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ABSTRACT

Computing systems are becoming increasingly data-intensive because of the explosion of data and 
the needs for processing the data, and subsequently storage management is critical to application 
performance in such data-intensive computing systems. However, if existing resource management 
frameworks in these systems lack the support for storage management, this would cause unpredictable 
performance degradation when applications are under input/output (I/O) contention. Storage 
management of data-intensive systems is a challenge. Big Data plays a most major role in storage 
systems for data-intensive computing. This article deals with these difficulties along with discussion 
of High Performance Computing (HPC) systems, background for storage systems for data-intensive 
applications, storage patterns and storage mechanisms for Big Data, the Top 10 Cloud Storage Systems 
for data-intensive computing in today’s world, and the interface between Big Data Intensive Storage 
and Cloud/Fog Computing. Big Data storage and its server statistics and usage distributions for the 
Top 500 Supercomputers in the world are also presented graphically and discussed as data-intensive 
storage components that can be interfaced with Fog-to-cloud interactions and enabling protocols.
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INTRODUCTION

Data-intensive computing systems have penetrated every aspect of people’s lives. Behind it is the 
scientific and commercial processing of massive data impacting the decision makings in companies, 
academics, governments, social cites, and personal lives.

There are two types of data-intensive computing systems that continue to co-exist in the modern 
computing environment:

1. 	 High Performance Computing (HPC) systems, consisting of tightly coupled computer nodes 
and storage nodes that are used to execute task parallelism for scientific purposes like weather 
forecasting, physics simulation, and the likes. (Rouse, 2017b).
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2. 	 Message Passing Interface (MPI) is an example of a computing framework on HPC systems. Big 
Data systems, comprised of more loosely coupled nodes, are used to execute data parallelism 
for tasks such as sorting, data mining, machine learning, etc. MapReduce is an example of a 
computing framework on Big Data systems. ((Barney, 2017) (Rouse, M. (2017c)).

Both HPC systems and Big Data systems that are deployed for multiple users and applications 
to share the computing resources so that 1) the resource utilization is high, driving down the usage 
cost per application/user, and the users get better responsiveness of application execution; 2) the data 
set is reused without extra overhead to move around performing redundant Input/Outputs (I/O) and 
users can also save space.

As the computing needs continue to grow in data-intensive computing systems, the shared usage 
model results in a highly resourceful competing environment. For example, Amazon, Apple and eBay 
provides HPC and Big Data as cloud services. Hadoop version 2, YARN (Yet Another Resource 
Negotiator), that is one of the key features in the second-generation Hadoop 2 version of the Apache 
Software Foundation’s open source distributed processing framework. Originally described by Apache 
as a redesigned resource manager. YARN is now characterized as a large-scale, distributed operating 
system for Big Data applications which provides a scheduler to incorporate both MapReduce and 
MPI jobs. (Rouse, 2017a).

As the number of concurrent data-intensive applications and the amount of data increase, 
application I/O’s start to saturate the storage and interfere with each other, and storage systems become 
the bottleneck to application performance. Both HPC and Big Data systems I/O amplification adds 
to the I/O contention in the storage systems. To counter failures in these distributed systems, HPC 
systems employ defensive I/O’s such as check pointing to restart an application from where it fails, 
and Big Data systems replicate persistent data by a factor of k, which grows with the scale of the 
storage system. Both mechanisms aggravate the I/O contention on the storage. The storage systems 
can be scaled-out, but the compute to storage node ratio is still high, rendering the storage subsystem a 
highly contended component (Xu, 2016). Therefore, the lack of I/O performance isolation in the data-
intensive computing systems causes severe storage interference which compromises the performance 
target set by other resource managers proposed or implemented in a large body of works. Failure to 
provide applications with guaranteed performance has consequences. Data-intensive applications 
must complete in bounded time so as to get meaningful results. For example, weather forecast data 
is much less useful when the forecasted time has passed. Paid user in a Big Data system also require 
a predictable runtime even though the job is not time sensitive, and the provider may get penalized 
in revenues if jobs fail to complete in a timely manner. (Xu, 2016).

This chapter addresses the problems stated above for data-intensive computing systems. It 
provides different approaches for both HPC storage systems and Big Data storage systems because 
their differences in principles, architecture, and usage pose distinct challenges. Before studying these 
systems and addressing their respective problems separately, the discussion of the differences between 
these two types of systems is established here. (Xu, 2016).

HPC systems are strongly coupled distributed systems, connected by expensive hardware and 
network links (e.g. InfiniBand [inf]). The application execution principle focuses on task parallelism, 
and thus both its parallel compute processes and I/O requests are tightly coupled and must be executed 
together. This means a failure of any node results in the failure of the entire application. This is also 
why the check pointing I/O’s are major sources of I/O’s when running such applications, as the 
periodical save of application progress constitutes much higher amount of data than its original input 
and final output. (Xu, 2016).

The most widely used programming framework for HPC systems is Message Passing Interface 
(MPI) that is also discussed in this article.
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FOG COMPUTING

Fog computing is a term created by Cisco that refers to extending cloud computing to the edge of 
an enterprise’s network. Also known as Edge Computing or fogging, Fog Computing facilitates the 
operation of compute, storage, and networking services between end devices and cloud computing 
data centers.

Balakrishnan, Venkatesh & Raj (2018) presented an introduction, architecture, analytics, and 
platforms of Fog Computing, and Segall & Niu (2018) presented a presented a preceding article 
in this journal International Journal of Fog Computing (IJFC) on an overview of Big Data and its 
visualizations with Fog Computing.

While Edge Computing typically refers to the location where services are instantiated, Fog 
Computing implies distribution of the communication, computation, and storage resources and 
services on or close to devices and systems in the control of end-users. (Ostberg et al. (2017), Chiang 
& Zhang (2016)). Fog Computing is a medium weight and intermediate level of computing power 
(Pierra (2017)).

Ostberg et al. (2017) discussed reliable capacity provisioning for distributed cloud/edge/fog 
computing applications. According to Alageswaran & Amali (2018) states that it is generally considers 
that Fog Computing as the appropriate platform for many applications and especially suited for the 
Internet of Things (IoT). Alageswaran & Amali (2018) also state the different characteristics of 
Fog Computing as consisting of: edge location, location awareness, and low latency; geographical 
distribution, support for mobility, real-time interactions, heterogeneity of fog nodes being deployed 
in a wide variety of environments, and interoperability of fog components in order to give a wide 
range of services such as data-streaming.

Bhatt & Bhensdadia (2018) discussed Fog Computing in IoT noting that the IoT utilizes various 
platforms like GoogleCloud, Amazon, and GENI and that Fog Computing/Cloudlets/Edge Computing 
acts as a connection between devices and cloud computing. Fog computing also provides an intelligent 
platform to manage the distributed and real-time nature of emerging applications and infrastructures. 
Perera et al. (2017) presented a survey of Fog Computing for sustainable smart cities.

Fog Computing offers services that deliver higher delay performance due to nearness to the 
end-users compared to the cloud data centers Cloud has large machines; storage and communication 
abilities compared to the fog and may interface with High-performance computing (HPC) systems 
as described in next section (Bhatt & Bhensdadia (2018).

According to Cisco (2015) report, Fog Computing extends the cloud to be closer to the things 
or devices that produce data and act on IoT data. These devices called “fog nodes” can be can be 
deployed anywhere with a network connection. Cisco (2015) states that any device with computing, 
storage, and network connectivity can be fog node.

Belli et al. (2018) discusses an in-depth study of a proposed scalable Big Stream cloud architecture 
for the IoT that reverses the traditional “Big Data” paradigm where real-time constraints are not 
considered. Alageswaran & Amili (2018) discussed the evolution of Fog Computing and its role in 
IoT applications. Alonso-Monsalve, Garcia-Carballeria, & Calderon (2017) discussed the concept 
of storage with Fog Computing and its role in IoT applications.

However, according to Alageswaran & Amali (2018) not every fog device may be able to provide 
data storage service over long time, and thus require storage on cloud server or data-intensive storage 
systems in a fog environment level as discussed later in this article.

FOG-TO-CLOUD COMPUTING

According to Chiang & Zhang (2016) one of the reasons that fog is an emerging era in relation to 
data storage is that it can carry out a substantial amount of data storage at or near the end-user rather 
than storing data in remote data centers.
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However, one needs to understand that the Fog-Cloud interface supports Fog-Cloud collaborations 
to provide end-to-end services. Ahuja & Deval (2018) discussed Fog-to-Cloud Computing using 
Internet-of-Things (IoT) as platforms. Raj & Raman (2018) published a handbook of research on 
cloud and Fog computing infrastructures for data science. According to Chiang & Zhang (2016), the 
Fog-Cloud interface supports functions such as the following:

1. 	 Fog to be managed from the Cloud
2. 	 Fog and Cloud to send data to each other
3. 	 Cloud distribute services onto Fog
4. 	 Cloud services to be provided to Fog
5. 	 Cloud services to be provided through Fog-to-Things and end users
6. 	 Fog services to be provided to Cloud
7. 	 Fog and Cloud to collaborate with each other to deliver end-to-end services

Hence, the Fog-to-Cloud computing can be controlled by the Fog-Cloud interface such as that 
have High-Performance Computing Systems as discussed in the following section and elsewhere in 
this paper. High-performance computers can be located either as a Fog node or in a remote location 
with with data centers. Hence, users of Fog-to-Cloud Computing need to understand the potentials 
that exist of cloud services able to provide to Fog, and that Fog and Cloud are able to send data to 
each other that may be in the category of Big Data.

This article discusses Cloud storage systems for data-intensive computing that can be interfaced 
with Fog to collaborate with each other to deliver end-to-end services. This chapter also discusses 
storage mechanisms, patterns and technology for Big Data that may interface with Fog-to-Things and 
end users. As discussed in Segall (2017a, 2017b), tablets and mobile devices can be used for visual 
analytics of Big Data in bioinformatics, as well as technologies for teaching Big Data Analytics in 
the classroom.

HIGH PERFORMANCE COMPUTING (HPC) SYSTEMS

High-performance computing (HPC) is the use of parallel processing which is the processing of 
program instructions by dividing them among multiple processors with the objective of running 
a program in less time. In the earliest computers, only one program ran at a time. A computation-
intensive program that took one hour to run and a tape copying program that took one hour to run 
would take a total of two hours to run. An early form of parallel processing allowed the interleaved 
execution of both programs together. The computer would start an I/O operation, and while it was 
waiting for the operation to complete, it would execute the processor-intensive program. The total 
execution time for the two jobs would be a little over one hour for running advanced application 
programs efficiently, reliably and quickly. (Rouse, 2017b)

The term HPC applies especially to systems that function above a teraflop or 10 to the 12th 
power floating-point operations per second. The term HPC is occasionally used as a synonym for 
supercomputing, although technically a supercomputer is a system that performs at or near the currently 
highest operational rate for computers. Some supercomputers work at more than a petaflop or 10 to 
the 15th power floating-point operations per second. (Rouse, 2017b)

Previous work on HPC by the authors of this article include that of Segall (2013), Segall (2016a), 
Segall (2016b), Segall (2015), Segall, Cook & Zhang (2015), and Segall & Gupta (2015).

The most common users of HPC systems are scientific researchers, engineers and academic 
institutions. Some government agencies, particularly the military, also rely on HPC for complex 
applications. High-performance systems often use custom-made components in addition to so-called 
commodity components. As demand for processing power and speed grows, HPC will likely interest 
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businesses of all sizes, particularly for transaction processing and data warehouses. An occasional 
techno-fiends might use an HPC system to satisfy an exceptional desire for advanced technology. 
(WhoIsHostingThis.com, 2017) High-performance computing and data mining in bioinformatics 
was discussed in Segall (2016).

Typically, the problems under consideration cannot be solved on a commodity computer within 
a reasonable amount of time (too many operations are required) or the execution is impossible, due 
to limited available resources (too much data is required). HPC is the approach to overcome these 
limitations by using specialized or high-end hardware or by accumulating computational power from 
several units. The corresponding distribution of data and operations across several units requires the 
concept of parallelization. When it comes to hardware setups, there are two types that are commonly 
used: (COMSUL, Inc., 2017)

1. 	 Shared memory machines
2. 	 Distributed memory clusters

Shared Memory Machines
In shared memory machines, Random-Access Memory (RAM) can be accessed by all of the processing 
units. (COMSUL, Inc., 2017)

Distributed Memory Machines
Meanwhile, in distributed memory clusters, the memory is inaccessible between different processing 
units, or nodes. When using a distributed memory setup, there must be a network interconnect to send 
messages between the processing units (or to use other communication mechanisms), since they do 
not have access to the same memory space. (COMSUL, Inc., 2017)

MODERN HIGH-PERFORMANCE COMPUTING (HPC) HYBRID SYSTEMS

Modern HPC systems are often a hybrid implementation of both concepts, as some units share a 
common memory space and some do not. HPC is primarily used for two reasons. First, due to the 
increased number of Central Processing Units (CPUs) and nodes, more computational power is 
available. Greater computational power enables specific models to be computed faster, since more 
operations can be performed per time unit. This is known as the speedup. The speedup is defined as the 
ratio between the execution time on the parallel system and the execution time on the serial system. The 
upper limit of the speedup depends on how well the model can be parallelized. (COMSUL, Inc., 2017)

Consider, for example, a fixed-size computation where 5% of the code is able to be parallelized. 
In this case, there is a theoretical maximum speedup of 2. If the code can be parallelized to 95 it is 
possible to reach a theoretical maximum speedup of 20. For a fully parallelized code, there is no 
theoretical maximum limit when adding more computational units to a system. Amdahl’s Law explains 
such a phenomenon. (COMSUL, Inc., 2017)

Amdahl’s Law is a formula used to find the maximum improvement by improving a particular part 
of a system. In parallel computing, Amdahl’s Law is mainly used to predict the theoretical maximum 
speed up for program processing using multiple processors. (Techopedia, 2017)

STORAGE SYSTEMS FOR DATA-INTENSIVE APPLICATIONS

Background
According to the US Department Energy (DOE) Advanced Scientific Computing Advisory Committee 
(ASCAC) Report of 2013 (Chen et al., 2013), storage systems for data-intensive applications are 
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pervasive and indispensable subsystems in current data-intensive computing systems. In High 
Performance Computing (HPC) systems, Parallel File Systems (PFS) are used to aggregate the 
throughput from multiple storage nodes to serve the concurrent, parallel I/O requests from the user 
applications. In Big Data computing systems, Distributed File Systems (DFS) are used not only for 
the parallelism of jobs, but also the data-locality and replication of data.

Figure 1 (Chen, J. et al, 2013) from the DOE ASCAC Report compares “compute intensive 
architecture” versus “data intensive architecture” in the 2017 time frame for many characteristics 
such as “On-node-storage”, “In-Rack Storage”, “Global Shared Disk, and “Off-System Network”.

Table 1 (Chen et al, 2013) from the DOE ASCAC Report presents data-generation requirements 
for different domains. Table 1 provides four different scenarios for data generation phase and compares 
the transactional processing requirements, storage or post processing, sharing and distribution, 
and visualization. For example, computational biologists may perform DNA sequencing by using 
Next Generation Sequencing (NGS) machines produced by companies such as Illumina, Roche, 
and Applied Biosystems. Winn et al. (2012) discusses data-intensive computing in biology and the 
storage systems used.

The ICON Group International (2017) published a 266-page report titled “The 2018-2023 World 
Outlook for Big Data Storage” This study covers the world outlook for Big Data storage across more 
than 190 countries. This study estimates for the worldwide latent demand, or the Potential Industry 
Earnings (P.I.E.), for Big Data storage. It also shows how the P.I.E. is divided across the world’s 
regional and national markets. In order to make estimates over time, a multi-stage methodology is 
employed that is often taught in courses on international strategic planning at graduate schools of 
business.

Several chapters on Big Data Storage appear in Qiang (2015) that is a collection of papers 
presented at the Second International Conference on Cloud Computing and Big Data, and entire 
chapter on Big Data Storage appear each in Chen, M. et al. (2014) and Sawant and Shah (2013). 
Grieco (2017) is an entire book on Spark Big Data Cluster Computing in Production.

Hoskin (2016) is another entire book on VMware Software-Defined Storage that presents in-
depth look at VMWare next-generation storage technology that maximizes quality storage design. In 
Hoskin (2016) Storage-as-a-Service (STaaS) is discussed in terms of deployment through VMware 
technology, with insight into the provisioning of storage resources and operational management, 
while legacy storage and storage protocol concepts provide context and demonstrate how Virtual 
SAN (Storage Area Network) and Virtual Volumes are meeting traditional challenges.

Figure 1. Strawman compute-intensive vs. data-intensive computer architectures in the 2017 timeframe. Figure courtesy of NERSC. 
(HMC: Hybrid Memory Cube, NVRAM: Non-Volatile Random-Access Memory, SSD: Solid-State Drive, GAS: Global Address Space.) 
(Source: Chen, J, et al, DOE ASCAC Data Subcommittee Report, p. 8, 2013).
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Li and Qiu (2014) edited a book on Cloud Computing for Data-Intensive Applications and presents 
a range of cloud computing platforms for data-intensive scientific applications. It covers systems that 
deliver infrastructure as a service (IaaS), including: HPC as a service (HPCaaS); virtual networks as 
a service; scalable and reliable storage; algorithms that manage vast cloud resources and applications 
runtime; and programming models that enable pragmatic programming and implementation toolkits 
for eScience applications.

Editors Li and Qiu (2014) includes chapters pertaining to Big Data Storage with those authored 
by Tudoran et al. (2017) on “Big Data Storage and Processing on Azure Clouds: Experiments on Scale 
and Lessons Learned”, Ramakrishnan et al. (2014) on “Storage and Data Life Cycle Management in 
Cloud Experiments with FRIEDA”, Ross et al. (2014) on Managed File Transfer as a Cloud Service,” 
and Gao et al. (2014) on “Supporting a Social Media Observatory with Customizable Index Structure: 
Architecture and Performance.”

Jackson et al. (2015) wrote a detailed summary on programming models and environments for 
cluster, cloud, and grid computing that defends Big Data. Jackson et al. (2015) portrays a survey of 

Table 1. Data-generation requirements for different domains (Source: Chen, J. et al, DOE ASCAC Data Subcommittee Report, p. 
23, 2013)
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how programming models that are developed for cluster clouds and grids act as a support for Big 
Data Analytics.

Deka (2017) edited an entire book on NoSQL: Database for Storage and Retrieval of Data in 
Cloud that includes a chapter by Reddy and Raz (2017) on Hosting and Delivering Casandra NoSQL 
Database via Cloud Environments.

Hu (2016) edited a book on Big Data Storage, Sharing and Security and included a chapter by 
Gadepally et al. (2016) on Storage and Database Management for Big Data.

Implementation of a costing model for High Performance Computing as a Service (HPCaaS) 
on the cloud environment was studied by Radadiya and Rohokale (2016) so that small organization 
can afford to have their own HPC system at low costs.

Achahbar and Abid (2015) evaluate the impact of virtualization on HPCaaS. They track HPC 
performance under different cloud platforms, namely KVM and VMware-ESXi, and compare it 
against physical clusters. Each tested cluster provided different performance trends, and concluded 
that the overall findings proved that the selection of virtualization technology can lead to significant 
improvements when handing HPCaaS (High Performance Computing as a Service).

Azeem and Sharma (2016) studied the Converged Infrastructure (CI) and Hyper Converge 
Infrastructure (HCI) as future of Virtual Data Centers in the cloud and provided information that 
seems to solve many provisioning problems and act as platforms for utility and grid computing.

Wu et al. (2017a) provided an in-depth study with comparisons and taxonomy for Big Data 
storage and data models that include that for the three main storage models developed during the past 
few decades of: (1.) Block-based storage, (2.) File-based storage and (3.) Object-based storage. Wu 
et al. (2017a) summarizes data storage models and indicates that according to different data models, 
current data storage systems can be categorized into two big families: (1.) relational-stores (SQL) 
and (2.) NoSQL (Not Only SQL) stores that can be classified as three main groups: (i.) Key-valued 
stores, (ii.) Document stores and (iii.) Extensible-Record/Column-based stores that are discussed in 
more depth within this chapter.

Sakr (2016) published a book on a survey of Big Data 2.0 processing systems that includes 
a discussion of Big Data storage systems. Sakr is also one of the co-authors of Wu et al. (2017a) 
discussed above, and also discusses the new generation of scalable data storage systems called 
NoSQL and it types.

Swami et al. (2018) wrote a complete chapter on storing and analyzing streaming data as a Big 
Data challenge.

Storage Patterns for Big Data
According to Sawant and Shah (2013) there are four Big Data Storage Patterns: Façade, Lean, No SQL 
and Polygot and each of these are briefly discussed below. The reader is referred to book authored 
by Sawnat and Shah (2013) for more details and illustrative figures.

Façade Pattern
The Hadoop Distributed File System (HDFS) serves as the intermittent façade (or interface that hides 
the complexities) for the larger traditional Data Warehouse (DW) systems. Data from the different 
sources can be aggregated into an HDFS before being transformed and loaded into the traditional Data 
Warehouse (DW) and Business Intelligence (BI) tools. Data can be stored as “Structured” data after 
being ingested into HDFS in the form of storage in an RDBMS (Relational Data Base Management 
System) or in the form of appliances such as IBM Netezza/EMC Greenplum, NoSQL Databases such 
as Cassandra/HP Vertica/Oracle Exadata, or simply as an in-memory cache (Sawnat & Shah, 2013).



International Journal of Fog Computing
Volume 2 • Issue 1 • January-June 2019

82

Lean Pattern
A method to uniquely identify a dataset can be accomplished using a Lean Pattern method that creates 
a unique row-key, while having only a one column-family and one column. The row-key name should 
end with a suffix of a time-stamp (Sawnat & Shah, 2013).

NoSQL Pattern
NoSQL databases can play a role with Hadoop implementation because NoSQL databases can store 
data on a local Network File System (NFS) disks as well as Hadoop Distributed File systems (HDFS). 
(Sawnat & Shah (2013). According to Network File System (2017), NFS is a distributed file system 
protocol originally developed by Sun Microsystems in 1984 allowing a user on a client computer to 
access files over a computer network much like local storage is accessed (Sawnat & Shah, 2013).

Polyglot Pattern
Allows multiple storage mechanisms such as RDBMS, Hadoop, and other Big Data appliances to 
co-exist in a solution. This scenario is known as “Polyglot Persistence” (Sawnat & Shah, 2013).

STORAGE MECHANISMS FOR BIG DATA

According to Chen et al. (2014), there are three bottom-up levels of storage mechanisms for Big Data: 
(1.) File Systems, (2.) Databases and (3.) Programming Models.

File Systems for Big Data
File systems are the foundations of the applications at upper levels. For example, Google File System 
(GFS) is an expandable distributed file system to support large-scale, distributed, data-intensive 
applications. (Chen et al., 2014). Facebook utilizes Haystack File System (HFS) to store the large 
amounts of small-sized photos. (Beaver et al., 2010). Table 2 below provides a list and description 
of some current File Systems for Big Data as derived from reading Chen et al. (2014) and Pierson 
(2017) the later of which claims the four of the best Big Data file systems are Hadoop Distributed 
File System (HDFS), Apache Spark, Quantcast and GlusterFS that are described below.

Database Technology for Big Data
There are three database technologies for Big Data that are to be discussed in this chapter and these 
are: 1.) Key-Valued Databases, 2.) Column-Oriented Databases and 3.) Programming Models for Big 
Data. Each of these are discussed briefly below and summarized in Table 3: Database Technology 
for Big Data Storage Systems.

Key-Valued Databases
One of the most recognized storage mechanisms is that used by Amazon for its processing of its 
huge data warehouse and is an example of a Key-Value Storage system and named Dynamo. Another 
Key-Value Storage system is named Voldemort and is used by LinkedIn. Other Key-Value Storage 
systems include Memcached, Riak, and Scalaris, Tokyo Canbinet and Tokyo Tyrant all of which 
provide expandability by dstribuiting key words into nodes (Chen et al., 2014).

Column-Oriented Databases
The column-oriented databases store and process data according to columns rather than rows. Columns 
and rows are segmented in multiple nodes to realize expandability. Examples include Google’s 
BigTable, Cassandra and Derivatives of BigTable such as HBase and Hypertable (Chen et al., 2014).

Google’s BigTable is a distributed, structured data storage system that is designed to process 
Big Data among thousands of commercial servers. (Chang et al., 2008) BigTable is based on many 
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fundamental components of Google such as Goggle File System (GFS), cluster management system, 
SSTable file format, and Chubby that among other functions also conducts error recovery in case of 
Table server failures (Chen et al., 2014).

Cassandra is another column-oriented database and was developed by Facebook and became an 
open-source tool in 2008. Tables in Casandra are in the form of distributed four-dimensional structured 
mapping, where the four dimensions are row, column family, column, and super column. Columns 
may constitute clusters that are called “column families” (Chen et al., 2014).

HBase and HyperTable are derivative tools of BigTable. HBase is a BigTable clone with java 
programming and is part of Hadoop pf Apache’s MapReduce framework. The rows operations of 
HBase are operations with row-level locking and large-scope transaction processing (Chen et al., 2014).

Document Databases
Document storage databases can support more complex data forms than key-value storage. Examples 
of Document database storage systems are MongoDB, SimpleDB and CouchDB.

MongoDB is an open-source document-oriented database and supports horizontal expansion 
with automatic sharing to distribute data among thousands of nodes by automatically balancing load 
and keep the system up and running in case of failure (Chen et al., 2014).

SimpleDB is a distributed database and a web service of Amazon, but does not support automatic 
partition and thus cannot be expanded with the change of data volume, and also does not feature Multi-
Version Concurrency Control (MVCC) that detects conflicts from other clients (Chen et al., 2014).

Platform for Nimble Universal Table Storage (PNUTS)
Platform for Nimble Universal Table Storage (PNUTS) is a large-scale parallel geographical-distributed 
system for Yahoo!’s web applications. In the physical layer of PNUTS, the system is divided into 
different regions each of which includes a set of complete system components and complete copies of 
tables. The data table is horizontally segmented into record groups which are called Tablets. Tablets 
are distributed among many servers each of which may have tens of thousands of Tablets, but a Tablet 
may only be stored in a region of a server. (Chen et al., 2014).

Programming Models for Big Data
According to Chen et al. (2014), the traditional parallel models of Message Passing Interface (MPI) and 
Open Multi-Processing (OpenMP) may not be adequate to support large-scale parallel systems with 

Table 2. File systems for Big Data (Created by authors using Chen et al. (2014) and Pierson (2017) references.)
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hundreds and thousands of massive datasets of Big Data that are stored in hundreds or thousands of 
commercial servers. Hence there is the need for Big Data Programming models such as MapReduce, 
Dryad, All-Pairs and Pregel.

MapReduce
MapReduce is a simple but powerful programming model for large-scale computing using a large 
number of clusters of commercial PC’s to achieve automatic parallel processing and distribution. In 
MapReduce, the computational workloads are performed by inputting key-value pair sets and generating 
key-value pair sets. The computing model has only two functions both of which are programmed by 
users: 1.) Map 2.) Reduce. The Map function processes input and generates intermediate key-value 
pairs. Then MapReduce will combine all the intermediate values related to the same key and transmit 
them to the Reduce function, Next the Reduce function receives the intermediate key and its value 
set, merges them, and generates a smaller value set (Chen et al., 2014).

Dryad
Dryad is a general-purpose distributed execution engine for processing parallel applications of 
coarse-grained data. The operational structure of Dryad is a directed acyclic graph, in which vertexes 
represent programs and edges represent data channels. Dyad executes operations on the vertexes in 
computer clusters and transmits data via data channels, including documents, TCP connections, and 
shared-memory FIFO (First In-First Out) (Chen et al., 2014).

All-Pairs
All-Pairs is a system specifically designed for biometrics, bio-informatics and data mining applications, 
All-Pairs focuses on comparing element pairs in two databases by a given function. The All-Pairs 
problem maybe expressed as a three-tuples (Set A, Set B, and Function F), in which Function F is 
utilized to compare all elements in Set A and Set B. The comparison results in an output matrix M 
called the Cartesian product or cross-join of Set A and Set B (Chen et. al., 2014).

Pregel
The Pregel system of Google facilitates the processing of large-scale graphs. Applications include 
that for analysis of network graphs and social networking services. The Pregel program output is a 
set consisting of the values output from all the vertexes, and the Pregel program output and input are 
an isomorphic directed graph. (Chen et. al., 2014). Table 4 shows programming models for big data.

Wu et al. (2017b) discusses a taxonomy of Big Data programming models some of which is 
partially presented below in Table 5.

Table 3. Database Technology for Big Data Storage Systems (Created by authors using Chen et al. (2014) reference)

Key-Value Databases Column-Oriented 
Databases

Document Databases Platform-Based 
Databases

Dynamo Big Table 
[derives HBase & 
HyperTable]

MongoDB Platform for Nimble 
Universal Table Storage 
(PNUTS)

Voldemort HBase SimpleDB

Tokyo Canbinet HyperTable CouchDB

Tokyo Tyrant Cassandra
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TOP 10 IN THE WORLD CLOUD STORAGE SYSTEMS FOR 
DATA-INTENSIVE COMPUTING USING BIG DATA

According to a Gartner survey, about 19% of organizations are using the cloud for production 
computing, while 20% are using public cloud storage services. Gartner surveyed 556 organizations, 
from June 2012 through July 2012, across nine countries and multiple industries where cloud planning 
is a critical issue.

The survey of Gartner (2012) found that public cloud adoption varies by service. IaaS is moving 
from lower-risk pilot programs and into production environments. Organizations’ stated plans to 
adopt IaaS in the near future reinforce the importance of IaaS in an overall portfolio of infrastructure 
service offerings.

According to Butler (2013), the following Table 6 lists The Top 10 Cloud Storage Providers as 
having been ranked by a Gartner Report.

Below are some brief characteristics of these Top 10 Storage Providers as obtained from Bulter 
(2013) to which the reader is referred to for more complete information.

Amazon Web Services (AWS)
Like many other aspects of cloud computing, Amazon Web Services is considered a market leader 
in cloud storage. Gartner says, while its pricing is the “industry reference point.” Its Simple Storage 
Service (S3) is the basic object storage, while Elastic Block Storage is for storage volumes. AWS 
has introduced RedShift, a cloud-based data warehousing service, and AWS Storage Gateway that 
has the ability to create hybrid storage architectures that span both on-premise storage options and 
AWS’s cloud that is still largely a work in progress. (Butler, 2013).

AT&T
AT&T’s Synaptic cloud storage service is aligned closely with EMC’s Atmos storage service, which 
is used as an on-premise storage system. This creates an opportunity for AT&T to sell into the strong 

Table 4. Programming models for Big Data (Created by authors using Chen et al. (2014) reference)

Big data programming models Characteristics Applications

All-Pairs Cartesian product of (Set A, Set B, 
Function F)

Biometrics, Bioinformatics

Dryod Directed Acyclic graph Parallel-processing of coarse-grained 
data.

MapReduce Computing model uses only 
functions: Map, Reduce

Genomics analysis

Pregel Google based that facilities the 
processing of large-scale graphs.

Network Graphs

Table 5. Taxonomy of Programming Models (Derived from Wu et al. (2017b)

MapReduce Functional SQL-based High-level DSL

MapReduce Spark HiveQL Pig Latin

Hadoop Flink CasandraQL Cascading

SparkSQL LINQ

Impala Trident
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EMC customer base, and gives customers hybrid cloud capabilities with a leading storage vendor. 
(Butler, 2013).

Google Cloud Storage
Launched in 2010, Google Cloud Storage is the underlying storage service for the company’s other 
cloud products and services, including Google App Engine - the application development platform 
- Google Compute Engine, and BigQuery, which are cloud-based virtual machines and a Big Data 
analysis tool, respectively. (Butler, 2013).

Hewlett-Packard (HP)
“Among OpenStack-based cloud storage providers, HP is well-positioned to understand enterprise 
IT storage requirements, due to its extensive hardware, software and service offerings,” Gartner 
notes. “However, since HP Cloud Object Storage is new, HP must evolve and refine its architectural, 
geographical and service offerings.” The system automatically replicates data across three availability 
zones for resiliency (which customers can choose to do in Amazon’s cloud), and HP says having 
information running on its hardware both in the public cloud and on customers’ premises makes for 
easy hybrid cloud setups (Butler, 2013).

IBM
IBM’s cloud storage is part of its SmartCloud Enterprise offering, which includes other services such 
as cloud-based application development and infrastructure. Gartner says the biggest deficiency is the 
lack of integration among the various aspects of IBM’s SmartCloud offering though. For example, 
IBM markets its cloud for backup and recovery, but those services do not use IBM SmartCloud 
Object Storage on its backend. Part of this could be because IBM partners with Nirvanix, another 
cloud storage provider, to run the SamrtCloud Object Storage. (Butler, 2013).

Internap
To differentiate its service, Internap has attempted to layer on advanced networking features to the 
service, such as a Manager Internet Route Optimizer (MIRO), which analyzes the performance of 
the possible routes to deliver content and chooses the best one. Gartner says its lack of enterprise 
presence is the biggest limitation holding the company back (Butler, 2013).

Table 6. Top 10 Cloud Storage Providers (Source: Butler (2013).)

STORAGE RANK STORAGE SYSTEM HEADQUARTERS

1 Amazon Web Services Seattle, WA USA

2 AT & T Synaptic Cloud Storage Dallas, TX USA

3 Google Cloud Storage Mountain View, CA USA

4 Hewlett-Packard (HP) Cloud Open Stack Palo Alto, CA USA

5 IBM Smart Cloud Enterprise Armonk, NY USA

6 Internap AgileFiles Atlanta, GA USA

7 Microsoft Windows Azure Blob Redmond, WA USA

8 Nirvaniz San Diego, CA USA

9 Rackspace Cloud Block Storage Windcrest, TX USA

10 Softlayer Cloudlayer Dallas, TX USA
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Microsoft
Behind Amazon Web Services, Microsoft’s Windows Azure Blob Storage may be the second most 
widely-used cloud storage service, Gartner predicts. It now boasts more than a trillion objects and is 
growing at 200% per year, Gartner says, while supporting a broad range of features including object 
storage, table storage, SQL Server and a content delivery network (CDN). (Butler, 2013).

Nirvanix
Nirvanix has some appealing characteristics though, including the ability to have public, hybrid 
or on-premise Nirvanix-powered storage services, and an all-inclusive monthly billing cycle with 
premium support options, a clear aim for enterprise customers, but one that may turn away small and 
midsized businesses that may prefer the a la carte pricing (Butler, 2013).

Rackspace
For high-performance storage needs, it has Cloud Block Storage, which has high input-output 
capabilities. Rackspace works heavily on the OpenStack open source project and its services closely 
follow OpenStack developments. Because of its work in the OpenStack environment, Gartner says 
Rackspace public cloud storage services integrate nicely with OpenStack-powered-on premise clouds, 
creating hybrid cloud services for customers (Butler, 2013).

Softlayer
Softlayer also has a storage-area network (SAN) offering and an international presence, with data 
center locations in its headquarters of Dallas, along with Amsterdam and Singapore. Its lack of support 
and turnkey deployment cycles, Gartner says, has meant that the product has not caught on wildly 
with the enterprise market yet though (Butler, 2013)

TOP TEN BIG DATA STORAGE TOOLS

There are many Big Data Storage Tools on the market and there is no simple answer as which ones 
are the best. However, Robb (2016) created a list of the “Top Ten Big Data Storage Tools” from 
which the below Table 7 of important characteristics was derived by the authors of this chapter upon 
reading this article.

The important characteristics of the above “Top Ten Big Data Storage Tools” range from 
supporting Big Video by Hitachi to detecting data errors in real-time to optimize the performance 
of Big Data projects using Infogix.

There are many variables in selecting a Big Data Storage tool, and these include according to 
Robb (2016) the existing environment, current storage platform, growth expectations, size and type 
of files, database and application mix, among other variables specific the unique needs of the users.

BIG DATA STORAGE FOR TOP 500 SUPERCOMPUTERS IN THE WORLD

Big Data storage is essential for the architecture of any supercomputer. The Top500 Supercomputers 
in the World were discussed in detail in earlier IGI Global book by Segall, Cook and Zhang (2015) 
and with Chapter 1 by Segall and Gupta (2015) titled Overview of Global Supercomputing, and 
summarized statistics in Appendix: The Top 500 Supercomputers in the World by Gupta (2015).

The TOP500 project that was started in 1993 ranks and details the 500 most powerful non-
distributed computer systems in the world. In a recent list (June 2017), the Chinese Sunway TaihuLight 
is the world’s most powerful supercomputer, reaching 93.015 petaFLOPS on the LINPACK 
benchmarks. (Top 500, 2018a)
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The TOP500 list is compiled by Jack Dongarra of the University of Tennessee, Knoxville, Erich 
Strohmaier and Horst Simon of the National Energy Research Scientific Computing Center (NERSC) 
and Lawrence Berkeley National Laboratory (LBNL), and also by Hans Meuer of the University of 
Mannheim, Germany until his untimely death in 2014. (Top 500, 2018a)

This section provides some insight into Big Data storage by providing some of the statistics of 
storage for Big Data for the Top500 Supercomputers. The reader is referred to the web-site https://www.
top500.org/statistics/list/ that allows the user to drill-down for additional statistics and visualization 
plot of storage related capabilities of components of the Top 500 Supercomputers in the World in 2018.

Below are graphical illustrations and explanations for June 2018 statistics pertaining to Big Data 
storage on the Top 500 Supercomputers in the World.

Cores per Socket
Table 8 is a tabular summary that indicates that 16 Cores per Socket is the most frequent System 
Share with 21.8% of the Top500 Supercomputers that have 9,568,908 cores and the least frequent is 
260 cores with .2% system share.

Figure 2 consists of two pie charts: One that represents the Cores per Socket Share and the other 
Cores per Socket Performance Share. From these two pie charts we can visualize the greatest Core 
per Socket System Share is 16 or 21.8% and the lowest percentage is for 6 Cores per Socket System 
Share, and the greatest Cores per Socket Performance is 16 or 26.2% and the lowest is for 6 cores 
per socket. Figure 3 shows the TreeMap of cores per socket as of June 2018.

TreeMaps display hierarchical (tree-structured) data as a set of nested rectangles. Each branch 
of the tree is given a rectangle, which is then tiled with smaller rectangles representing sub-branches. 
A leaf node’s rectangle has an area proportional to a specified dimension on the data.

Figure 4 shows that the majority of Efficiency (%) were at least 50% for all of the number of 
cores per socket in 2018 of the Top 500 supercomputers in the world.

Table 7. Characteristics of Top Ten Big Data Storage Tools (Created by authors with reference to Robb (2016).)

DATA STORAGE 
TOOL

IMPORTANT CHARACTERISTICS

1. Hitachi Hitachi Video Management Platform (VMP) supports Big Video.

2. DDN (DataDirect 
Networks)

High performance file storage can be automatically tiered to object storage archive to support 
cost-effective retention of Big Data.

3. Spectra BlackPearl Object storage interface to SAS-based disk

4. Kaminardo K2 All-flash array to support dynamic workload

5. Caringo Flagship product Swarm eliminates the need to migrate data into disparate solutions for long-
term preservation, delivery and analysis thereby lowering total cost of ownership.

6. Infogix Can detect data errors in real-time to optimize the performance of Big Data projects.

7. Avere Hybrid Cloud Users can harness object storage without rewriting their applications or changing their data 
access methods.

8. DriveScale DriveScale allows users to procure capacity independent of the compute capacity thus 
enabling right-sizing at each level.

9. Hedvig Users can customize storage with a range of enterprise services that are selectable per-
volume.

10. Nimble Nimble Storage Predictive Flash Platform dramatically improve performance of analytical 
applications and Big Data workloads.
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Vendors Systems & Performance Share
Figure 5 indicates that Lenovo has the largest Vendor System Share of 23.4% and IBM, Huawei, Dell, 
Fujitsu and others have the least Vendor System Share for the Top 500 supercomputers of 4% or less.

Figure 6 shows that the Vendors System Share for IBM and Hitachi have been declined 
significantly from 2006 to 2018 for the Top 500 Supercomputers in the world, while that of Cray, 
Bull, Dell, HPE and others have both increased and decreased over this time period.

Figure 7 indicates that Lenovo has the largest Vendor Performance Share of 19.9% followed close 
by HPE of 19.7%, and Huawei, Dell, Fujitsu and others have the least of less than 5%.

Figure 8 shows that the Vendor Performance Share for HPE had the most of the Share (%) over 
the time period of 2006-2018, and IBM had a declining share over this period, and was below other 
vendors such as Oracle.

Table 9 provides a table of vendors that show that Lenovo, HPE and Inspur, Sugon, and Cray, 
Inc. combined have 74.4% of the System Share of the Top500 supercomputers while 16 of the listed 
vendors have .2%, and 8 of the listed vendors have .4%. Figure 9 shows the TreeMap of vendors 
Rmax as of June 2018.

Rmax and Rpeak values are in GFlops. Rpeak values are calculated using the advertised clock 
rate of the CPU. For the efficiency of the systems you should take into account the Turbo CPU clock 
rate where it applies. Cray Inc. has the largest and HPE the second largest share followed by NRCPC, 
Levovo and IBM.

Application Area & System Share
Figure 10 indicates that 96.6% or essentially all of the Application Area System Share for the Top 
500 Supercomputers is unspecified, and 89.6% of the Application Area Performance Share is also 
unspecified.

Table 10 indicates that 483 of the Top 500 Supercomputers in the world have an Application 
Area that is Not Specified, and these are 96.6% of the System Share and consist of 45,218,714 Cores.

Architecture
Figure 11 indicates that 87.4% of the Architecture System Share is Cluster and 12.6% is MPP (Massive 
Parallel Processing), and 74.4% of the Architecture Performance Share is Cluster and 25.6% is MPP.

Table 8. Top 500 Big Data storage servers list statistics by Cores per socket table as of June 2018. (Top 500, 2018b) (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
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Operating System
Figure 12 indicates that for the Top 500 Supercomputers in the world in 2018, Linux had the majority 
of Operating Systems System Share with 50.8% and CentOS with 23.2% and Cray Linus Environment 
with 9.8%, and Operating System Performance Share was dominated by Linux with 29.5%, CentOS 
with 18% and Cray Linux Environment with 12.5%.

Table 12 provides statistics of numerical counts of the types of Operating Systems for the Top 
500 Supercomputers in the world in 2018 with a count of the number of cores. From Table 12 it can 
be noted that the one supercomputer in the world with .2% of System Share of Sunway RaiseOS 2.0.5 
is located at National Supercomputer Center in China at Wuxi. Jiangsu has the second largest number 
of cores of 10,649,600 as compared to the 254 that has system share of 50.8% of Supercomputers 
with Linux Operating System that has the maximum number of cores of 18,422,444.

Figure 2. Top 500 Big Data storage servers pie-chart statistics by Cores per socket as of June 2018. (Top 500, 2018b) (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
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Figure 13 shows that all of the Operating System Family Systems Share and Operating System 
Family Performance Share of the Top 500 Supercomputers in the World in 2018 were that of Linux. 
This was an increase from the June 2017 data when for System Share was 99.6% for Linux and the 
remaining .04% were Unix., and 99.9% Performance Share was Linux and the remaining .1% were 
other.

Table 13 indicates that the Linux Operating Systems Family that that comprised 99.6% of the 
Top500 Supercomputers in 2018 had 48,043,950 Cores of storage.

Accelerator/Co-Processor
Figure 14 indicates that NVIDIA Telsa K40, NVIDIA Telsa P100, NVIDIA Telsa K80 and NVIDIA 
Telsa 20x comprised about 73% of the Accelerator/Co-Processor System Share.

Table 14 indicates that NVIDIA Telsa K40 had the maximum system share, but Intel Xeon Phi 
31S1P supercomputer located at National Super Computer Center in Guangzhou, China had the 
maximum number of storage cores of 3, 294,720 followed by PEZY-SC2 that had 3.176,00 cores 
of storage and processing and the PEZY-SCnp is said to deliver 1.53 TFLOPS (double-precision).

Figure 3. TreeMap of Cores per Socket as of June 2018 (Top 500, 2018c)
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Figure 4. Efficiency chart of cores per socket as of June 2018 (Top 500, 2018d) (Source: https://www.top500.org/statistics/
efficiency-power-cores/)

Figure 5. Top 500 Big Data storage servers list statistics by Vendors Systems Share as of June 2018. (Top 500, 2018b) (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/efficiency-power-cores/
https://www.top500.org/statistics/efficiency-power-cores/
https://www.top500.org/statistics/list/
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Interconnect System
Figure 15 indicates that the majority of the Interconnect System Share of the Top 500 supercomputers 
was either 10G Ethernet or Infiniband FDR and the Interconnent Performance Share was dominated 
by 10G Ethernet, Infinibanc FDR, and Intel Omni-Path.

Figure 6. Development over time by Vendors Systems Share as of June 2018. (Top 500, 2018e) (Source: https://www.top500.org/
statistics/overtime/)

https://www.top500.org/statistics/overtime/
https://www.top500.org/statistics/overtime/
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Table 15 indicates that the Sunway microprocessors developed in China had the maximum 
number of processing and storage cores of 10,649,600.

CONCLUSION

The topic of storage systems for data-intensive computing of Big Data that utilizes Cloud and Fog 
Computing is a topic of crucial importance to an increasingly very many number of organizations 
around the world, be it public, private, government, or industrial.

The topic and importance of “real-time” processing of Big Data also is an issue of great importance 
and is also discussed in Sakr (2016) and Swami et al. (2018). Figure 16 illustrates “real-time” Big 
Data Processing with input/output centric storage with a five-layer model for future computing for 
parallel processing consisting of transactional, analytic, operational and archive systems. Belli et al. 
(2018) studied scalable Big Stream Cloud Architecture for IoT.

Figure 17 below identifies 36 specific areas that are impacted by data growth as a “ripple effect”. 
As Cochran (2012) indicates the importance of Big Data storage and processing by stating:

“In today’s world of ‘Big Data’, there needs to be far greater emphasis on comprehensive planning, 
designing in architectural efficiency, minimizing the impact on IT infrastructure, and improving the 
manageability of our entire IT environment. Your future depends on it.”

In conclusion, storage systems for data-intensive computing using Big Data for Fog Computing 
and its applications using Fog-to-Cloud Computing is an expanding and vital topic that needs to be 
pursued continuously for the financial successes of economies around the world.

Figure 7. Top 500 Big Data storage servers list statistics by Vendors-Performance share as of June 2018 (Top 500, 2018b) (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
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FUTURE DIRECTIONS OF RESEARCH

The future directions of this research include the continuation of pursuing knowledge of updates in 
the technology for storage systems for data-intensive computing using Big Data and its interface 

Figure 8. Development over time by Vendors-Performance Share as of June 2018 (Top 500, 2018e) (Source: https://www.top500.
org/statistics/overtime/)

https://www.top500.org/statistics/overtime/
https://www.top500.org/statistics/overtime/
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with Fog Computing. The constant generation of discoveries by investigators and authors around 
the world in this topic is of vital importance to the economic growth and well-being of all either 
directly or indirectly.
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Figure 9. TreeMap of Vendors Rmax as of June 2018 (Top 500, 2018c)
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Figure 10. Top 500 Big Data storage servers list statistics by Application Area as of June 2018. (Top 500, 2018b) (Source: https://
www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
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Table 10. Top 500 Big Data storage servers list statistics by Application Area table as of June 2018. (Top 500, 2018b). (Source: 
https://www.top500.org/statistics/list/)

Figure 11. Top 500 Big Data storage servers list statistics by Architecture as of June 2018. (Top 500, 2018b). (Source: https://
www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
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Table 11. Table of Top 500 Big Data storage servers list statistics by Architecture as of June 2018. (Top 500, 2018b). (Source: 
https://www.top500.org/statistics/list/)

Figure 12. Top 500 Big Data storage servers list statistics by Operating System as of June 2018 (Top 500, 2018b). (Source: https://
www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
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Table 12. Table of Top 500 Big Data storage servers list statistics by Operating System as of June 2018 (Top 500, 2018b). 
(Source: https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
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Figure 13. Top 500 Big Data storage servers list statistics by Operating System Family as of June 2018 (Top 500, 2018b). (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
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Table 13. Table of Top 500 Big Data storage servers list statistics by Operating System Family as of June 2018 (Top 500, 
2018b). (Source: https://www.top500.org/statistics/list/)

Figure 14. Top 500 Big Data storage servers list statistics by Accelerator/Co-Processor as of June 2018 (Top 500, 2018b). (Source: 
https://www.top500.org/statistics/list/)

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
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Table 14. Top 500 Big Data storage servers list statistics by Accelerator/Co-Processor (Top500, 2018b)
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Figure 15. Top 500 Big Data storage servers list statistics by Interconnect as of June 2018 (Top 500, 2018b) (Source: https://www.
top500.org/statistics/list/)

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
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Table 15. Table of Top 500 Big Data storage servers list statistics by Interconnect as of June 2018 (Top 500, 2018b) (Source: 
https://www.top500.org/statistics/list/)

Figure 16. Real-time Big Data Processing with I/O Centric Storage (Floyer, 2012)

https://www.top500.org/statistics/list/
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Figure 17. Areas that are directly or indirectly affected by storage growth (“Big Data” Getting Bigger? Beware of the Ripple Effect, 
(Cochran, 2012)).
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