
��"	$

An enormous amount of material dealing with the Web and Web Services is
available in books, online, and in various publications. Anybody interested in
learning can find the material but suffers from the overload of information.
Which information is important, up-to-date, and correct? How can I find in-
formation that constitutes the background for the problem facing me? Is the
information relevant, up to date, and reliable? Can I simply apply what the
published references recommended?
Inspired by similar questions, we decided to put together a systematic review
of current Web technology and trends to meet two goals:

1. Provide information to people who need general, rather than in depth,
technical knowledge such as information technology (IT) development
mangers, software designers, architects, IT students, and project and
program managers. Our ideal reader is technically inclined, with broad
interests and management responsibilities.

2. Describe the logical development of business applications technology,
from client-server to Web, Web Services, Portal, and computer Grids.

The book is practically oriented; it gives a large amount of industry focused
advice and down-to-earth observations. The reader will probably need to
seek more detailed information in specialized books, but he or she will be able
to maneuver in the sea of available information.
It is not necessary to read the book sequentially, but there are advantages in
doing so as the topics build on previously discussed topics.

vii

viii

Most importantly, acronyms and glossary terms are explained at the end of
the text. Terms that we consider important are listed in the Index.
The reader should be familiar with the basics of current information technol-
ogy, the fundamentals of Web architecture, and introductory Java. It is pos-
sible to understand the ideas without understanding the Java examples that
appear in the text. We rely heavily on the XML concepts, and we envisage
that the reader will consult the Web for additional information when reading
this book.
We found many definitions and principles on the Web, and, where possible,
we quote the source for the reader. Published Request for Information (RFC)
material is used extensively throughout the book.
Some information will become obsolete with time, as many suggestions and
design principles refer to the current industrial strength implementations. Many
examples and practical observations refer to IBM WebSphere as the authors
have experience with the product. We encourage readers to critically evaluate
some of our more controversial advice.

Promises and Expectations of
Client-Server Computing

The promise of reduced complexity of software and of software development
in the third and fourth generation of computers has simply not eventuated. The
catch phrase of the client-server paradigm was the promise to reduce the
complexity of the software by dividing electronic processing into a smaller
portion performed on a client computer and a larger portion performed on a
server. This way, the client (the computer, not the person) specializes in front
end processing, leaving the logic to the backend server processing. This sepa-
ration of duties was supposed to achieve what we call today the separation of
concerns. The client interacted with the user and provided data validation,
while the server processed the data and returned the result, often by connect-
ing to a database. The idea of the Graphical User Interface (GUI) was born,
and it was firmly allocated to the client. Nearly immediately, the user interface
became much more sophisticated, filling the vacated space with GUI API’s,
event processing, and user interface standards. Thus, GUI processing grew
into a specialized and complex area, demanding high skills and development
costs.
Programming languages such as Visual Basic were able to produce function-
ally rich user interfaces with graphics, which the user more easily interpreted.

ix

Previously unseen visual objects, such as tabs, pop up windows, buttons with
graphical depiction or symbols of their function, and colorful navigational
prompts filled the user’s view.
On the server side, additional functionality also filled the void: generalized
database connectors; lightweight processes called threads (which introduced
additional complexity for synchronization); support for a large variety of de-
vices and protocols; and ever-increasingly complex logic.
The development process for client-server applications did not become sim-
pler either. The two subsystems were often developed in two or more differ-
ent programming environments. For example, it was very common to develop
client software in Visual Basic or Delphi, while the server software was devel-
oped in C or C++ (or both). The previously cohesive development team was
broken into client and server specialists. The functional testing introduced a
new, expensive, and difficult discipline: integration testing, where the client
and server were seen in cooperation for the first time. Finding errors, bugs,
and functional irregularities became complex and very expensive, as several
specialists had to cooperate to resolve the problems.
The initial promise of reduced complexity was broken. The development man-
agers were dealing with increased costs and were looking for a solution that
would address the increased number of development personnel, ballooning
testing and deployment costs. The developers were faced with a specializa-
tion dilemma — should I become a client or a server specialist? It should be
remembered that the client specialist was also the user interface specialist,
being responsible for the design of the user interface and its behavior. At the
same time, the end users became accustomed to better usability and demanded
ever-improving quality of the user interface, intuitive behavior, and sophisti-
cated error management, where it should not matter whether the validation
errors originated from the server or client processing.

The World of the Web
While client-server computing was evolving, the world of the Web was quietly
assessing its strength. This occurred in 1989-1990. An interested reader can
see one of the early Web sites on http://www.w3.org/History.html or http://
www.w3.org/People/Berners-Lee/WorldWideWeb.html, or read about it in
Weaving the Web by Tim Berners-Lee with Mark Fischetti (Berners-Lee &
Fischetti, 1999).

x

Let us look at one of the first browsers, shown in Figure 1. It bears an unmis-
takable influence of what we call today a “thick” client — rich graphics, cre-
ative use of space, various visual clues, and many windows. The hyperlinks
are the new elements, previously not used. Ted Nelson first coined the term
hyperlink in 1965 in project Xanadu (Nelson, 1965)! Looking at the visual
components, which became very common later, we notice that the Navigate
menu (third from the top on the left side) has “back”, “next”, and “previous”
options. The Style menu option (halfway down the first menu list) has a style
sheet option where one could load different style sheets. The “X” box to close
the window was copied from the NeXT toolbox and was later universally
adopted by Windows. The “edit” option was also new. The browser was
written in a dialect of C, called Objective-C. Note that the “Help” menu is
also present as the last option on the second menu from the left. Many of
these components are re-used in the current Web and Portal interfaces.
Very shortly afterward, the style of the interface became more restrained, less
graphical, with limited expressiveness. This was caused by the amount of in-
formation that had to be transferred through the relatively slow communica-
tion lines. It is important to remember that by then, client-server computing
had undergone a substantial change in that the connections between the Web
client and the Web server were much slower than point-to-point, dedicated
client-server connections.

Figure 1. Berners-Lee’s screen shot of the browser (1994) (http://
www.w3.org/History/1994/WWW/Journals/CACM/screensnap2_24c.gif)

xi

The new Web technology brought some simplification, but only for a brief
period. The browser was thin — essentially displaying a HTML document —
and the server was rather primitive and very slow, the logic often implemented
in a CGI1 (Common Gateway Interface) script. Since the plain HTML/CGI
combination provided services that were regarded as a step backwards (com-
pared to more sophisticated thick clients), a method was found which brought
the browser-based client closer to a thick client. Thus, client-side processing
was introduced, constituting a full circle in the development. Java applets,
Java scripts, and various other means were used to achieve functionally rich,
dynamic user interfaces.
From the point of view of a development manager, the situation was not much
better than before. A variety of skills were necessary in a development team,
including a GUI designer, an HTML developer, a CGI script developer, and
later a Java developer. However, a substantial gain was achieved — the whole
system could be developed on a single machine, with a local Web server.
With the introduction of Java (and later .Net technology), the feeling of vic-
tory was also introduced: a single technology was used on both platforms,
with a Java applet running in a browser and a Java application running on the
server. It looked as if the technology was finally making life simpler, although
the quality of the interface was still not as good as in the thick client-server
processing. The net effect of the latest developments was that the enterprise’s
client-server systems were being re-implemented in the “Intranet” — applica-
tions designed for the Internet to be only accessible within the company net-
work. Legacy systems continued to be used and maintained, and people wanted
to use them in the “net” — here meaning Intranet — without the necessity to
re-write them. A lightweight Web application would do precisely that — pro-
vide access to a backend system. This represented a critical point in thinking
— suddenly people wanted to access a multiplicity of applications in one easy
to use window. The idea of a Portal was born.
The necessity to provide integrated Web Services stems from the fact that
modern businesses often evolve through mergers and acquisitions. These busi-
nesses have applications that are either redundant or reusable. However, inte-
gration of these applications is not trivial, mainly from the point of view of the
number of connections. Consider n applications that are to be integrated; it
will be necessary to build n*(n-1) interfaces. With every new application (n+1),
one must test and maintain 2n (where n is the number of original applications)
new interfaces. Obviously, the architect tries to find a solution where a new
application requires only one new interface to the system. However, there is
more to it; the integration must be done not only on the level of interconnectivity,

xii

but also on the user interface level. For example, two business applications
that are related should be accessible from one screen, if possible. If there is
some legal information or other textual information that is useful, such as busi-
ness procedures, it should be also readily available. The industry answer to
the previously-mentioned problem is the service-oriented architecture, which
is described in the section called Service-Oriented Architecture. We will ex-
plain how the necessity of simplifying the development process contributed to
the idea of Portal, Web Services, and computer Grids.

Where to Start?
In Figure 2, we list the major subjects discussed in the book and their rela-
tionships. The reader can see the necessary prerequisites for the desired sub-
ject. The diagram shows that modern Web-oriented computing is reaching a
stage where many components cooperate in the final product. It is important
to realize this idea when designing, building, and managing the development of
these systems. Understanding historical trends helps to keep current and fu-
ture trends in perspective. We encourage the reader to look back before look-
ing to today and onto the future.

Figure 2. Roadmap of this book

This book arose from university courses taught by the authors at Monash
University in Melbourne, Australia and from the practical managerial experi-
ence of the portal development manager. Most courses and textbooks in this
field are targeted at either the low programming level of APIs for portals,
J2EE components and Web Services, or high-level aspects of services and
portal deployment in the enterprise information systems. We also realized that
the majority of the textbooks focus on material around Web Services and
ignore the fact that portals and Grid applications are in some ways the inevi-
table extension of Web Services.
This book uses Java, J2EE platform, Globus Toolkit, and IBM’s WebSphere
for Multiplatforms 5 to demonstrate the programming and deployment as-
pects of development of Web Services, portals, and Grid applications.

Organization of the Book
At this point, the reader should be ready for the main body of the book, which
is divided into four parts:

1. In Section I: The Toolset (Chapters I-III), we explain technicalities re-
lated to XML and Web Services Description Language (WSDL). The
purpose of Chapter II is to give the reader basic knowledge necessary
to read the rest of the chapters.
Chapter III deals with Web oriented protocols, UDDI (Universal De-
scription, Discovery and Integration), and SOAP (Simple Object Ac-
cess Protocol). We explain relationship between UDDI version 2 and
WSDL. In addition, we provide a simplified example of accessing UDDI
Registry using JAXR (Java APIs for Registries). SOAP is described in
terms of messaging — a widely used technology in Web Services.

2. In Section II: Web Services as Shared Resources (Chapters IV-VII),
we describe Web Services and look at some implementation issues. Chap-
ters V and VI discuss servlets and JSP (Java Server Pages). At this
point, the reader will have the necessary knowledge for understanding
the Web service design issues discussed in Chapter VII.

3. In Section III: Putting Portals on the Web (Chapters VIII-XVII), we
utilize the knowledge of Web Services and develop the concepts of por-
tals. We briefly touch on portal solutions for business processes, and
then continue with portal development framework and the close rela-
tionship between portlets and servlets. Large portions of Chapters IX-

xiii

XIII are devoted to understanding portlets and portal concepts, their
lifecycle, and messaging. Chapter XVI is dedicated to discussion about
relevant portlet standards and issues related to accessing presentation-
oriented Web Services. Chapter XVII is based on practicing manager’s
experience with installation and delivering portal solutions in large orga-
nizations. These issues are particularly relevant to the B2E and B2B so-
lutions.

4. In Section IV: Grids as Virtual Organizations (Chapter XVIII), we in-
troduce the concept of computer Grids, building on the previous two
parts. As recently discussed in various Web communities, Web Services
are seen as an enabling technology for Adaptive Enterprises where busi-
ness and IT are synchronized to accommodate fast and efficient changes
in real time. With the new incoming WS-Resource framework (authored
by The Globus Alliance, HP and IBM), we feel that thorough under-
standing of Grid concepts would be beneficial to our readers. This seem-
ingly long section will provide the reader with sufficient knowledge to
allow him or her to appreciate new trends in creating Grid-based com-
munities and applications running on the Grids.

Endnote
1 The Common Gateway Interface (CGI) is a standard for interfacing ex-

ternal applications with information servers, such as HTTP or Web serv-
ers. See also the following Web site for more information: http://
hoohoo.ncsa.uiuc.edu/cgi/intro.html

xiv

