
vi

Preface
It is a good thing to practice some bad habits such as smoking, eating
pork, drinking over your limit or not doing any physical exercise, so that
if one day you fall ill, your doctor, to make recover, will have something
to ban. But if you are all virtue, you will have no further room for im-
provement and falling ill will take you to your death bed.

 Luis Landero, in Games of the Late Age.

The choice of the quotation that starts this preface has not been casual. In
fact, software in execution suffers many bad habits that, fortunately for software
services companies, produce more and more work every year. From the point of
view of software maintenance, such imperfections have their origin in the software
itself, when some defects must be removed; in users, when they ask for new
functionalities to be added; and in the changing technological environment, when
the software must adapt to a new environment. On the other side, and mapping
Lehman Laws (Lehman, 1980) with the last sentence of the quotation, non-changing
software is non-used, dead software.

According to the ISO/IEC (1995) terminology, the software maintenance
process is activated “when the software product undergoes modifications to code
and associated documentation due to a problem or the need for improvement or
adaptation.” In spite of this definition, which is very similar to that of ANSI-IEEE
(1990), the ignorance of maintenance activities may lead to underestimating its
importance, since there is a tendency to associate software maintenance only with
corrective activities. However, several authors (McKee, 1984; Frazer, 1992; Basili
et al., 1996; Polo, Piattiani, & Ruiz, 2001) have shown that perfective interven-
tions receive the most effort of maintenance.

From the seventies, software maintenance is the most costly stage of the
software life cycle (see Table 1), and there are no reasons to think that the situa-
tion will change, since novel environments and technologies require great mainte-
nance efforts to keep software products in operation. For Brereton, Budgen, and
Hamilton (1999), maintenance of hypertext documents will become a serious prob-
lem that requires immediate action, since they share many characteristics (struc-
ture, development process, economical value) with classical software products.
According to Lear (2000), many legacy applications written in COBOL are being
adapted to be integrated with current technologies, such as e-commerce.

There are organizations that devote almost all their resources to mainte-
nance, which impedes new development. Moreover, maintenance necessities in-
crease as more software is produced (Hanna, 1993), and its production has al-

vii

ways shown a growing tendency. On the other side, big programs never are com-
plete, but are always in evolution (Lehman, 1980). Ramil, Lehman, and Sandler
(2001) confirm this old theory 21 years later.

PROBLEM CAUSES
In spite of this, software organizations still pay more attention to software

development than to maintenance. In fact, most techniques, methods, and meth-
odologies are devoted to the development of new software products, setting aside
the maintenance of legacy ones. This problem is also common among program-
mers, for whom maintenance is “less creative” than development; in fact, many
legacy systems use old and boring programming environments, file systems, etc.,
whereas programmers prefer working with new, powerful visual environments.
However, the same software evolves and must continue to evolve along years
and, to their regret, programmers devote 61% of their professional life to mainte-
nance, and only 39% to new development (Singer, 1998).

The lack of methodologies may be due to the lack of a definition of the
software maintenance process. For Basili et al. (1996), the proposal and valida-
tion of new methodologies that take into account maintenance characteristics are
a must. Also, Pigoski (1996) says that there is little literature regarding mainte-
nance organizations.

PROPOSED SOLUTIONS
It is clear that maintenance organizations require methodologies and tech-

niques that facilitate software maintenance, decreasing costs and difficulties. There
exist different types of partial solutions for software maintenance. Depending on
their nature, they can be classified into:
• Technical solutions, that assist in certain moments of maintenance interventions.

Reengineering, reverse-engineering or restructuration techniques are some ex-
amples.

Table 1. Evolution of maintenance costs.

Reference Year % Maintenance
Lientz and Swanson (1980) 1976 60%
Pigoski, (1996) 1980-1984 55%
Schach (1990) 1987 67%
Pigoski (1996) 1985-1989 75%
Frazer (1992) 1990 80%
Pigoski (1996) 90’s (prev.) 90%

• Management solutions, that are mainly based on quality assurance, structured
management, change documentation and use of specialized human resources.

ORGANIZATION OF THE BOOK
This book collects proposals from some of the best researchers and practi-

tioners in software maintenance, with the goal of exposing recent techniques and
methods for helping in software maintenance. The chapters in this book are in-
tended to be useful to a wide audience: project managers and programmers, IT
auditors, consultants, as well as professors and students of Software Engineering,
where software maintenance is a mandatory matter for study according to the
most known manuals—the SWEBOK or the ACM Computer Curricula.

Chapter I, by Ned Chapin, sets a foundation for software maintenance man-
agement, analyzing the influence of business rules on maintenance of information
systems. Mira Kajko-Mattsson presents in Chapter II the main problems related
to the corrective maintenance, and she presents some management solutions for
them, strongly supported by a solid theoretical and practical basis.

In Chapter III, Fabrizio Fioravanti analyzes the impact of the recent pro-
gramming approach of XP on software maintenance, explaining the relationships
of eXtreme Programming with maintenance projects. Then, in Chapter IV, Perdita
Stevens introduces the idea of using design and process patterns in software main-
tenance; she also emphasizes the convenience of organizations writing their own
set of specific patterns.

William C. Chu, Chih-Hung Chang, Chih-Wei Lu, Hongji Yang, Hewijin
Christine Jiau, Yeh-Ching Chung, and Bing Qiao devote Chapter V to maintain-
ability, the desirable property of software systems that would make maintenance
work easier. They study the influence of the use and integration of standards on
maintainability.

In Chapter VI, Lerina Aversano, Gerardo Canfora, and Andrea De Lucia
present a strategy for migrating legacy systems to the Web. After presenting their
method, the authors explain an application experience.

In Chapter VII, Norman F. Schneidewind analyzes the relationship between
requirements risks and maintainability. It illustrates this study with some empirical
results of a number of big spatial projects.

Harry M. Sneed gives us an excellent lesson on software maintenance cost
estimation in Chapter VIII, presenting a clear, systematic method for this task.

Macario Polo, Mario Piattini, and Francisco Ruiz devote Chapter IX to
present Mantema, a methodology for software maintenance with outsourcing sup-
port and explicit definition of process models for different types of maintenance.
Mantema is integrated into the MANTIS environment, that is presented in Chap-
ter X by these very same authors and Félix García.

viii

REFERENCES
ANSI-IEEE (1990). ANSI/IEEE Standard 610: IEEE standard glossary of soft-

ware engineering terminology. New York: The Institute of Electrical and Elec-
tronics Engineers, Inc.

Basili, V., Briand, L., Condon, S., Kim, Y., Melo, W. & Valett, J.D. (1996).
Understanding and predicting the process of software maintenance releases. In
Proceedings of the International Conference on Software Engineering,
(pp. 464-474). Los Alamitos, CA: IEEE Computer Society.

Brereton, P., Budgen, D. & Hamilton, G. (1999). Hypertext: The next mainte-
nance mountain. Computer, 31(12), 49-55.

Frazer, A. (1992). Reverse engineering-hype, hope or here? In P.A.V. Hall (Ed.),
Software Reuse and Reverse Engineering in Practice (pp. 209-243) Chapman
& Hall.

Hanna, M. (1993, April). Maintenance burden begging for a remedy. Datamation,
53-63.

ISO/IEC (1995). International Standard Organization/International Electrotechnical
Commission. ISO/IEC 12207: Information Technology-Software Life Cycle
Processes. Geneve, Switzerland.

Lear, A.C. (2000). Cobol programmers could be key to new IT. Computer,
33(4), 19.

Lehman, M. M. (1980). Programs, life cycles and laws of software evolution.
Proceedings of the IEEE, 68(9), 1060-1076.

Lientz, B.P. & Swanson, E.F. (1980). Software Maintenance Management.
Reading, MA: Addison Wesley.

McKee, J.R. (1984). Maintenance as a function of design. In Proceedings of
AFIPS National Computer Conference in Las Vegas, 187-93.

Pigoski, T. M. (1996). Practical Software Maintenance. Best Practices for
Managing Your Investment. New York: John Wiley & Sons.

Polo, M., Piattini, M. & Ruiz, F. (2001). Using code metrics to predict mainte-
nance of legacy programs: A case study. Proceedings of the International
Conference on Software Maintenance. Los Alamitos, CA: IEEE Computer
Society.

Ramil, J.F., Lehman, M.M. & Sandler, U. (2001). An approach to modelling
long-term growth trends in large software systems. Proceedings of the Inter-
national Conference on Software Maintenance. Los Alamitos, CA: IEEE
Computer Society.

Schach, S.R. (1990). Software Engineering. Boston, MA: Irwin & Aksen.
Singer, J. (1998). Practices of software maintenance. In Khoshgoftaar & Bennet

(Eds.), Proceedings of the International Conference on Software Mainte-
nance, (pp. 139-145) Los Alamitos, CA: IEEE Computer Society.

ix

