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ABSTRACT

This article proposes a system that focuses on Android application runtime behavior forensics. Using 
Linux processes, a dynamic injection and a Java function hook technology, the system is able to 
manipulate the runtime behavior of applications without modifying the Android framework and the 
application’s source code. Based on this method, a privacy data protection policy that reflects users’ 
intentions is proposed by extracting and recording the privacy data usage in applications. Moreover, 
an optimized random forest algorithm is proposed to reduce the policy training time. The result 
shows that the system realizes the functions of application runtime behavior monitor and control. 
An experiment on 134 widely used applications shows that the basic privacy policy could satisfy the 
majority of users’ privacy intentions.
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INTRODUCTION

Background
Nowadays mobile phones are widely used in communications, and in many other aspects in people’s 
daily lives as well. Personal information, including many kinds of privacy data, has been saved in 
users’ mobile phones and used by installed applications on the phone. Research from Zscaler (Maritza, 
2016) reveals that, in each quarter, about 0.4 percent of the mobile device transactions are leaking 
privacy data, including device metadata, location and personally identifiable information. In reality, 
many applications overuse the privilege that users grant prevalently. Privacy leaks and privilege 
abuse have become severe problems in mobile security. Given this, it is imperative to concern about 
the privacy data forensics and protection of mobile phones, since they are no longer a simple mobile 
device for communications, but an essential data storage tool for almost every mobile phone user.

Malware detection is a prevalent method to prevent the user’s privacy leaks, which in fact 
contains a lot of work of digital forensics. One of the works includes detection consists of detecting 
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whether applications have been repackaged, collected user privacy data or consumed fees silently. 
However, malware detection cannot be the only benchmark to prevent privacy leaks, since many 
benign applications may also abuse the users’ privacy data. Furthermore, many forensic works have 
determined that privacy data is leaked only when its metadata is sent out of the phone, and they 
don’t consider that privacy data might be utilized inside the applications. Mobile-phone operating 
systems currently provide only coarse-grained controls for regulating whether an application can 
access private information (Enck et al., 2014). However, they cannot control applications’ behavior 
when a privacy leak happens.

Considering the drawbacks mentioned above, it can be concluded that privacy data is a matter 
of grave importance to users. Any behavior that accesses privacy data of an application is vital, 
and should therefore be under surveillance or provide user-notice, regardless of whether or not the 
application itself is malicious.

In this paper, an application behavior forensics and privacy protection system for Android 
based on the applications’ runtime behavior is designed. The system is capable of monitoring any 
application’s runtime behavior which accesses privacy data on Android, thus providing forensic 
evidence of privilege abuse and possible privacy leaks. Based on the captured runtime behavior, the 
system is able to enforce a rather fine-grained privacy policy that controls the source of privacy data.

RELATED WORK

Most approaches of mobile digital forensics are more or less based on applications’ behavior analysis, 
namely the information flow tracking technique, because privacy source data is mainly utilized by 
various applications installed on Android devices. An application’s behavior analysis mainly falls into 
two categories: static analysis and dynamic analysis. The former keep watch on the complete program 
code and all possible paths of execution before runtime, whereas the later looks at the instructions 
executed in the program-run in real time (Lokhande, & Dhavale, 2014).

Static Analysis
The static analysis approach requires conversion of the applications’ source code before execution, for 
example decompiling apk files, generating Control Flow Graphs (CFG) in order to trace all possible 
execution paths to find any possible mal-behavior (Lokhande & Dhavale, 2014). Works related to 
static analysis mostly focus on malware detection and taint flow analysis. Gibler et al. (2012) proposed 
the AndroidLeaks system, which firstly analyzes Android framework source code to generate a map 
between permissions and Android APIs, then decompiles the applications’ apk files; and used WALA 
(IBM, 2011) to track privacy information taint flow so as to find possible privacy leaks. Kim et al. 
(2012) proposed SCANDAL, a sound and automatic static analyzer for detecting privacy leaks in 
Android applications. By means of analyzing an application’s Dalvik byte code, SCANDAL covered 
all possible states that may occur when using the application. However, it didn’t make a distinction 
as to whether the taint flow was used for the applications’ normal functions or not. All execution 
flows that sent the privacy data out of the system would be judged as privacy leaks. Kim et al. (2012) 
suggested an analysis system to prevent propagation of harmful applications. Similarly analyzing 
each part of an apk file statically, including dex code and Manifest file, they rated all possible risky 
methods, then determined the possibility of harmful applications. AppIntent (Yang et al., 2013) is 
another static analysis framework, which reduces the search space from static analysis, instead of 
searching the whole possible execution graph. Another innovation is that AppIntent determines 
whether the data transmission is user-intended or not, so that it may have a higher accuracy rate 
of judging privacy data leakage. Li et al. (2015) proposed IccTA lately, which transformed Dalvik 
byte code to a kind of intermediate code called Jimple, and especially focused on taint transmission 
between Inter-Component Communication (ICC) to find possible privacy leaks. By propagating 
context information among components, IccTA improved the precision of the analysis.
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All static analysis methods mentioned above have some typical common ground:

•	 They need to analyze applications’ source code.
•	 The searching space is rather large since it might contain all possible execution flow.
•	 They are able to find possible privacy data leaks in an application, but cannot prevent privacy 

leaking at runtime.

Batyuk et al. (2011) tried to implement privacy data confinement through a static approach. They 
modified an application’s byte code at the source code level, controlling the applications’ access of 
privacy data by means of changing the Android API function’s return value based on a user’s security 
preferences. The modified code was finally repackaged and installed on the user’s Android phone so 
that some specific kind of privacy data would not be accessed by the application. However, once the 
application is installed, the security preference is not able to change at all.

Dynamic Analysis
Unlike static analysis, dynamic analysis has the ability to monitor the code while the code is being 
executed (Lokhande, & Dhavale, 2014). Crowdroid (Burguera, Zurutuza, & Nadjm-Tehrani, 2011) 
used a Linux application “strace” to monitor an application’s system call at runtime and output its 
function call frequency vector, based on which it used a k-means algorithm to classify the applications. 
Su et al. (2012) used a similar approach to extract an application’s runtime behavior, where J.48 and 
Random Forest classifier were used to find potential malware, which achieved high accuracy. Enck et 
al. (2014) proposed TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system. 
By means of modifying the Dalvik virtual machine, it was able to mark several types of Android 
metadata and was capable of simultaneously tracking multiple sources of sensitive data.

In addition to malware behavior detection, there are more approaches to implement privacy data 
confinement by means of dynamic analysis than static analysis, since dynamic analysis is always 
based on an application’s runtime behavior. Hornyack et al. (2011) proposed the AppFence system 
based on TaintDroid, which retrofitted the Android operating system. For an application’s behavior 
of accessing privacy data, the system returned fake values so as to protect the real privacy data. 
However, it was not able to distinguish between the application’s normal function behavior and mal-
behavior. Zhou et al. (2011) designed TISSA. Modifying the Android framework, it built another 
permission checking system above Android’s original privacy policy, which empowered users to 
flexibly control what kinds of personal information would be accessible to an application. Kynoid 
(Schreckling, Köstler, & Schaff, 2013) improved TaintDroid and was able to mark numerous kinds 
of metadata and defined security policies for a single data item.

As aforesaid, approaches based on TaintDroid need to modify the Android framework, real 
world deployment of which is not feasible. Though other approaches that use the Linux tool strace 
may not require system modification, they are not able to enforce data confinement during runtime 
but are used for mal-ware detection. Furthermore, privacy data protection policies mentioned above 
are absolutely based on a user’s preference without being concerned about the normal functionalities 
of applications.

However, the authors’ approach overcomes most obstacles mentioned above, as it doesn’t need 
system modification or the applications’ source code. Also, the authors propose a default privacy policy 
based on a large number of users’ privacy intentions instead of one single user’s privacy intention.
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MODEL AND OVERVIEW

Overall Workflow
The authors’ work mainly contains two parts: applications’ runtime behavior forensics and privacy 
protection. The former aims at applications’ runtime behavior capture and analysis, and the latter 
is finished based on the information produced by the former work. The system is able to capture an 
Android application’s runtime behavior, which reveals all the sensitive behavior of an application 
and provides digital evidence for electronic forensics of privacy theft. Combined with users’ privacy 
intention investigations, the runtime behavior information is used for training the privacy protection 
policy offline. During working, the system follows the generated privacy policy to protect the real 
privacy data by means of capturing and controlling applications’ runtime behavior. The overall 
workflow is shown in Figure 1.

System Model
As shown in Figure 2, the system essentially consists of three modules: Inject Launcher, Runtime 
Behavior Controller and Privacy Provider. In the main user interface, the system lists all applications 
that are installed on the Android phone. As soon as a single application is launched through the system, 

Figure 1. Overall Workflow
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the system injects a specific module into all processes that belong to the target application, redirects the 
sensitive functions in the application process and starts runtime behavior monitoring. When a sensitive 
function is called by the application, the system captures this behavior and collects some features of 
its calling environment, and sends the information to the Policy Provider immediately through the 
sender. The Policy Provider will judge whether this behavior is proper in the circumstance. According 
to the policy provided, the system returns the real privacy data or mock data to the application, and 
finally completes the policy enforcement.

Injector Launcher
The first step of the system is launching a single application installed on the Android phone and 
proceeding with injection in the meantime using the Linux dynamic injection technique. Dynamic 
injection, in essence, may allow specific dynamic link libraries (.so file in Android) to be loaded into 
specific address spaces of a process. Using the Linux functions ptrace_attach and ptrace_detach, 
the system is able to suspend and resume a certain running process. The moment the process is 
suspended, the system loads a dynamic link library to the memory map of the process and calls the 
entry function of the dynamic link library in order to start up the subsequent procedure by means 
of other Linux functions like dlopen and dlsym. After dynamic injection, the system has achieved 
attaching and starting of the Runtime Behavior Controller module to target process, which begins to 
monitor and control the application’s runtime behavior.

Runtime Behavior Controller (RBC)
Runtime Behavior Controller (RBC) module is actually a dynamic link library complied by the 
Android Native Development Kit (NDK), which is injected into processes that belong to the target 
application after the application has been launched. It contains a Java method hook handler that 
controls the application’s runtime behavior, and an information sender and receiver that handles the 

Figure 2. System Overview
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communications between the RBC and the Privacy Provider. It has two main purposes: to capture 
and to control an application’s runtime behavior.

Runtime Behavior Capture
Android applications are mainly implemented in Java, with the compiled class files further converted 
to Dalvik bytecode, running on the proprietary register-based Dalvik VM (Xu, Saïdi, & Anderson, 
2012). In practice, Android applications complete a variety of functions by means of calling a series 
of Java Application Programming Interfaces (API). If the system is able to observe each API calling 
of a running application, the system is completely familiar with its runtime behavior. A Java method 
hook technology is employed to achieve this goal, which proceed as follows.

Privacy API Map
In order to capture specific behavior, the Java APIs related to the sensitive data need to be found. 
Pscout (Au, Zhou, Huang, & Lie, 2012) mentions many APIs associated with each kind of permission, 
whereas the authors here select several APIs that matter the most for accessing privacy data. With the 
help of the Android developers document, some kinds of application’s sensitive behavior are mapped 
to their corresponding Java APIs in Table 1.

It can be found that functions related to user behavior are taken into account – methods which 
contain not only APIs of user actions such as clicking, but also some APIs of the Activity’s life cycle 
that are probably caused by user actions. The user actions are considered to be an imperative factor 
for privacy policy, which might determine whether an application’s behavior is user caused.

Java Method Hook
Each Java method has its fundamental method structure in the Dalvik Virtual Machine. At the Java 
Native Interface (JNI) level, the system locates a specific Java method’s fundamental structure through 
its method signature using JNI APIs. By means of changing the method’s native function pointer to 
the hook function, the so-called method_handler, and saving the original method pointer, the system 
is able to redirect the method pointer to method_handler. In method_handler, the system processes a 

Table 1. Sensitive APIs Related to Privacy Data

Privacy data Behavior API(s)

l o c a t i o n g e t L o c a t i o n M a n a g e r . g e t L a s t K n o w n L o c a t i o n ( . . . ) 
L o c a t i o n . g e t L a t i t u d e ( ) 
L o c a t i o n . g e t L o n g i t u d e ( )

p h o n e  s t a t e g e t C o n t e x t . g e t S y s t e m S e r v i c e ( C o n t e x t . T E L E P H O N Y 
_ S E R V I C E ) 
T e l e p h o n y M a n a g e r . g e t D e v i c e I d ( ) 
. . .

a c c o u n t g e t A c c o u n t M a n a g e r . g e t A c c o u n t s ( )

c o n t a c t s 
S M S 
c a l e n d a r 
c a l l  l o g 
b r o w s e r  h i s t o r y 
b o o k m a r k s

g e t C o n t e n t R e s o l v e r . q u e r y ( U R I )

m o d i f y C o n t e n t R e s o l v e r . i n s e r t ( . . . ) 
C o n t e n t R e s o l v e r . u p d a t e ( . . . ) 
C o n t e n t R e s o l v e r . d e l e t e ( . . . ) 
. . .

u s e r  a c t i o n  r e l a t e d g e t V i e w .  p e r f o r m C l i c k ( ) 
A c t i v i t y .  o n B a c k P r e s s e d ( ) 
A c t i v i t y . o n P a u s e ( ) 
…
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series of tasks such as runtime information collection, and then, calls the original method so as to finish 
the method’s original functionality. Finally, the system accomplishes intercepting Java APIs without 
influencing their normal functionality. Figure 3 shows the layer where injection and Java method 
hook proceed in the Android framework structure, and illustrates the redirection of function call.

Method Runtime Information
Adjudging an application’s behavior depending on no more than its calling method’s name is a 
rather coarse-grained policy. Thus, more runtime information is taken into consideration to judge if 
an application’s behavior is proper for privacy data extraction. A six-dimensional feature for each 
sensitive function call for the purpose of labeling different runtime environments is proposed:

•	 method_name: a string value, denotes the API name that is called.
•	 time_from_start: a real value, denotes the millisecond from the beginning of application runtime 

to the moment the method is called.
•	 time_from_last_call: a real value, denotes the millisecond from the moment of the method’s last 

call to this call in the same thread.
•	 time_from_last_click: a real value, denotes the millisecond between the moment of the user’s 

clicking behavior and of the moment when the method is called.
•	 is_app_visible: a boolean value, denotes whether the application is visible for the user when the 

method is called.
•	 is_in_main_thread: a boolean value, denotes whether the method is called by the main thread 

of the application.

Based on the features mentioned above, the system may distinguish between different moments 
when an application’s behavior happens, e.g. whether the behavior happens just after the application 

Figure 3. Layer of Injection and Hook
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is launched, whether the behavior is triggered by a user’s interaction with the application. Thus, 
privacy protection policy with a finer granularity can be implemented.

Runtime Behavior Control
The system has redirected a Java method to method_handler, the return value of which is supposed 
to be the same as the original method so as not to interfere with its normal functionality. However, 
the return value of a method always performs as a source of data leak, in other words, applications 
always access privacy data through the return values of particular APIs. Hence, it is considered to 
control an application’s runtime behavior by means of manipulating the return value of sensitive 
APIs. In case of an application crashing when modifying the return value to null for all kinds of 
functions, the authors provide a mock value database for each category of privacy data to return a 
bogus value that might not have any impact on the application’s normal running when the behavior 
is not appropriate. The real privacy data is protected by the system.

Policy Provider
The Policy Provider is aimed to manage privacy settings on the phone, the privacy database and the 
mock value database. Receiving method runtime information collected by the RBC, the Policy Provider 
determines whether or not to return the original value or bogus value to the current function call. In 
practice, it is a classifier capable of determining whether a function call is proper or not considering 
its runtime environment and the application’s classification.

Basic Policy
The Basic Policy is designed for default policy settings, which means it implements privacy policy 
without any user’s settings in order to protect privacy data automatically. It is designed to be a 
universal privacy protection policy that satisfies the majority of people’s intentions. Thus, the dataset 
of Basic Policy should be big data collected from many users. A primary challenge is how to collect 
users’ intentions and map them to a machine learning dataset. The procedure is designed as follows.

The applications’ runtime behavior is classified into two levels of granularity. Firstly, for each 
kind of privacy data, Android applications are divided into n categories according to their privacy 
data needs. However, this classification is of a coarse granularity for privacy protection that may 
lead to massive false positives.

Secondly, m runtime scenarios are given out when privacy data is actually used during runtime. 
All of these m scenarios not only cover the whole life-cycle of a typical Android application’s 
runtime, but also take the user’s behavior into account, which enables a fine-grained privacy policy. 
Considering the boundaries between each scenario might be obscure in case of different runtime 
behavior of applications, so it is not feasible to determine the scenario only depending on the time 
value of a function call. Therefore, the six-dimensional feature for each function call using a machine 
learning algorithm to identify different scenarios is proposed.

In order to map user intentions to runtime scenarios, these scenarios are described as some real-
world events so that users can easily understand the circumstances when their privacy data is being 
accessed. For example, scenarios could be described as “The application is accessing your location 
information while you are just using the application to read an article” or “The application extracts 
your location information after you turn off the screen”, such that users are able to understand the 
real-world scenario easily. Then users may make a decision whether or not to allow the application 
to access privacy data in such circumstances or not. In this case, the User Intention Vector (UIV) is 
defined to denote a single user’s intention in all scenarios in category n:

UIV a a a
n n n m
= …( )1 2

, , , 	
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where anm denotes a user’s intention of scenario m for an application in category n, which equals to 1 
if the user allows the application to access privacy data in scenario m, and 0 if the user doesn’t want 
to share the privacy data.

Each UIV is utilized to label a set of real world applications’ runtime behavior, which represents 
one user’s decision while using the applications. A large amount of labeled runtime behavior 
information is collected as a training dataset for the machine learning algorithm. Finally, a classifier 
is obtained, namely Basic Policy, which is able to make a privacy decision for any runtime behavior. 
The overall workflow is illustrated in Figure 4.

Policy Training Algorithm
Several machine learning algorithms are evaluated in the later section of this paper. Since the Random 
Forest Algorithm produces a better performance than other tested classifiers, due to its high precision 
rate and high true positive rate, the Random Forest Algorithm is chosen for the Basic Policy training.

Random Forest is an ensemble of unpruned classification or regression trees created by using 
bootstrap samples of the training data and random feature selection in tree induction. Prediction is 
made by aggregating (majority voting or averaging) the predictions of the ensemble (Svetnik et al., 
2003). Moreover, Random Forest does not result in over-fitting as more trees are added but produces 
a limited value of the generalization error (Fan et al., 2017).

Although it performs with a high precision, the time consumption of Random Forest is much 
greater than other machine learning algorithms. For a training set D of n instances, Random Forest 
generates t decision trees that vote for the most popular class for the final classification result. The 
time consumption time

rf
 of training the classifier is

time T n t t T n
rf rf tree
= ( ) = ⋅ ( ), 	

where T n
tree ( )  denotes the time consumption of training one decision tree using a training set of n 

instances.

Figure 4. Workflow of Generating Basic Policy
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It can be noted that the time consumption of Random Forest is directly correlated with the tree 
number t, which could be of hundreds or more. Random Forest’s convergence (Breiman, 2001) 
shows that as more trees are added, the algorithm produces a limiting value of the generalization 
error, the precision of which will converge. The method is considered that is able to finish up the 
training procedure prematurely with a slight precision loss of the final classifier. The classifier is 
trained as follow:

1. 	 Randomize n training instances and divide them into b parts equally. Thus, each training part 

contains n n

bb
=  instances. Train t t

bb
=  decision trees each time.

2. 	 Initialize training set and tree set to empty set respectively.
3. 	 For each turn of training, add nb instances into training set, using the same method as the Random 

Forest to train tb decision trees with the training set and then adding them into tree set.
4. 	 After each turn of training, evaluate the classifier with the whole n instances of training set. If 

the difference of precision between this turn and last turn is less than e (>0), stop training and 
set the tree set as the final classifier; otherwise save the training set and tree set, then start the 
next training turn.

The threshold e is set manually, which would affect the number of turns of training. Figure 5 
summarizes the forest-building phase.

For the ith turn of training, the time consumption is defined as

T T n t T n t
i train ti i eval ti
= ( )+ ( ), , 	

where

n n i n
ti

j

i

j b
= = ⋅

=
∑
1

	

denotes the number of training instances that are used in the ith turn,

t t i t
ti

j

i

j b
= = ⋅

=
∑
1

	

denotes the number of decision trees after the ith turn training.

T n t t T n
train tree

,( ) = ⋅ ( ) 	

denotes the time consumption of model building in this turn, where T n
tree ( )  denotes the time 

consumption of training one decision tree using n instances.

T n t n t T
eval

,( ) = ⋅ ⋅
0
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denotes the time consumption of evaluating current model, where T
0

 denotes the time consumption 
of classifying one instance of one decision tree.

Consequently, the time consumption of the ith turn should be

T n t T n t T n t t T n n t T t
i train ti b eval ti b tree ti ti
, , ,( ) = ( )+ ( ) = ( )+ ⋅ =

0 bb tree b b
T i n n i t T⋅( )+ ⋅ ⋅

0
	

Assuming the total turns of training is r (≤b), the time consumption of training the classifier 
time

new rf_
 is

time T n t

T t T i n n i t T

new new

i

r

i
i

r

b tree b b

rf rf
= ( )

= = ⋅( )+ ⋅ ⋅(
= =
∑ ∑

,

1 1
0 ))

= ⋅( )+ ⋅



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


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Figure 5. Optimized Random Forest Algorithm
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Experimental Evaluation
The authors evaluate the effectiveness of the system through its functionality on location privacy data. 
Requesting users’ location information is the most prevalent behavior among Android applications, 
it is feasible for the authors to obtain more real-world data. Processes on other kinds of privacy data 
are carried out in a similar way which will not be evaluated in this paper.

Applications Dataset and Behavior Forensics
As mentioned above, the system aims at the whole privacy protection for any applications on the 
Android system instead of malware detection. Therefore, the applications chosen for dataset should 
origin from the most popular applications from the Android market. 134 benign applications in 8 
categories from the Android application market that were all frequently used in people daily life were 
chosen to collect their runtime behavior of accessing users’ location information. Furthermore, this 
set of applications was classified into two classes for a coarse-grained classification:

•	 Class A: Applications that might need location data on some special occasion but did not require 
it as a must for other normal running, e.g. applications from categories of Shopping, Weather, 
Travel and News.

•	 Class B: Applications that had no need of location data for their functionality, e.g. applications 
from categories of Tools, Music and Education.

After the classification, 74 applications were in Class A and 60 in Class B of all the 134 
applications.

For behavior forensics, each application was launched from the system to capture its runtime 
behavior and information. The time duration of testing each application was between 5 minutes and 
20 minutes including the time of user using and not using the application. In the period of time of 
using an application, the application was used in just the same way as everyone normally uses it. In 
the period of time of not using the application, the application was closed to background. Although 
all applications from the dataset were benign and widely used, it was found that permission overuse 
happened in many cases after the user gave privileges to the application.

All location accessing behavior of the applications was captured by the system shown in Figure 
6 and Figure 7. The result elucidates that the application might access location information without 
any user action during usage time, or behave at intervals even when the application is not being used. 
For applications in class B, some of these also require location information even though it is not 

Figure 6. Runtime Behavior of Applications from Class A
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necessary for functionality. The result reflects the real behavior of the applications, which could be 
a great forensic evidence of privilege abuse and privacy leakage.

Basic Policy Evaluation
Overall Evaluation
The runtime behavior information of every applications from the dataset was recorded into a raw 
data file, which contained each sensitive function call’s six-dimensional feature. The raw data file, 
namely pre-ARFF file, didn’t contain classification information, which would be labelled by UIV 
and transformed to the final ARFF file. Weka (Hall et al., 2009), a powerful piece of software for 
data mining and machine learning, was used to generate the final classifier. The metrics used for 
evaluation were shown in Table 2.

The authors sent out surveys which contained several questions about four runtime scenarios to 
collect users’ intentions:

1. 	 Scenario 1: Application called the sensitive method at the beginning of the application’s runtime.
2. 	 Scenario 2: Application called the sensitive method just after the user interacted with the 

application’s user interface while the user was using it.

Figure 7. Runtime Behavior of Applications from Class B

Table 2. Definition of the Used Metrics

Term Abbr. Definition

True Positive TP Policy of allowing matches user’s intention

True Negative TN Policy of allowing doesn’t match user’s intention

False Negative FN Policy of disallowing doesn’t match user’s intention

False Positive FP Policy of disallowing matches user’s intention

True Positive Rate TPR TP/(TP+FN)

False Positive Rate FPR FP/(FP+TN)

Precision P (TP+TN)/(TP+TN+FP+FN)

ROC Area AUC Area under ROC curve
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3. 	 Scenario 3: Application called the sensitive method without any user action while the user was 
using it.

4. 	 Scenario 4: Application called the sensitive method when the user was not using it but did not 
force to close it.

For each single survey, the authors generated one User Intention Vector (UIV), and labelled 
the results to a pre-ARFF file. Therefore, each data row of an application’s runtime behavior had a 
classification, which was regarded as training set data for Basic Policy.

The dataset of Basic Policy consisted of runtime behavior of all applications mentioned before 
and investigations of 280 people’s user privacy intention, which resulted in 238,038 metadata for 
the training set. Considering the difficulty of collecting users’ feedback, 10-fold cross-validation 
was used to verify the precision of the Basic Policy. The authors partitioned the original data into 10 
equal sized subsets randomly, nine of which were for training data and a single subset of which was 
for validation, and repeated the process 10 times with each subset used only once as the validation 
data. For each class of applications, the authors trained and tested five different machine learning 
algorithms based on 10-fold cross-validation. The overall results are shown in Table 3.

There is a big difference between the performances of the algorithms using dataset of Class A 
and Class B. Using the dataset of Class A, the precision ranges from 60% to 80%, while the precision 
is about 90% with high consistency using the dataset of Class B’s applications. The root cause might 
be the result of user privacy intention investigation, where users’ intention has more differences while 
judging the scenarios of applications from Class A than from Class B. Machine learning algorithms 
always try to output models that have high precision based on given training data, thus the classifiers 
can give the decision that matches most users’ privacy intentions.

Optimized Algorithm Evaluation
This paper evaluated the optimized random forest algorithm on the whole dataset. At each time, 
10000 randomly selected instances were added to the training set to evaluate the precision and time 
consumption of the classifier. The total tree number t was set to 100 and the precision threshold e 
was set to 0.1%.

Figure 8 illustrates the time consumption and precision of different sizes of training set in different 
part number b. With a small quantity training set, all parts of training dataset are trained since the 
difference of precision between two turns is still larger than e after all instances in the training dataset 
are used. However, on a larger training set, the training procedure is quit prematurely, which leads to 
less training time. Table 4 demonstrates that with different part number b, the optimized algorithm 
saves more than half the training time with little precision loss.

Table 3. Performance of Five Machine Leaning Algorithms

Algorithm Class A Class B

P TPR FPR AUC P TPR FPR AUC

Naive Bayes 60.90% 0.609 0.296 0.661 90.21% 0.902 0.797 0.635

Bayes Net 76.04% 0.760 0.256 0.839 90.62% 0.906 0.788 0.634

SVM 61.91% 0.619 0.331 0.644 91.31% 0.913 0.913 0.500

Logistic 60.76% 0.608 0.409 0.682 91.32% 0.913 0.913 0.634

Random Forest 79.11% 0.791 0.264 0.818 91.35% 0.913 0.913 0.549
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Real-World Application Evaluation
Furthermore, the Basic Policy’s performance was analyzed in real world applications. Mafengwo was 
a travel application frequently used on Android phones that provides services such as visas, hotels, 
local tours and travel, and was classified in Class A. It was installed on a Nexus 4 phone with the 
Android 4.4 system version, running for 20 minutes and implemented with the Basic Policy. Figure 
9 depicts its original behavior of requesting location information, user’s click action and the system’s 
policy implementation. Figure 9 zooms in on the beginning of usage time from 0 ms to 127100 ms, 
which contains details of the application’s behavior while the user is interacting with the application.

Though the application declared android.permission.ACCESS_COARSE_LOCATION and 
android.permission.ACCESS_FINE_LOCATION in its Manifest file, it was found that the application 
accessed location information not only when the user was using it, but also after the user had closed 

Figure 8. Evaluation of Optimized Algorithm

Table 4. Performance of Algorithm with Different b Values

b Time (ms) time/original RF time precision (%) precision loss (%)

5 37503.8 0.4802 79.10 0.01

8 37651.2 0.4821 79.08 0.03

10 34860.9 0.4464 79.05 0.06

12 28277.4 0.3621 78.94 0.17

original RF 78094.6 1 79.11 0
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the application. The zoomed figure shows that while the user was using it, the application was still 
accessing location information without any user action. However, the Basic Policy blocked most of 
the behavior at the moment that the user was not using or interacting with the application, which 
indicates most users’ intentions. However, a few function calls were not blocked by Basic Policy that 
should have been blocked apparently, such as some function calls just a few milliseconds before the 
user’s action. The fact is that there are still omissions for the policy to identify every circumstance 
based on six-dimensional features of runtime behavior.

Another evaluation was carried out on a Class B application called QingtingFM, a web radio 
listening application with more than 3,000 radio stations nationwide. The result turned out to be quite 
simple, as shown in Figure 10, Basic Policy just blocked all of its location accessing behavior, which 
also reflected most people’s privacy intention.

CONCLUSION

The authors propose a system that focuses on privacy data protection and application runtime 
behavior forensics on the Android system combining concepts from dynamic analysis and machine 
leaning. The system is able to monitor and control every sensitive behavior of an application due 
to different privacy policies that are based on users’ intentions. The system is also used for forensic 

Figure 9. Basic Policy Implementation on Mafengwo

Figure 10. Basic Policy Implementation on QingtingFM
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purposes, since it is able to capture all sensitive function calls of a running application to prove its 
real behavior. The system is used to monitor several widely-used applications forensically, and the 
result shows several circumstances in which the application accesses privacy data when the user is 
not using it, and this can be evidence of privilege abuse. Using six-dimensional features of a single 
function call to distinguish different runtime environments, the system could distinguish different 
runtime scenarios and enforce a fine-grained privacy policy. Evaluation shows that Basic Policy could 
follow most people’s intention to control an application’s runtime behavior.

For future work, more runtime features might be proposed in order to distinguish more runtime 
scenarios and increase the accuracy of classification. Moreover, an incremental learning algorithm 
can be applied to update existing basic policy based on a user’s new decisions, which can be collected 
by means of pop dialogs to the user when privacy data is being accessed.
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