
���
���

Introduction

Dilemmas involving notation, project planning, project management, and ac-
tivity workflow pervade the world of software development. Object-orienta-
tion provides an elegant language for framing such problems, and powerful
tools for resolving them.
In this book, we have brought together a collection of presentations, giving
the reader an in-depth look into the technical, business, and social issues in
managing object-oriented development processes, as well as presenting new
technologies, making software development more effective. The chapters in
the book examine many topics in the research frontier of software develop-
ment, including methods, technologies, strategies, and the human factor. The
book also presents the fundamentals of object-oriented project management.
The various backgrounds of the contributing authors—industrial, consulting,
research, and teaching—yielded presentations, complementing and enriching
each other. As a result, the book paints a holistic picture of the multi-faceted
problems in object-oriented software development. It should be of interest to
software developers, project managers, system analysts, and graduate and
upper-level college students majoring in information systems and computer
science who would like to deepen their knowledge in the field of object-
oriented project management.
Very briefly, some of the major topics discussed in this book include: software
development life cycle; development strategies, for example, open source,
outsourcing, and product lines; componentization; the human factor; object-
oriented notation and techniques, such as xUML, MDA, and MDSD; re-
quirements engineering; design patterns; project management; and system in-
tegration with Web services.

vi



Organization

The book is organized into 15 chapters. Each chapter emphasizes a particular
area, identifies important shortcomings, discusses current activities, offers new
insights into the problematics, and suggests opportunities for improving the
management of object-oriented software development projects.
Motivated by computer simulation, the notions of object, class, and class gen-
eralization were formulated by Dahl and Nygaard in 1967. However, it was
not until the mid-1990s that the first industrial-strength, object-oriented nota-
tions were complemented by sound development methods. Today, the ob-
ject-oriented world is dominated by UML to the extent that UML and object-
orientation have become synonymous. The book naturally begins with an in-
troduction to UML2. The emphasis is on the novel features of UML and the
new trends in object-orientation, namely, modeling of large things, a higher
level of modeling abstraction, design automation, precision, and freedom from
the constraints of the implementation platform.
In Chapter II, the themes from the introductory chapter are re-examined in
the framework of xUML (executable UML) and MDA (model-driven ar-
chitecture). MDA and xUML are among the latest initiatives of OMG.
They promise to change the way software is created by combining a mod-
eling language with a model manipulation language, rendering implementation
programming obsolete. The chapter presents the two methodologies. It also
discusses the MDA activity workflow and presents a development method for
projects relying on xUML.
In Chapter III, Russ and McGregor present a model for planning object-
oriented projects. The authors structure the software development land-
scape into a triad of high-level dimensions—technology, method, and or-
ganizational strategy—where each dimension is further divided into sev-
eral sub-dimensions. The model defines project planning as navigating
through a multi-dimensional hyperspace.
In Chapter IV, the Russ-McGregor model has been applied to evaluate the
strength and weaknesses of xUML and MDA. The analysis sheds light on the
economics of model-driven software development, and on the difficulties
project managers and developers alike may encounter in adopting the two
technologies in an industrial setting.
In Chapter V, Roussev and Akella present a new approach to managing
outsourcing projects. Drawing on experience with Indian software firms, the
authors closely analyze the problems faced by outsourcing clients and off-

vii



viii

shore developers. Roussev and Akella show how these problems can be suc-
cessfully resolved by scaling down a large outsourcing project to meet the
Agile “sweet spot,” and by carefully managing the communication patterns
among all stakeholders.
In Chapter VI, Roussev and Rousseva present a process extension applicable
to both lightweight and heavyweight development methods. The extension is
based on a business value invariant, and views the iterative and incremental
model of software development as a communication model. The proposed
techniques link the informal user requirements world to the system model,
which makes it possible to derive mechanically the system architecture from
the user requirements, and automatically to validate it with respect to the
system’s use case model through model animation.
It is a well-known fact that many of the agile practices are incompatible with
the context of large-sized projects. Gary Pollice and Gary Evans, two nation-
ally recognized methodologists, independently present their approaches to
reproducing the conditions for agility in large-sized projects by balancing agil-
ity and discipline. Pollice and Evans look out for common grounds between
Agile and RUP to get the best of both worlds.
In Chapter IX, Jorn Bettin, director of an international strategic technology
management consultancy, addresses the question of how to create durable and
scalable software architectures, so that the underlying design intent survives over
a period of many years. Bettin goes beyond object-orientation and traditional
iterative software development to define a set of guiding principles for compo-
nent encapsulation and abstraction, and to form the foundation for a model-
driven approach to software development.
In Chapter X, Magdy Serour from the Centre for Object Technology Appli-
cations and Research (COTAR) at the University of Technology, Sydney, delves
into a gray area of object-orientation, namely, the effect of various human
factors on the adoption and diffusion of an object-oriented software develop-
ment process. Serour defines a process to assist organizations in planning and
managing their transition to object-oriented development. The author discusses
key “soft” factors, such as motivation, leadership, and overcoming the resis-
tance to culture change, which are critical in promoting the process of organi-
zational change.
In Chapter XI, Gerald Miller from Microsoft addresses a very important area
of the new technological wave. Integration of systems in a cost-effective way
is crucial for most enterprises, as many integration efforts fail to bring about
the promised return on investment. Miller’s presentation discusses how to



ix

resolve the system integration nightmare by building a service-oriented archi-
tecture with Web services which integrates disparate systems, both within
organizations and across business partners’ firewalls.
In Chapter XII, de Lara, Guerra, and Vangheluwe give an overview of model-
based software development, and propose ideas concerning meta-modeling
and the use of visual languages for the specification of model transformations,
model simulation, analysis, and code generation. They also examine the im-
pact of model-based techniques on the development process.
The Agile methods are based on the presumption that a complete and stable
requirements specification is generally impossible. This assumption invalidates
the very vehicle for computing project velocity, progress, deadline prognosis,
and budget allocations, as project managers cannot track the number of closed
vs. open requirements. In Chapter XIII, Roock and Wolf demonstrate a prac-
tical technique, integrating lightweight mechanisms for project controlling into
Agile methods. They propose to combining an (incomplete) hierarchical de-
composition of a system with abstract measurements. Their approach ad-
dresses pressing management needs without incurring the burden of a water-
fall-like exhaustive specification upfront.
Object-oriented knowledge comes in different forms, for example, principles,
heuristics, patterns, refactoring, lessons learned, defects, and best practices.
In Chapter XIV, Garzás and Piattini define an ontology of object-oriented
micro-architectural design knowledge to systematize this knowledge so that it
can be easily comprehended by developers and used in practical cases.
In the final chapter, Knott, Merunka, and Polak propose a new object-oriented
methodology, which makes extensive use of business process modeling. The
authors contrast and compare their approach to similar development approaches,
and provide a case study to demonstrate the feasibility of their methodology.


	Preface

