
�iii

Preface

This book explains the techniques to store and retrieve multimedia informa-
tion in multimedia storage systems. It describes the internal architecture of 
storage systems. Readers will be able to learn the internal architectures of 
multimedia storage systems. Many techniques are described with details. 
Examples are provided to help readers understand the techniques. By un-
derstanding these techniques, we hope that readers may also apply similar 
techniques in the problems that they encounter in their everyday life. In 
particular, this book would be helpful to managers who wish to improve the 
performance of their multimedia storage systems.
To the best of our knowledge, there are many books about multimedia infor-
mation and only a few books discuss the storage systems in detail. Only one of 
them describes the storage and retrieval methods for multimedia information. 
However, none of them have discussed the storage and retrieval methods in 
hierarchical storage systems. Therefore, we consider it necessary to explain 
the storage techniques for multimedia information on storage systems and 
hierarchical storage systems in a new book. This book discusses the research 
on multimedia information storage and retrieval techniques.
This book focuses on the storage and retrieval methods. Some other tech-
niques, though somewhat related, are however outside the scope of this book. 
Those topics include security of multimedia data in the storage systems, 



�iv

protocols to deliver multimedia information across the networks, and real 
time processing of multimedia information. Readers can easily find these 
topics from other books. 
This book is divided into the following six sections:

1. Background information in Section I.
2. Data placement on disks in Section IIa.
3. Data placement on hierarchical storage systems in Section IIb.
4. Disk scheduling methods in Section III.
5. Data migration methods in Section IV.
6. Cache replacement policies in Section V.

We start this book with the background of multimedia storage technology 
in Section I. Multimedia applications process digital media that were only 
present in the entertainment industry. Multimedia information systems pro-
cess digital media data according to the needs in these applications. Data 
compression is vital to the success of multimedia information systems and 
we explain two image and video compression standards. Traditional storage 
systems need to be enhanced or improved to support the data storage and 
retrieval operations. The characteristics of multimedia access patterns have 
significant impacts on the performance of the storage systems. 
In Section IIa, “Data Placement on Disks,” we describe the data placement 
methods that organize the storage locations of multimedia data on disks. 
Data placement methods organize the multimedia data according to the 
characteristics of multimedia data access patterns. New techniques have 
been designed to improve the performance of multimedia storage servers to 
an acceptable level. Data placement methods are grouped according to the 
strategies being applied, including statistical placement, striping, replication, 
and constraint allocation.
In Section IIb, “Data Placement on Hierarchical Storage Systems,” we de-
scribe the storage organization of multimedia data on hierarchical storage 
systems. Data placement methods have been designed to achieve efficient 
retrievals of multimedia data. The data placements are categorized according 
to the strategy in use, including contiguous placement, statistical placement, 
striping, and constraint allocation.
In Section III, “Disk Scheduling Methods,” the disk scheduling methods that 
rearrange the service sequences of the waiting requests are described. The 



�v

methods that schedule normal disk requests are first described. The feasibil-
ity conditions to merge concurrent streams are then followed. After that, we 
describe the scheduling methods for streams of multimedia requests. 
In Section IV, “Data Migration,” we show the methods to migrate data across 
the storage levels of the hierarchical storage systems. Data residing on the 
hierarchical storage systems are migrated from high levels with high ac-
cess latency to lower levels with low access latency. Staging methods move 
multimedia objects across the storage level via staging buffers. Time slicing 
method accesses objects in time slices in order to reduce the start-up latency 
of streams. Pipelining methods minimize the start-up latency and staging 
buffer size for multimedia streams.
In Section V, “Cache Replacement Policy,” the cache replacement methods 
of multimedia servers are described. Efficient cache replacement policies 
on these servers keep the objects with high access probability on the cache. 
They improve the cache replacement methods of multimedia streams so 
that multimedia data can be delivered efficiently over the Internet. Memory 
caching methods replace objects with low cache value so that high cache 
value objects can be kept for efficient cache performance. Stream dependent 
caching methods assign cache values to object segments in order to improve 
the cache efficiency for multimedia objects. Cooperative proxy servers share 
their Web cache contents so that the cache performs efficiently when similar 
objects are accessed by their clients.
The organization of chapters in this book is as follows:

1. Background in Section I.
a. Introduction in Chapter I.
b. Multimedia information in Chapter II.
c. Architectures of storage systems in Chapter III.
d. Data compression techniques and standards in Chapter IV.

2. Data placement on disks in Section IIa.
a. Statistical placement on disks in Chapter V.
b. Striping on disks in Chapter VI.
c. Replication placement on disks in Chapter VII.
d. Constraint allocation on disks in Chapter VIII.

3. Data placement on hierarchical storage systems in Section IIb.



�vi

a. Tertiary storage devices in Chapter IX.
b. Contiguous placement on hierarchical storage systems in Chapter 

X.
c. Statistical placement on hierarchical storage systems in Chapter 

XI.
d. Striping on hierarchical storage systems in Chapter XII.
e. Constraint allocation on hierarchical storage systems in Chapter 

XIII.
4. Disk scheduling methods in Section III.

a. Scheduling methods for disk requests in Chapter XIV.
b. Feasibility conditions of concurrent streams in Chapter XV.
c. Scheduling methods for request streams in Chapter XVI.

5. Data migration in Section IV.
a. Staging method in Chapter XVII.
b. Time slicing method in Chapter XVIII.
c. Normal pipelining in Chapter XIX.
d. Space efficient pipelining in Chapter XX.
e. Segmented pipelining in Chapter XXI.

6. Cache replacement policies in Section V.
a. Memory caching methods in Chapter XXII.
b. Stream dependent caching in Chapter XXIII.
c. Cooperative Web caching in Chapter XXIV.

In Chapter I, “Introduction,” we give an overview of the techniques that are 
covered in this book. The techniques are described briefly according to the 
division of parts in this book. 
In Chapter II, “Multimedia Information,” we start with describing the char-
acteristics of multimedia data. Some applications that are involved in using 
and processing multimedia information are listed as examples. The repre-
sentations of multimedia data show how the large and bulky multimedia data 
are represented and compressed. The multimedia data are also accessed in 
request streams. Readers who are familiar with multimedia processing may 
skip this chapter.



�vii

In Chapter III, “Storage System Architectures,” the architectures of storage 
systems are explained. Multimedia systems are similar to traditional comput-
ers systems in term of their architectures. Multimedia computer systems are 
built with stringent processing time requirements. The components of the 
computer system, including the storage servers, need to process a large amount 
of data in parallel within a guaranteed time frame. The storage server needs 
to access data continuously to the clients according to the clients’ requests. 
Multimedia objects are large and the magnetic hard disks need to access 
segments of the objects within a short time. These requirements lead to the 
emergence of constant recording density disks and zoned disks. Readers who 
have deep understandings of the computer storage architectures may skip 
some descriptions and go to the performance equations immediately.
In Chapter IV, “Data Compression Techniques and Standards,” the data 
compression techniques and standards are described. We describe the general 
compression model, text compression, image compression and JPEG2000, 
and video compression and MPEG2. These data compression techniques are 
helpful to understand the multimedia data being stored and retrieved.
In Chapter V, “Statistical Placement on Disks,” two statistical placement 
methods are described. The statistical placement strategy is based on the 
difference in access characteristics of the multimedia streams. The frequency 
based placement method optimizes the average request response time. It uses 
an algorithm to place the objects according to their access frequencies. The 
bandwidth based placement method places objects according to their data 
rates. The storage system maintains its optimal performance according to 
the object data transfer time without reorganizations. Readers may find this 
chapter useful in other situations which involve probabilities.
In Chapter VI, “Striping on Disks,” three striping methods are explained in 
detail. Multimedia streams need continuous data supply. The aggregate data 
access requirement of many multimedia streams imposes very high demand 
on the access bandwidth of the storage servers. The disk striping or data strip-
ing methods spread data over multiple disks to provide high aggregate disk 
throughput. The simple striping methods increase the efficiency of serving 
concurrent multimedia streams. Multimedia streams access the data stripes 
according to their actual data consumption rates. The disk bandwidth and the 
memory buffer are used efficiently. The staggered striping method provides 
effective support for multiple streams accessing different objects from a group 
of striped disks, and it automatically balances the workload among disks. The 
pseudorandom placement method maintains that the data stripes are evenly 
distributed on disks and it reduces the number of data stripes being moved 



�viii

when the number of disks increases or decreases. It reduces the workload 
on data reorganization when disks are added or removed.
In Chapter VII, “Replication Placement on Disks,” several replication place-
ment methods on disks are shown. When extra storage space is available, 
the storage system may keep extra copies of the stored objects. Extra copies 
of objects may be able to increase the storage system performance. The re-
cent trend of technology shows that storage capacity is increased at a faster 
pace than the access bandwidth. Storage capacity may not be a problem 
when compared to the access bandwidth. The replication strategy applies 
redundancy to increase reliability of the storage system and availability of 
the stored objects. It reduces network load, start-up latency. It avoids disk 
multitasking. It maintains the balance of space and workload. 
In Chapter VIII, “Constraint Allocation on Disks,” two constraint allocation 
methods are described. Constraint allocation methods limit the available 
locations to store the data stripes. They reduce the overheads of serving 
concurrent streams from the same storage device. The maximum overheads 
in accessing data from the storage devices are lowered. When many streams 
access the same hot object, the phase based constraint allocation supports 
more streams with less seek actions. The region based allocation limits the 
longest seek distance among requests.
In Chapter IX, “Tertiary Storage Devices,” the tertiary storage devices are 
detailed. Several types of storage devices, including magnetic tapes, optical 
disks, and optical tapes, are available to be used at the tertiary storage level 
in hierarchical storage systems. These storage devices are composed of fixed 
storage drives and removable media units. The storage drives are fixed to 
the computer system. The removable media unit can be removed from the 
drives so that the storage capacity can be expanded with more media units. 
When data on a media are accessed, the media unit is accessed from their 
normal location. One of the storage drives on the computer system is chosen. 
If there is a media unit in the storage drive, the old media unit is unloaded 
and ejected. The new media unit is then loaded to the drive. Readers who 
are familiar with the robotic tape libraries may skip this chapter and directly 
move on to the placement methods.
In Chapter X, “Contiguous Placement on Hierarchical Storage Systems,” 
two contiguous placement methods are described. The contiguous place-
ment is the most common method to place traditional data files on tertiary 
storage devices. The storage space in the media units is checked. The data 
file is stored on a media unit with enough space to store the data file. When 
tertiary storage devices are used to store multimedia objects, the objects are 



�i�

stored and retrieved similar to traditional data files. Since the main applica-
tion of the tertiary storage devices is to back up multimedia objects from 
computers, the objectives of the contiguous method are (1) to support back 
up of multimedia objects efficiently and (2) to reduce the number of separate 
media units that are used to store an object.
In Chapter XI, “Statistical Placement on Hierarchical Storage Systems,” we 
describe the statistical strategy to place multimedia objects on hierarchical 
storage systems. The objective of the data placement methods is to minimize 
the time to access object from the hierarchical storage system. The statistical 
strategy changes the statistical time to access objects so that the mean access 
time is optimal. The frequency based placement method differentiates objects 
according to their access frequencies. The objects that are more frequently 
accessed are placed in the more convenient locations. The objects that are 
less frequently accessed are placed in the less convenient locations. 
In Chapter XII, “Striping on Hierarchical Storage Systems,” two striping 
techniques are explained with details. The data striping technique has been 
successfully applied on disks to reduce the time to access objects from the 
disks. Thus, the striping technique has been investigated to reduce the time 
to access objects from the tape libraries in a similar manner. Similar to the 
striping on disks, the objective of the parallel striping method is to reduce 
the time to access objects from the tape libraries. The parallel tape striping 
directly applies the striping technique to place data stripes on tapes. The tri-
angular placement method changes the order in which data stripes are stored 
on tapes to further enhance the performance.
In Chapter XIII, “Constraint Allocation on Hierarchical Storage Systems,” 
two approaches to provide constraint allocations on different types of media 
units are described. Multimedia objects are large in size, but the access latency 
of hierarchical storage systems is high. The hierarchical storage systems need 
to provide high throughput in delivering data. Multimedia streams should 
be displayed with continuity. Depending on the data migration method, the 
whole object or only partial object is retrieved prior to the beginning of 
consumption. The constraint allocation methods limit the freedom to place 
data on media units so that the worst case would never happen. They reduce 
the longest exchange time and/or the longest reposition time in accessing the 
objects. The interleaved contiguous placement limits the storage locations 
of data stripes on optical disks. The concurrent striping method limits the 
storage locations of data stripes on tapes. 
In Chapter XIV, “Scheduling Methods for Disk Requests,” two common disk 
scheduling methods are explained. Disk scheduling changes the sequence 



��

order to serve the requests that are waiting in the queue. While data placement 
reduces the access time of a disk request, scheduling reduces the waiting time 
of a request. The longer the waiting queue, the more useful is the scheduling 
method. When there are not any requests in the waiting queue, any schedul-
ing methods perform the same. A disk scheduling policy changes the service 
order of waiting requests. It accepts the waiting requests and serves them 
in the new service sequence. The first-in-first-out policy serves requests in 
the same order as the incoming order of the waiting requests. The SCAN 
scheduling method serves the waiting requests in the order of their accessing 
physical track locations to serve the requests efficiently. 
In Chapter XV, “Feasibility Conditions of Concurrent Streams,” we prove 
the feasibility conditions to accept homogeneous and heterogeneous streams 
to a storage system. Multimedia storage systems store data objects and re-
ceive streams of requests from the multimedia server. When a client wishes 
to display an object, it sends a new object request for the multimedia object 
to the multimedia server. The multimedia server checks to see if this new 
stream can be accepted. The server encapsulates the data stripe of the ac-
cepted streams as data packets and sends them to the client. The server sends 
data requests periodically to the storage system. Each of these data requests 
has a deadline associated with it. Every request of a stream, except the first 
one, must be served within the deadline to ensure continuity of the stream. 
We prove that heterogeneous streams can be accepted when their streams 
accessing patterns satisfy the feasibility conditions. Readers may skip the 
proofs of the equations in this chapter in the first reading.
In Chapter XVI, “Scheduling Methods for Request Streams,” we describe 
three scheduling methods for multimedia streams of requests. These sched-
uling methods use either serve requests according to their deadline or serve 
the stream in round robin cycle in order to provide real-time continuity 
guarantee. They all use the SCAN scheduling method to improve the ef-
ficiency in serving requests. The earliest deadline first scheduling method 
serves requests according to their deadlines so that the requests would not 
wait too long and miss their deadlines. The SCAN-EDF scheduling method 
serves requests with the same deadline in the SCAN order. It improves the 
efficiency of the storage system using the EDF scheduling method. The 
group sweeping scheduling method serves groups of streams in round-robin 
cycles. It improves the efficiency of the storage system and provides real-
time continuity guarantees to the streams. It is also fair to all the streams by 
serving one request of every stream in each cycle. 



��i

In Chapter XVII, “Staging Methods,” we describe one of the data migration 
methods. Data migration is the process of moving data from tertiary storage 
devices to secondary storage devices in hierarchical storage systems. The 
three approaches to migrate multimedia data objects across the storage levels 
are staging, time slicing, and pipelining. The staging method accesses an ob-
ject using two stages. The staging method is simple and flexible. It is suitable 
for any type of data on any tertiary storage systems. Some readers may find 
the staging method is simple and just browse through this chapter.
In Chapter XVIII, “Time Slicing Method,” the time slicing method is de-
scribed. Tertiary storage devices provide huge storage capacity at low cost. 
Multimedia objects stored on the tertiary storage devices are accessed with 
high latency. The time slicing method is designed to reduce the start up latency 
in accessing multimedia objects from tertiary storage devices. The start-up 
latency is lowered by reducing the amount of data being migrated before 
consumption begins. The time slicing method accesses objects at the unit of 
slices instead of objects. Streams can start to respond at an earlier time.
In Chapter XIX, “Normal Pipelining,” the first pipelining method is intro-
duced. Three pipelining methods, including normal pipelining, space efficient 
pipelining, and segmented pipelining, can be used to access multimedia ob-
jects with minimal start-up latency. Apart from reducing the start up latency, 
the pipelining methods also reduce the usage of the staging buffers. The 
normal pipelining method finds the minimum fraction of the object before 
the stream can start to display it. The formula to find minimum size of the 
first slices is explained. The pipelining method minimizes the start-up latency 
for the tertiary storage devices whose data transfer rate is lower than the data 
consumption rate of the objects.
In Chapter XX, “Space Efficient Pipelining,” the space efficient pipelining 
method is explained. The space efficient pipelining method is designed for 
pipelining objects from low bandwidth storage devices for display. It re-
trieves data at a rate lower than the data consumption rate. It keeps the front 
part of objects resident on disk cache to start a new stream at disk latency. 
It uses the disk space efficiently to handle more streams. The basic policy 
reuses the circular buffer to store the later slices of the objects. The shrinking 
buffer policy reduces the circular buffer size after a slice is displayed. It is 
particularly useful when the circular disk buffer constraint is tight. The space 
stealing policy reuses the storage space containing the head of the object as 
part of the circular buffer. 
In Chapter XXI, “Segmented Pipelining,” the segmented pipelining method 
to reduce the latency in serving interactive requests is presented and analyzed. 



��ii

The segmented pipelining method divides objects into segments and slices 
so that the object can be pipelined from the hierarchical storage system. The 
segmented pipelining method is analyzed in terms of disk space requirement 
and the reposition latency. It uses small extra disk space to support object 
previews and efficient interactive functions. It can offer extra flexibility in 
controlling the amount of disk space usage by adjusting the storage location 
of the preload data. The segmented pipelining is an efficient and flexible 
data migration method for the multimedia objects on hierarchical storage 
systems.
Multimedia objects can be stored in the content servers on the Internet. When 
clients access multimedia objects from a content server, the content server 
must have sufficient disk and network to deliver the objects to the clients. 
Otherwise, it rejects the requests from the new clients. The server and net-
work workloads are important concerns in designing multimedia storage 
systems over the Internet. The Internet caching technique helps to reduce 
the number of repeated requests for the same objects from popular content 
servers. As caching consumes myriad storage space, the cache performance is 
significantly affected by the cache size. Cache admission policies determine 
whether a newly accessed object should be stored onto the cache devices. 
Cache replacement policies decide which objects should be removed to release 
space. The cache replacement policy can be divided into memory caching 
and stream dependent caching.
In Chapter XXII, “Memory Caching Methods,” we describe several replace-
ment policies in memory caching. Memory cache replacement policies assign 
a cache value to each object in the cache. This cache value decides the prior-
ity of keeping the object in the cache. When space is needed to store a new 
object in cache, the cache replacement function will choose the object with 
the lowest cache value and delete it to release space. The objects with high 
cache values will remain in the cache. Different cache replacement policies 
assign different cache values to the objects. The traditional LRU method 
keeps the objects that are accessed most recently. It is simple and easy to 
implement and the time complexity is very low. The LFU, LUV, and mix 
methods keep track of the object temperature and remove the coldest objects 
from the cache first. The LRU-min, GD-size, LUV, and mix methods keep 
the small and recently accessed objects in the cache. The GD-size, LUV, and 
mix methods also include latency cost of objects in the cache to lower the 
priority of objects that can be easily replaced.
In Chapter XXIII, “Stream Dependent Caching,” the stream dependent 
caching methods that guarantee continuous delivery for multimedia streams 



��iii

are described. The storage techniques on stream dependent caching include 
resident leader, variable length segmentation, video staging, hotspot caching, 
and interval caching. They will divide each multimedia object into smaller 
segments and store selected segments on the cache level. The resident leader 
method trades off the average response time of requests to reduce the maxi-
mum response time of streams. The variable length segmentation method 
divides the objects into segments of increasing length so that large segments 
may be deleted to release space more efficiently. The video staging method 
retrieves high bandwidth segments to reduce the necessary WAN bandwidth 
for streaming. The hotspot caching method creates the hotspot segments of 
objects to provide fast object previews from local cache. The interval cach-
ing method keeps the shortest intervals of video to maintain the continuity 
of streams from the local cache content. The layer based caching method 
adapts the quality of streams to the cache efficiency. It uses the continuity 
and completeness as metrics to measure the suitability of the caching method 
for multimedia streams. The cost based method for wireless clients reduces 
the quality distortion over the error-prone wireless networks with the help 
of the cache content. The cache values of the segments are composed of the 
network cost, the start-up latency cost, and the quality distortion cost. 
In Chapter XXIV, “Cooperative Web Caching,” we describe how Web caches 
cooperate to raise the overall cache performance on the Internet. Hierarchical 
Web caching reduces network latency on requests. Front and rear partitioning 
reduces the start-up latency of streams. Directory based cooperation avoids 
the contention on parent proxy server. Hash based cooperation achieves low 
storage overheads and update overheads. Multiple hotspot caching keeps the 
hotspot blocks to provide fast local previews. The performances of various 
object partitioning methods in cooperative multimedia proxy servers are 
analyzed. 


	Preface

