
vi

Intelligent software agents are a unique generation of information society
tools that independently perform various tasks on behalf of human user(s) or other
software agents. The new possibility of the information society requires the devel-
opment of new, more intelligent methods, tools, and theories for the modeling and
engineering of agent-based systems and technologies. This directly involves a need
for consideration, understanding, and analysis of human factors, e.g., people’s
knowledge and skill, learning, and performance capabilities, and compatibilities in
certain software development environments. This is because software developers
utilize their experience and represent their mental models via development and
engineering of intelligent agent(s). Therefore, the study of interrelated factors such
as people’s and agents’ capabilities, constitutes an important and critical area in
intelligent agent software engineering. This should eventually lead to more robust,
intelligent, interactive, learning, and adaptive agents.

From the theoretical and practical viewpoints, the application of intelligent
software agents is a topic of major interest. There has been a growing interest not
only in new methodologies for development of intelligent software agents but also
in the way in which these methodologies can be supported by theories and prac-
tice. Engineering intelligence in a software system is a young area, and there are
many issues that need new and further research.

Many definitions and types of agents have been introduced in research lit-
erature in order to define a common understanding of this phenomenon in modern
virtual environments. In fact, these definitions reflect a variety of viewpoints, prob-
lems, and applications of the agents, and therefore, they outline the major direc-
tions in this important research and practical field. It is recognized that general
characteristics of intelligent agents are an agent’s character, reasoning, and learn-
ing capabilities, autonomy, reactivity, proactivity, goal orientation, mobility, com-
munication, and cooperation. The intelligent agents can be self-organized and can
be integrated into a multiagent system that performs the tasks and solves the prob-
lems.

Preface



It is important to take into account the specific character of the cognitive
tasks. In many cases:
• They are dependent on the agents’ knowledge and learning capabilities.
• They are managed by the agent (self-managing work), rather than being “ad-

ministratively” managed.
• They cannot be subdivided into smaller subtasks, i.e., cognitive tasks cannot

be defined as nested or fine-grained tasks.
• They can be performed in parallel.

In addition, agents can be available and capable of overseeing cognitively
driven tasks, but factors such as knowledge and technical, may be incompatible.
Agent resource capability and compatibility have become the focus of agent-
based software engineering. These factors have considerable impact on the for-
mation of a multiagent system (i.e., a team of intelligent agents) for cognitive tasks,
i.e., capability and compatibility factors define an integration problem in engi-
neering the task of intelligence in software systems. Because agent availability
issues do not contribute much to the success of performance, there is a risk of
selecting agents to do work because they are available, not because they have a
particular combination of key capability and compatibility factors. In addition,
(single) agents can be available and capable of overseeing the individual cognitive
tasks, but factors such as the knowledge of agents and their implementation may
not be compatible with the goals and constraints of a multiagent system’s appli-
cation. Hence, managerial aspects such as intelligent capability and compatibility
evaluation have to be an important focus of intelligent agent software engineering
and improvement of agent-based processes.

However, for cognitive tasks involving agents’ capabilities and compat-
ibilities as critical variables, existing approaches to the definition of resource ca-
pability and compatibility do not sufficiently examine how effectively agent re-
sources fit the needs for their implementation. The same cognitive tasks may be
performed by different (single) agents or by a multiagent system using different
capabilities, which correspond to different performance constraints (e.g., costs,
risk, duration, productivity). Moreover, for completeness, data regarding the in-
telligent capabilities of agents and performance capabilities should be provided in
connection with the learning methods utilized by agents to perform their cognitive
tasks.

This book consists of work where intelligent agent software engineering is
considered as the application of the integration of formal methods and heuristic
approaches to ensure support for the evaluation, comparison, analysis, and evolu-
tion of agent behavior.

vii



viii

MISSION OF THE BOOK
This book does not attempt to teach any software/information technology

engineering techniques. It does not claim to be comprehensive. There are many
books on the market that present the classical approaches to software engineering
and process modeling. Instead, it is designed to be used to support solutions to
problems in developing and engineering the agent-based software/information tech-
nology and in engineering the intelligence in software systems.

Available books on intelligent systems and software/information technology
engineering focus too much on the technical problems in software engineering.
They provide limited coverage of the critical factors in engineering the intelligence
in software systems, such as agent intelligent capability and compatibility, motiva-
tion, and agent’s capability integration problems. In addition, little attention has
been placed on the problems of engineering the intelligence in a multiagent system.
Furthermore, we consider intelligent agent software engineering on a multiagent
system’s level, not only on the (single) agent level, and define the task of intelligent
agent software engineering not only as a software engineering task, but also as a
task of engineering the intelligence in a multiagent system. This book is an attempt
to fill these gaps.

AIMS OF THE BOOK
The primary aims of this book are as follows:

• To introduce the readers to the concept of intelligent agent software engineering
so that they will be able to develop their own agents and implement concepts in
practice, i.e., in unique conditions, constraints, and environments (The book
covers theoretical and practical aspects.)

• To present current research in the area of engineering the intelligence in soft-
ware systems—in this book, we consider engineering the intelligence in soft-
ware systems as the application of mathematical techniques and thorough engi-
neering methods to the development of intelligent agents

• To offer methodologies that provide guidelines and procedures for the devel-
opment of intelligent agents by applying various theories and techniques, e.g.,
machine learning methods, cognitive science, and the object-oriented paradigm

• To describe current problems in engineering the intelligence in software sys-
tems, e.g., evaluation and application of contemporary machine learning tech-
nology, application of object-oriented methodology to the development of in-
telligent agents, etc.

• To define future work and directions in the area of intelligent agent software
engineering



ix

THE AUDIENCE FOR THE BOOK
We envisage a number of distinct audiences for this book that make it useful

and important. This book is for readers who have interests in developing intelligent
software agents. It is suitable for practitioners, who want to use state-of-the-art
techniques in the management and engineering of intelligence in software systems
and the production of high-quality software. And, it is directed to the academics,
advanced undergraduate or postgraduate students interested in new perspectives
and directions in engineering the software development processes and intelligent
agents and systems. Academics may also find this book useful as a course book
for specific courses on advanced software (IT) engineering and intelligent sys-
tems. This book is useful as an advanced text for final-year undergraduate stu-
dents of computer science, intelligent systems, software engineering and informa-
tion technology, or as part of postgraduate masters and doctoral programs.

OUTLINE OF THE BOOK
The book is organized into ten chapters as follows.
Chapter 1 (Daniel Kudenko, Dimitar Kazakov, and Eduardo Alonso) dis-

cusses the differences between pure Machine Learning and the one performed by
(single) Learning Agents. The authors describe critical aspects in machine learning
technology and discuss the relationship between learning and communication, learn-
ing to collaborate and compete, the learning of roles, evolution and natural selec-
tion, and distributed inductive learning, These discussions are followed by a num-
ber of general recommendations for learning agent designers and some practical
applications of machine learning to agents and multiagent systems. Two case stud-
ies being developed at the University of York are also presented.

Chapter 2 (Darryl N. Davis) introduces research into the nature of drives
and motivations in computational agents from a perspective drawing on artificial
life and cognitive science. The background to this research is summarized in terms
of the possibility of developing artificial minds. A particular cognitive architecture
is described in terms of control states. Steps toward producing an implementation
of this architecture are described by means of experimentation into the nature of
specific control states. The design of a simple A-life architecture for a predator–
prey scenario is described using a transition state diagram. This architecture is
then used as a platform with which to develop an agent with drives. This second
architecture is used to develop an agent with explicit motivations. The discussion
of these (and other) experiments shows how these simple architectures can help
to provide some answers to difficult research questions in cognitive science.



x

Chapter 3 (L. Moreau, N. Zaini, D. Cruickshank, and D. De Roure) pre-
sents a versatile multiagent framework (named SoFAR, the Southampton Frame-
work for Agent Research) designed for Distributed Information Management tasks.
SoFAR embraces the notion of proactivity as the opportunistic reuse of the ser-
vices provided by other agents and provides the means to enable agents to locate
suitable service providers. The contribution of SoFAR is to combine ideas from
the distributed computing community with the performative-based communica-
tions used in other agent systems: communications in SoFAR are based on the
start point/end point paradigm, a powerful abstraction that can be mapped onto
multiple communication layers. SoFAR also adopts an XML-based declarative
approach for specifying ontologies and agents, providing a clear separation with
their implementation.

Chapter 4 (P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorghe)
introduces a detailed and comprehensive account of the ways in which some modern
software engineering research can be applied to the construction of effective and
reliable agent-based software systems. More specifically, the authors show how
simple agents motivated from biology can be modeled as X-machines. Such mod-
eling facilitates verification and testing of an agent model, because appropriate
strategies for model checking and testing are already developed around the X-
machine method. In addition, modular construction of agent models is feasible,
because X-machines are provided with communicating features that allow simple
models to interact.

Chapter 5 (P. Baillie, M. Toleman, and D. Lukose) examines the engineer-
ing of a mechanism that synthesizes and processes an artificial agent’s internal
emotional states: the Affective Space. Through use of the Affective Space, an
agent can predict the effect that certain behaviors will have on its emotional state
and, in turn, decide how to behave. Furthermore, an agent can use the emotions
produced from its behavior to update its beliefs about particular entities and events.
This chapter explores the psychological theory used to structure the Affective
Space, the way in which the strength of emotional states can be diminished over
time, how emotions influence an agent’s perception, and the way in which an agent
can migrate from one emotional state to another.

Chapter 6 (R.E. Smith and C. Bonacina) describes new implications of
Evolutionary Computation theories and practices. Agents that interact according
to these theories are no longer locked inside the laboratory conditions imposed by
Evolutionary Computation researchers and users. Thus, it is important that au-
thors consider the embodiment of Evolutionary Computation in “real” agents, that
is, agents that involve the real restrictions of time and space within a multiagent
system. This issue is addressed in two ways. First, authors have developed a
platform independent agent system to assure that we work within the generic, but



xi

realistic, constraints of agents. Second, authors have developed an agent-based
system of Evolutionary Computation objects. The prime thrust of this research
with these tools is to facilitate understanding of Evolutionary Computation within
agents and understanding of more general agent interactions in the light of Evolu-
tionary Computation theories. This chapter presents the platform independent agent
system, along with the generic software framework for Evolutionary Computation
in a multiagent system.

Chapter 7 (L. Brito, P. Novais, and J. Neves) discusses the use of agents in
Electronic Commerce (EC) environments. A four-step method is introduced for
developing EC-directed agents, which are able to take into account nonlinearites
such as gratitude and agreement. Negotiations that take into account a multistep
exchange of arguments provide extra information, at each step, for the intervening
agents, enabling them to react accordingly. This argument-based negotiation among
agents has much to gain from the use of Extended Logic Programming mecha-
nisms. Incomplete information is common in EC scenarios; therefore, arguments
must also take into account the presence of statements with an unknown valua-
tion.

Chapter 8 (J. Debenham and B. Henderson-Sellers) expands on object-
oriented (OO) methodologies to adequately support agent-oriented technology.
It is recognized that OO methodologies are highly prescriptive and overly speci-
fied and are hard to extend when a new variant or a new paradigm appears.
Authors consider OPEN (Object-oriented Process, Environment, and Notation)
as a more flexible approach to building methodologies or processes. Using OPEN,
process components are selected from a repository, and the actual methodology
(or process) is constructed using identified construction and tailoring guidelines.
Proposed extensions (new Tasks and Techniques for OPEN) are illustrated in
two case studies of business processes. Goal orientation is readily accommo-
dated in the existing and new tasks and techniques of the OPEN process, leading
to a specification of the individual agents in the system.

Chapter 9 (V. Dignum and H. Weigand) proposes a framework that de-
scribes all the stages of development of a multiagent system, takes an organiza-
tional perspective on systems design, and specifies all the development steps for
the design and development of an agent-based system for a particular domain.
Specific agent-oriented methodologies can be used for the development and mod-
eling of each of the development steps. Authors believe that such a generic frame-
work, based on the organizational view, will contribute to the acceptance of
multiagent technology by organizations. Authors define a social framework for
agent communities based on organizational coordination models that “implements”
the generic interaction, cooperation, and communication mechanisms that occur in
the problem domain. The proposed methodology allows a generic coordination



model to be tailored to a given application and to determine its specific agent roles
and interactions.

Chapter 10 (R. Aler, D. Camacho, and A. Moscardini) concludes this book
with a multiagent system approach, with its purpose to build computer programs.
Each agent in the multiagent system will be in charge of evolving a part of the
program, which in this case, can be the main body of the program or one of its
different subroutines. There are two kinds of agents: the manager agent and the
genetic programming (GP) agents. The former is in charge of starting the system
and returning the results to the user. The GP agents include skills for evolving
computer programs, based on the genetic programming paradigm. There are two
sorts of GP agents: some can evolve the main body of the program, and the others
evolve its subroutines. Both kinds of agents cooperate by telling each other their
best results found so far, so that the search for a good computer program is made
more efficient. In this chapter, this multiagent approach is presented and tested
empirically.

Valentina Plekhanova, PhD
University of Sunderland, UK

xii


	Preface

