
trous consequences during operation. Software errors and omissions can also
lead to undesirable outcomes such as reduced customer satisfaction, increased
maintenance costs and/ or decreased productivity and profits.
Although information technology can be considered a well-established disci-
pline, software projects are still prone to failure. Even when a software project
is not classified as a failure, the general level of software quality leaves much
room for improvement. Software review or inspection is one of the important
techniques for improving software quality.
In the last thirty years, software reviews have been recommended as one of
the most cost effective quality assurance techniques in software process im-
provements and are widely used in industrial practice. The goal of software
review is to improve the quality of the product by reviewing interim deliverables
during design and development. It is defined as a “non-execution-based [tech-
nique] for scrutinizing software products for defects, deviations from develop-
ment standards”. Most researchers agree that software review is considered
the most cost effective technique in cost saving, quality and productivity im-
provements in software engineering. More specifically, software review can 1)
detect defects right through the software development life cycle from concept

 ix

proposal to implementation to testing; the earlier defects are detected in devel-
opment, then the easier and less costly they are to remove/correct; and 2)
detect defects early in the software development life cycle that are difficult or
impossible to detect in later stages; improve learning and communication in the
software team, since software development is essentially a human activity.

Overall Objectives and
Mission of This Book

The overall objective and mission the proposed book is to provide:

• An understanding of the critical factors affecting software review
perfomance.

• Practical guidelines for software reviews.

Readers will gain a deep understanding of current software review literature
and theoretical models for analysis software review performance. More spe-
cifically, this helps readers to understand the critical input and process factors
that drive software review performance. Practical guidelines are drawn from
the literature, theoretical models, methodologies, and the results from industry
survey and cases studies.
The Scholarly Value of this Book and its Contributions to the Literature in the
Information Technology Discipline:

• To increase the understanding of what inputs the typical review process
uses in practice.

• To identify the key factors influencing software review
performanceTheoretical models help to understand the important relation-
ships between inputs, process, and performance perspective.

• The rigorous quantitative industry questionnaire survey and qualitative (case
study: in-depth interviews) case studies are contributed to the software
review literature.

• To provide useful and practical guidelines for organizing and conducting
software reviews.

x

Abstract

Information Technology can be considered a well-established discipline, how-
ever, software development projects are still prone to failure. Even if a soft-
ware project is not classified as a failure, the general level of software quality
leaves room for improvement. One of the most prevalent and costly mistakes
made in software projects today is deferring the activity of detecting and cor-
recting software problems until the end of the project (Boehm & Basili, 2001).
Hence, the cost of rework in the later stages of a project can be greater than
100 times that of the project costs (Fagan, 1976; Leffingwell & Widrig, 2000).
About 80% of avoidable rework comes from 20% of defects (Boehm & Basili,
2001). As a result, techniques such as software review for improving software
quality are important. The current software review literature lacks in empirical
evidence on identifying critical inputs and process factors influencing review
performance because there is little empirical manipulation of these variables.
Where inputs are manipulated, the results are often conflicting and inconsis-
tent. Hence, what inputs to use for effective software review in practice is still
open to determination. Different input requirements directly affect how the
software review is organized.
The overall objective of this book is to explore and understand the critical fac-
tors that significantly influence software review performance in practice. In
other words, the aim of this book is to further empirically validate the important
relationships between software review inputs, process, and performance. Thus,
this study is interesting and important for both researchers and practitioners.
The main structures of the book include: literature review, review software,
review tools, and technologies, understanding the relationships between inputs,
process and software review performance, development of a theoretical model,
development of the industry survey plan (instruments (questionnaire), design,
pre-tests, sampling, data gathering, data analysis), case study (in-depth inter-
views of the real life cases), recommendations, and the final writing.
In this book, both quantitative and qualitative methods were employed when
collecting and analysing empirical data in order to maximise the reliability and
validity of the study. A questionnaire mail survey was arranged with 205 re-
spondents from the software industry in Australia. A cross validation study
using an in-depth interview with experts was conducted with five cases (com-
panies). The rich qualitative data from the in-depth interviews and quantitative
data (statistical analysis) from the questionnaire survey offers a comprehen-
sive picture of the use of software review in practice. The final conclusion of
the book is drawn from a comparative analysis of the quantitative and qualita-
tive results. The empirical data obtained from surveys and in-depth interviews
with experts is cross-examined and discussed. The main conclusion of the study
is described below.

 xi

The current empirical software review studies focus heavily on the explicit
inputs (e.g., supporting documents) rather than implicit inputs (reviewer char-
acteristics). However, the survey results in this study suggest that the implicit
inputs play a dominant role in software review performance. The findings sug-
gest that the characteristics of the software artefact have no significant direct
influence on software review performance and supporting documents have little
direct impact on review performance. The results show that only the use of
previously reviewed software documents has an effect on software review
performance. Interesting results demonstrate that reading techniques and pre-
scription documents have no impact on software review performance. It has
previously been argued in the software review literature that reading techniques
are considered the most effective explicit input for improving software review
performance, however, the survey results show that previously reviewed soft-
ware documents are more critical than reading techniques documents. Both
survey and in-depth interview results suggest that current reading techniques in
the software industry are not conclusively beneficial to software review per-
formance. This suggests that reading techniques documents need to be care-
fully designed and used in practice.
To achieve a higher performance in the software review process, selection of
reviewers becomes the most critical factor. These results confirm the theory
by Sauer, Jeffery, Land, and Yetton, (2000) and in part, Laitenberger and
DeBaud’s model (2000). In relation to reviewer motivation, interesting results
suggest that motivation, in particular, perceived contingency, is another impor-
tant factor in the software review process and review performance according
to the survey results. However, this variable is often ignored in the empirical
software review literature. Although several researchers have recommended
that reviewers’ motivation should be important in software review performance,
to our knowledge, no empirical study has been carried out to support this. The
findings suggest that company support, encouragement and reviewer agree-
ment for the way the company conducts software review helps to increase
reviewers’ motivation and effort and hence improve review performance.
Finally, teamwork is the dominant factor in the review meeting process. The
survey results show that teamwork is the best indicator of a successful soft-
ware review meeting. The more collaborative a review team, the higher the
software review performance that can be achieved.
In summary, the key driver to software review performance is reviewers’ ex-
perience, followed by previously reviewed software documents, perceived con-
tingency (support, encouragement, and reviewer agreement with the company),
and teamwork.

xii

Structure of This Book

This book is organised into twelve chapters. Each chapter is briefly summarised
as follows:

Chapter I discusses why study software review. The chapter identifies advan-
tages of software review that include improving software quality, cost saving,
and productivity. In particular, the chapter presents experts’ opinions — the
impact of software review on software engineering. In the final section of the
chapter, the book addresses the aim of the book and the organization of the
book.
Chapter II presents the software review literature including the history of
software review, forms of software review structure, and informal review ap-
proaches. More specifically, in the literature review, the chapter reviews the
six-step Fagan’s Software Review (i.e., planning, overview, preparation, group
meeting, reworks, and follow-up), form software review structure (i.e., Active
Design Review, Two-Person Review, N-fold Review, Phased Review, Use of
Review Meeting), IEEE standard for software review, informal review ap-
proaches (i.e., Walkthrough, Pair Programming, Peer Check, Pass-Around),
and a comparison of formal and informal review approaches.
Chapter III describes tools and technologies for software review. The chap-
ter starts with an explanation of the difference between paper-based and tool-
based software reviews, as well as collaborative asynchronous vs. synchro-
nous software review. Followed by an evaluation and comparison of software
review tools’ features. The chapter identifies the tools features for the group
review process. The final section of the chapter reviews a framework for sup-
porting tool-based software processes.
Chapter IV discusses software review tools and how they support the soft-
ware review process. Tools including: Intelligent Code Inspection in “C” Lan-
guage (CICLE), Scrutiny, Collaborate Software Inspection (CSI), InspeQ, CSRS,
Requirement Traceability (RADIX), InspectA, Asynchronous Inspector of Soft-
ware Artefacts (AISA), Web Inspection Prototype (WiP), HyperCode, Asyn-
chronous/Synchronous Software Inspection Support Tool (AISSIT), Fine-Grained
Software Inspection Tool, CORD, Agent-based Software Tool, Internet-based
Inspection System (IBIS), and VisionQuest are discussed in the chapter.
Chapter V presents use of software review inputs, supporting process struc-
ture techniques, methods of measuring software review performance, and the
limitations of the current software review literature. In particularly, the chapter
reviews use of inputs (that include review task, supporting documents, reviewer
characteristics), review process (team size, roles design, decision-making method

 xiii

during the review process, and process gain and losses), and qualitative and
quantitative methods for performance measurement. The chapter also identi-
fies limitations of the current software review literature.
Chapter VI proposes a theoretical model for analysing software review per-
formance. The Explicit and Implicit Input-process-Output (EIIO) Model is de-
veloped for further analysis software review performance. The model includes
three major components–inputs, process, and output. Inputs can be classified
into explicit inputs and implicit inputs. Explicit inputs refer to software review
task (artefact) characteristics and supporting documents. Supporting documents
include reading techniques (e.g., checklist, scenarios readings), business re-
ports, prescription documents, and previously reviewed software documents.
Implicit inputs include reviewers’ ability and their motivations. During the meeting
process, the process factors can be classified into communication, teamwork,
status effect, and discussion quality. Software review performance is often
measured by the number of defects found. The chapter presents the important
relationships between inputs, process, and performance. Five propositions be-
tween these relationships are discussed in the final section of the chapter.
Chapter VII presents the Industry survey design. In order to understand how
practitioners conduct their software reviews in their development environment
in software industry, an industry survey is conducted. The industry survey can
also validate the theoretical EIIO model. The chapter mainly discusses the in-
dustry survey design. A survey plan (i.e., research method, survey design, ques-
tionnaire design, measurements of models and scales, sampling techniques, vali-
dation of questionnaire procedures, data collection methods, data analysis meth-
ods) is detailed described in the chapter.
Chapter VIII discusses industry survey results and findings. The overall sur-
vey results provide an understanding of software review in practice and a vali-
dation of the proposed EIIO model. This allows better understanding of the
direct and indirect relationships between software review inputs, process, and
performance. The survey includes four major procedures–response, prelimi-
nary analysis, exploratory analysis, and hypotheses tests. The response section
discusses response rate, response characteristics, and response bias. The pri-
mary analysis focuses on descriptive and missing value analysis whereas, ex-
ploratory analysis focuses on reliability and validity of the survey results. The
hypotheses tests analysis effects on software review inputs, process, and per-
formance.
Chapter IX discusses the revised EIIO model. This presents interesting re-
sults from a comprehensive data analysis procedure. The chapter provides a
simple review guide (four steps of conducting software review) after discus-
sions of the revised EIIO model.
Chapter X presents an industry cases study. The case study provides qualita-
tive results and rich information from industry experts’ opinions. The method

xiv

used in the case study is in-depth interview. The data collection procedures and
the findings are discussed in the chapter. The findings include 1) issues of con-
ducting software review, 2) common types of software review inputs, 3) dis-
cussions of inputs affect review process and performance, and 4) discussions
of process affect performance (review outcome).
Chapter XI presents practical guidelines and recommendations for both prac-
titioners and researchers. Useful recommendations of use of inputs, the need
for team review meetings and selection measurement metrics (review perfor-
mance) are provided in the chapter.
Chapter XII concludes contributions and future directions. Theoretical and
methodological contributions are addressed. The chapter discusses limitations
of the industry studies in this book and future software review directions.

References

Boehm, B. W. & Basili, B. R. (2001). Software defect reduction top 10 list.
IEEE Computer, 34(1), January.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program
development. IBM System Journal, 15(3), 182-211.

Laitenberger, O. & Debaud, J. M. (2000). An encompassing life cycle centric
survey of software inspection. The Journal of Software and Systems,
50(1), 5-31.

Leffingwell, D. & Widrig, D. (2000). Managing software requirements: A
unified approach. NJ: Addison Wesley.

Sauer, C., Jeffery, R., Land, L., & Yetton, P. (2000). Understanding and im-
proving the effectiveness of software development technical reviews: A
behaviourally motivated programme of research. IEEE Transactions on
Software Engineering, 26(1), 1-14.

