
�������

vi

This book continues to provide a forum, which a recent book, Software Evolution with
UML and XML, started, where expert insights are presented on the subject.
In that book, initial efforts were made to link together three current phenomena: soft-
ware evolution, UML, and XML. In this book, focus will be on the practical side of
linking them, that is, how UML and XML and their related methods/tools can assist
software evolution in practice.
Considering that nowadays software starts evolving before it is delivered, an apparent
feature for software evolution is that it happens over all stages and over all aspects.
Therefore, all possible techniques should be explored. This book explores techniques
based on UML/XML and a combination of them with other techniques (i.e., over all
techniques from theory to tools).
Software evolution happens at all stages. Chapters in this book describe that software
evolution issues present at stages of software architecturing, modeling/specifying,
assessing, coding, validating, design recovering, program understanding, and reusing.
Software evolution happens in all aspects. Chapters in this book illustrate that soft-
ware evolution issues are involved in Web application, embedded system, software
repository, component-based development, object model, development environment,
software metrics, UML use case diagram, system model, Legacy system, safety critical
system, user interface, software reuse, evolution management, and variability model-
ing.
Software evolution needs to be facilitated with all possible techniques. Chapters in
this book demonstrate techniques, such as formal methods, program transformation,
empirical study, tool development, standardisation, visualisation, to control system
changes to meet organisational and business objectives in a cost-effective way.
On the journey of the grand challenge posed by software evolution, the journey that
we have to make, the contributory authors of this book have already made further
advances.



Organisation of the Book

The book is organised into 15 chapters and a brief description of each chapter is as
follows.
Chapter I, Design Recovery of Web Application Transactions, is by Scott Tilley, Damiano
Distante, and Shihong Huang. Modern Web sites provide applications that are increas-
ingly built to support the execution of business processes. In such a transaction-
oriented Web site, poor transaction design may result in a system with unpredictable
workflow and a lower-quality user experience. This chapter presents an example of the
recovery of the “as-is” design model of a Web application transaction. The recovered
design is modeled using extensions to the transaction design portion of the UML-
based Ubiquitous Web Applications (UWA) framework. Recovery facilitates future
evolution of the Web site.
Chapter II, Using a Graph Transformation System to Improve the Quality Characteris-
tics of UML-RT Specifications, is by Lars Grunske. Architectural transformations are an
appropriate technique for the development and improvement of architectural specifica-
tions. This chapter presents the concept of graph-based architecture evolution and
how this concept can be applied to improve the quality characteristics of a software
system, where the UML-RT used as an architectural specification language is mapped
to a hypergraph-based datastructure, so that transformation operators can be specified
as hypergraph transformation rules.
Chapter III, Version Control of Software Models, is by Marcus Alanen and Ivan Porres.
Through reviewing main concepts and algorithms behind a software repository with
version control capabilities for UML and other MOF-based models, this chapter dis-
cusses why source code- and XML-based repositories cannot be used to manage
models and present alternative solutions that take into account specific details of MOF
languages.
Chapter IV, Support for Collaborative Component-Based Software Engineering, is by
Cornelia Boldyreff, David Nutter, Stephen Rank, Phyo Kyaw, and Janet Lavery. Col-
laborative system composition during design has been poorly supported by traditional
CASE tools and almost exclusively focused on static composition. This chapter dis-
cusses the collaborative determination, elaboration, and evolution of design spaces
that describe both static and dynamic compositions of software components from
sources such as component libraries, software service directories, and reuse reposito-
ries. It also discusses the provision of cross-project global views of large software
collections and historical views of individual artefacts within a collection.
Chapter V, Migration of Persistent Object Models Using XMI, is by Rainer Frömming
and Andreas Rausch. Change is a constant reality of software development. With ever-
changing customer requirements, modifications to the object model are required during
software development as well as after product distribution. This chapter presents the
conceptualisation and implementation of a tool for the automated migration of persis-
tent object models. The migration is controlled by an XMI-based description of the
difference between the old and the new object model.
Chapter VI, PRAISE: A Software Development Environment to Support Software Evo-
lution, is by Chih-Hung Chang, William C. Chu, Chih-Wei Lu, YI-Chun Peng, and Don-

vii



Lin Yang. This chapter first reviews current activities and studies in software stan-
dards, processes, CASE toolsets, and environments, and then proposes a process and
an environment for evolution-oriented software development, known as PRocess and
Agent-based Integrated Software development Environment (PRAISE). PRAISE uses
an XML-based mechanism to unify various software paradigms, aiming to integrate
processes, roles, toolsets, and work products to make software development more
efficient.
Chapter VII, Developing Requirements Using Use Case Modeling and the Volere Tem-
plate: Establishing a Baseline for Evolution, is by Paul Crowther. The development of
a quality software product depends on a complete, consistent, and detailed require-
ment specification but the specification will evolve as the requirements and the envi-
ronment change. This chapter provides a method of establishing the baseline in terms
of the requirements of a system from which evolution metrics can be effectively ap-
plied. UML provides a series of models that can be used to develop a specification
which will provide the basis of the baseline system.
Chapter VIII, Formalizing and Analyzing UML Use Case View Using Hierarchical
Predicate Transition Nets, is by Xudong He. UML use case diagrams are used during
requirements analysis to define a use case view that constitutes a system’s functional
model. Each use case describes a system’s functionality from a user’s perspective, but
these use case descriptions are often informal, which are error-prone and cannot be
formally analysed to detect problems in user requirements or errors introduced in sys-
tem functional model. This chapter presents an approach to formally translate a use
case view into a formal model in hierarchical predicate transition nets that support
formal analysis.
Chapter IX, Formal Specification of Software Model Evolution Using Contracts, is by
Claudia Pons and Gabriel Baum. During the object-oriented software development pro-
cess, a variety of models of the system is built, but these models may semantically
overlap. This chapter presents a classification of relationships between models along
three different dimensions, proposing a formal description of them in terms of math-
ematical contracts.
Chapter X, Visualising COBOL Legacy Systems with UML: An Experimental Report, is
by Steve McRobb, Richard Millham, Jianjun Pu, and Hongji Yang. This chapter pre-
sents a report of an experimental approach that uses WSL as an intermediate language
for the visualisation of COBOL legacy systems in UML. Visualisation will help a soft-
ware maintainer who must be able to understand the business processes being mod-
eled by the system along with the system’s functionality, structure, events, and inter-
actions with external entities. Key UML techniques are identified that can be used for
visualisation. The chapter concludes by demonstrating how this approach can be used
to build a software tool that automates the visualisation task.
Chapter XI, XML-Based Analysis of UML Models for Critical Systems Development, is
by Jan Jürjens and Pasha Shabalin. High quality development of critical systems poses
serious challenges. Formal methods have not yet been used in industry as they were
originally hoped. This chapter proposes to use the Unified Modeling Language (UML)
as a notation together with a formally based tool-support for critical systems develop-
ment. The chapter extends the UML notation with new constructs for describing criti-

viii



cality requirements and relevant system properties, and introduces their formalisation
in the context of the UML executable semantics.
Chapter XII, Augmenting UML to Support the Design and Evolution of User Inter-
faces, is by Chris Scogings and Chris Phillips. The primary focus in UML has been on
support for the design and implementation of the software comprising the underlying
system. Very little support is provided for the design or evolution of the user interface.
This chapter first reviews UML and its support for user interface modeling, then de-
scribes Lean Cuisine+, a notation capable of modeling both dialogue structure and
high-level user tasks. A case study shows that Lean Cuisine+ can be used to augment
UML and provide the user interface support.
Chapter XIII, A Reuse Definition, Assessment, and Analysis Framework for UML, is by
Donald Needham, Rodrigo Caballero, Steven Demurjian, Felix Eickhoff, and Yi Zhang.
This chapter examines a formal framework for reusability assessment of development-
time components and classes via metrics, refactoring guidelines, and algorithms. It
argues that software engineers seeking to improve design reusability stand to benefit
from tools that precisely measure the potential and actual reuse of software artefacts to
achieve domain-specific reuse for an organisation’s current and future products. The
authors consider the reuse definition, assessment, and analysis of a UML design prior
to the existence of source code, and include dependency tracking for use case and
class diagrams in support of reusability analysis and refactoring for UML.
Chapter XIV, Complexity-Based Evaluation of the Evolution of XML and UML Sys-
tems, is by Ana Isabel Cardoso, Peter Kokol, Mitja Lenic, and Rui Gustavo Crespo. This
chapter analyses current problems in the management of software evolution and ar-
gues the need to use the Chaos Theory to model software systems. Several correlation
metrics are described, and the authors conclude the long-range correlation can be the
most promising metrics. An industrial test case is used to illustrate that the behaviours
of software evolution are represented in the Verhulst model.
Chapter XV, Variability Expression within the Context of UML: Issues and Compari-
sons, is by Patrick Tessier, Sébastien Gérard, François Terrier, and Jean-Marc Geib.
Time-to-market is one severe constraint imposed on today’s software engineers. This
chapter presents a product line paradigm as an effective solution for managing both the
variability of products and their evolutions. The product line approach calls for design-
ing a generic and parameterised model that specifies a family of products. It is then
possible to instantiate a member of that family by specialising the “parent” model or
“framework,” where designers explicitly model variability and commonality points among
applications.

ix


