
DOI: 10.4018/IJDCF.2020010106

International Journal of Digital Crime and Forensics
Volume 12 • Issue 1 • January-March 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

109

A Hybrid Intrusion Detection System for IoT 
Applications with Constrained Resources
Chao Wu, Chongqing Vehicle Test & Research Institute Co. Ltd., Chongqing, China

Yuan’an Liu, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China

Fan Wu, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China

Feng Liu, SKLOIS, IIE & SCS UCAS, CAS, Beijing, China

Hui Lu, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China

Wenhao Fan, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China

Bihua Tang, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China

ABSTRACT

Network security and network forensics technologies for the Internet of Things (IoT) need special 
consideration due to resource-constraints. Cybercrimes conducted in IoT focus on network information 
and energy sources. Graph theory is adopted to analyze the IoT network and a hybrid Intrusion 
Detection System (IDS) is proposed. The hybrid IDS consists of Centralized and Active Malicious 
Node Detection (CAMD) and Distributed and Passive EEA (Energy Exhaustion Attack) Resistance 
(DPER). CAMD is integrated in the genetic algorithm-based data gathering scheme. CAMD detects 
malicious nodes manipulated by cyber criminals and provides digital evidence for forensics. DPER is 
implemented in a set of communication protocols to alleviate the impact of EEA attacks. Simulation 
experiments conducted on NS-3 platform showed the hybrid IDS proposed detected and traced 
malicious nodes precisely without compromising energy efficiency. Besides, the impact of EEA 
attacks conducted by cyber criminals was effectively alleviated.
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INTRODUCTION

Network forensics is the reconstruction of network event to provide definitive insight into action and 
behavior of users, applications as well as devices (Schwartz, 2010). Network forensics technologies 
focus on recording evidence of a network attack (Adeyemi, Razak, & Nor Azhan, 2013). However, 
Internet of Things (IoT) is a special network which integrates sensors and other objects to connect 
everything in our life together. The information in IoT is usually privacy-sensitive and even confidential, 
so IoT will become the objective of cyber criminals (Alaba, Othman, Hashem, & Alotaibi, 2017). Due 
to the device miniaturization and energy-efficiency of IoT, traditional network forensics technologies 
are not suitable for IoT. Thus, the network forensics technologies specialized for cybercrimes aiming 
at IoT are of great importance and challenging in the era of IoT. Different from traditional computer 
networks, IoT networks are typically Low-power and Lossy Networks (LLN) (Teklemariam, Van 
Den Abeele, & et al, 2016), so energy efficiency must be taken into consideration when it comes to 
network security and network forensics technology designs for IoT.
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Intrusion Detection Systems (IDSs) can be categorized into three types by placement (Zarpelao, 
Miani, Kawakani, & de Alvarenga, 2017), as shown in Figure 1. Distributed IDS mean the detection 
system is placed in every physical node. Distributed IDSs are suitable for smart devices with higher 
computational capability and energy sources. Correspondingly, centralized IDS only rely on single or 
several dedicated components in the network to complete the detection work. Hybrid IDS combines 
distributed and centralized technologies to get the job done.

Aiming at computer networks, threats can be categorized into unauthorized access, malicious code 
and service interruption (Ahmed, 2017) as showed in Figure 1. In IoT networks, cyber criminals may 
manipulate data nodes in the network illegally, and generate plenty of fake or harmful information. 
Besides, unauthorized cyber criminals may access data nodes in IoT networks to perform Denial of 
Service (DoS) attacks. One form of DoS attacks in IoT is Energy Exhaustion Attack (EEA) (Alrajeh, 
Khan, Lloret, & Loo, 2014). EEA accelerates the expiration of the network lifetime and is fatal to 
the performance of IoT.

Sink mobility is recognized as an efficient method to improve the performance of IoT. However, 
mobility-constrained mobile sinks exist in many IoT applications, such as railway-based (Smeets, 
Shih, Zuniga, Hagemeier, & Marrón, 2013) or automobile-based (Huang & Savkin, 2016) information 
collection applications, mountainous or canal environment monitoring applications, and even the 
information collection application for Smart Grid.

This paper designs an information and energy-related IDS with hybrid mechanism for IoT 
applications with a path-constrained mobile sink. The hybrid IDS provides a trace-back mechanism 
for network forensics and enhances the network safety. The main contributions of this paper are 
summarized as follows:

Figure 1. Network threats and IDS categories
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•	 Graph theory is utilized to describe the IoT network and to group the data nodes with grids. 
Data nodes contained in the same grid can be regarded as a whole. Network analysis can be 
simplified by grids.

•	 The first part of the hybrid IDS is called Centralized and Active Malicious Node Detection 
(CAMD). CAMD is integrated in the graph-based data gathering scheme of IoT. By a customized 
genetic algorithm, network nodes which are manipulated by cyber criminals can be identified 
according to the changes in the data gathering scheme. The changes are got by matrix comparison 
and the comparison results can be regarded as digital evidence for network forensics.

•	 A Distributed and Passive EEA Resistance (DPER) mechanism as the second part of the hybrid 
IDS is fulfilled by a pair of data delivery protocols. DPER is designed to alleviate the impact of 
EEA on the network performance of the IoT application.

•	 Simulation experiments are conducted on the Network Simulator-3 (NS-3) platform. In the 
experiments, cybercrime behaviors including fake information transmitting and EEA attacks 
are simulated. The experiment results show that the hybrid IDS precisely identifies the cyber 
criminals who conduct malicious behaviors at data nodes and provides strong digital evidence. 
Besides, the impact of EEA attacks on the network lifetime is alleviated. The energy efficiency 
of the IoT network was improved.

BACKGROUND

With the development of anti-cybercrime technologies, many advanced IDSs have been proposed in 
recent years, and they were categorized into three types by placement.

Researches on distributed IDSs focused on the energy consumption caused by the massive 
installation of the IDSs at network nodes. Lightweight IDSs were effective approaches to reduce 
the extra energy consumption and fulfilled the intrusion detection tasks. Oh proposed the IDS with 
matching algorithm of malicious behaviors and packet payloads (Oh, Kim, & Ro, 2014). To achieve 
the lightweight IDS, the authors reduced the iteration times of the pattern matching algorithm. On 
the other hand, Lee (Lee, Wen, Chang, Chiang, & Hsieh, 2014) discovered another way to reduce 
the overhead of IDS. The authors established the lightweight IDS under a low energy-consuming 
communication protocol. However, traditional distributed IDSs required relatively high computational 
capability for each network node to detect abnormal behaviors while networking.

On the contrary, the intrusion behaviors were detected by dedicated nodes in centralized IDSs. 
Wallgren utilized heartbeat protocol to fulfill the global monitoring (Wallgren, Raza, & Voigt, 
2013) with centralized IDS method. The overheads of heartbeat packets were considerable. For 
energy-constrained IoT, the massive energy consumption for such global heartbeat packets was not 
accepTable Gunasekaran (Gunasekaran & Periakaruppan, 2017) installed an anti-DoSL (Denial of 
Sleep) system on the base station (BS) in IoT. Based on genetic algorithm, the authors adopted an 
encryption algorithm with specialized key packets to identify DoSL attacks from malicious nodes. 
However, the dedicated nodes in centralized IDSs took a while to detect the intrusion behaviors, thus 
the purposes of cyber criminals might have already been fulfilled before detection and prevention.

Therefore, energy efficient and real-time IDSs specialized for IoT applications were needed 
desperately. Hybrid IDSs always partitioned the network or dynamically employed nodes to detect 
malicious behaviors Amaral (Amaral, Oliveira, Rodrigues, Han, & Shu, 2014) proposed a competition 
approach that selected robust nodes to monitor adjacent nodes. However, the approach required the 
selected nodes to be resourceful and the selection consumed extra energy. Le (Le, Loo, Chai, & Aiash, 
2016) and Joby (Joby & Sengottuvelan, 2015) utilized clustering method to detect intrusions. Cluster 
heads (CHs) detected malicious behaviors conducted by member nodes in the cluster. However, cluster 
heads would deplete rapidly due to extra computation. Alrajeh (Alrajeh, Khan, Lloret, & Loo, 2014) 
introduced Artificial Neural Network (ANN) into attack detection in IoT. The authors tried to offset 
the energy consumption caused by the ANN-based IDS and energy harvest method was their choice.
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Aiming at the IoT applications with a path constrained mobile sink, this paper proposed a hybrid 
IDS to trace intrusion sources and to provide digital evidence for forensics. Considering the energy 
constraint of IoT, the proposed IDS consumed no extra energy.

SYSTEM MODELING AND PROBLEM ANALYSIS

System Model
Network area A  is a two-dimensioned square and n  static data nodes denoted by   with initial 
energy source E

init
 are deployed into A  randomly. The movement path of the mobile sink is exactly 

the symmetric line of A , denoted by P
m

. So only the upper half of A  is discussed in the remaining 
content of this paper. Including the mobile sink, all data nodes’ max wireless communication radius 
is r and the memory of each node is enough for data buffering and routing information recording. 
The data nodes can locate themselves and record the location information in their memory when 
deployed. The energy consumption of location can be ignored.

Malicious nodes refer to the data nodes manipulated by cyber criminals while networking. 
Malicious nodes are with the same physical attributes as normal data nodes. However, due to the 
simplification of IoT nodes, fake information reporting and EEA attacks are considered as the main 
malicious behaviors. The system model is illustrated as Figure 2.

With unlimited energy, the mobile sink travels along P
m

 with a constant speed v
m

 and owns 
extra computing capability. When the mobile sink gets to the either end point of P

m
, it will turn 

Figure 2. The system model
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around and head for another end point with the same speed. The data nodes along the mobile sink 
path that are within the one-hop communication range of the mobile sink are regarded as sub sinks.

Data nodes start to transmit data at a fixed time interval t
int

 with the data generation rate p  after 
the destination sub sink is matched. Sub sinks don’t transmit data at once but store the data in their 
buffer along with the data gathered from remote data nodes (Table 1).

Application of Graph Theory
Graph theory is used in many network issues (Zhou, Du, Shu, Hancke, Niu, & Ning, 2016; Nake & 
Chatur, 2016; Liu, Zhang, Shen, Fu, & Linge, 2016) and simplifies the analysis of the network. 
Network area A  is divided into small equal-sized square grids denoted by g

i
 as shown in Figure 3. 

The edge length of each grid to is 2

2
r , so that the data nodes inside a certain grid can communicate 

with other nodes in the same grid.
After the division, the intrusion detection and energy efficiency problems can be simplified by 

regarding the nodes in a certain grid as a whole. The grids that contain sub sinks are denoted by g
i
ss . 

Data nodes contained in the same grid match a sub sink grid g
i
ss  and transmit their data to g

i
ss . When 

data packets arrive at g
i
ss , the sub sinks inside g

i
ss  receive the packets evenly according to the 

Table 1. Important symbols and descriptions for the system model

Symbol Description

R
g

/C
g The number of rows/columns of the matrix of grids in the graph.

n
ssg

The total amount of sub sink grids. n C
ssg g
= .

g
i

The symbol that represents the square grid.

g
i
ss The symbol represents the grid that contains sub sinks, and i n

ssg
∈ 


1, .

n
i
ss The amount of sub sink nodes in sub sink grid g

i
ss , n g

i
ss

i
ss= .

n
i
sng The amount of data node grids assigned to sub sink grid g

i
ss .

n
i
sn The accumulated amount of data nodes in the data node grids assigned to g

i
ss .

n
ss Total amount of sub sink nodes. n n

ss
i

n

i
ss

ssg

=
=
∑
1

.

n
i

The number of nodes inside some grid g
i

, g n
i i
= .

n
g

The total amount of grids of G , where G n
g

= .
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transmission protocol. Besides, the nodes which can communicate with the nodes in adjacent grids 
are regarded as pipe nodes.

After the division, A  can be described with a graph, denoted by G . Mathematically, a graph 
G  can be represented by its vertices V  and corresponding edges E , like G V E= ( ),  (Zhang, Zhou, 
Zhao, et al, 2017; Yun, Xia, Behdani, & Smith, 2013; Hasan, AI-Rizzo, & Gunay, 2017), where 
V n

g
= , is the amount of grids and E  represents the total amount of pipe nodes in all grids.
The graph operation not only simplifies the network description but also prevents nodes at close 

locations from unreasonably choosing different sub sinks. Furthermore, benefitted by the division, 
the computational complexity of the network dropped from O n( )  to O n

g( ) .
Analysis of Energy Model
The purpose of the hybrid IDS is to achieve intrusion detection and crime source trace-back without 
extra energy consumption. Qin (Qin, Hempstead, & Yang, 2009) indicated that, information processing, 
wireless communication and data aggregation consume most of the energy installed in data nodes.

The transmitting and receiving power can be assumed as fixed for short distance communications, 
so the power consumption is independent of the transmission distance. Besides, the total energy 
consumed by data aggregation at each node can be regarded as constants during t

int
. The total energy 

consumed by a data node during t
int

 can be formulized by:

E e p p
node tx rx
≈ +( ) 	 (1)

Figure 3. An example of the graphing operation
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where e  is a factor indicating the energy consumption per bit for the transmitting and receiving 
circuits. p

tx
 and p

rx
, respectively, represents the total bytes transmitted and received by a node during 

t
int

.
Furthermore, the total bytes p

tx
i  transmitted by node i  can be accounted by:

p p pt
tx
i

rx
i

int
= + 	 (2)

where p
tx
i  is the total bytes received by node i .

Based on Equation (1) and Equation (2), the total energy consumption E
total

 of the whole network 
is:

E ept h
total

i

n

k

n

ik int

g i

≈ +( )
= =
∑∑
1 1

2 1 	 (3)

where h
ik

 represents the shortest hop from the k th node in grid g
i
 to its matched sub sink grid. The 

shortest hop is obtained by the routing establishment algorithm discussed later.
As discussed above, any data node grid g

i
 chooses but only one reachable sub sink grid as the 

packet reporting destination of the data nodes inside it. So the total energy consumption E
i
ss , total 

energy for reception E
i
rx  and total energy for transmission E

i
tx  in a data interval t

int
of sub sinks in 

a certain sub sink grid g
i
ss  are get:

E E E ept n n n
i
ss

i
rx

i
tx

k

n

ik i
ss

ss

i
sng

= + = +










=
∑2 1
1

,
gg int





 	 (4)

where n
i
ss  represents the amount of sub sink nodes in g

i
ss , and n

ik
 represents the node amount of 

the k th data node grid that is matched with g
i
ss .

To measure the equilibrium of energy consumption among all sub sinks, the variance D E
SS( )  

is formulized:

D E
n

E

n
E n

SS
ss i

n

i
ss

i
ss SS i

ss
ssg

( ) ≈ −











⋅

=
∑

1

1

2

	 (5)

where E
n

E
SS

ss i

n

i
ss

ssg

=
=
∑

1

1

 is the arithmetic mean value of the energy consumption of all sub sinks in 

the network.

Hybrid Intrusion Detection System
Most researches on IDSs designed for traditional computer networks compromised the energy 
efficiency. However, IoT nodes are not capable for traditional distributed or centralized methods in 
IDSs due to their simplicity and limited resources. This paper focuses on cybercrime detection and 
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forensics for IoT applications without compromising energy efficiency. A hybrid IDS is integrated in 
the data gathering function of the IoT network. The hybrid IDS is illustrated in Figure 4.

The hybrid IDS is made up of two primary modules. Genetic algorithm-based (GA) data 
gathering scheme is proposed to improve the energy efficiency of the network. Malicious behaviors 
are detected during the data gathering process through a matrix comparison method. The second part 
of the hybrid IDS works in the form of a set of communication protocols. The protocols are named 
after Advanced Shortest Path Tree (ASPT). ASPT not only dynamically balances the node energy 
consumption hierarchically but also alleviates the impact of EEA conducted by the malicious nodes.

CENTRALIZED AND ACTIVE MALICIOUS NODE DETECTION (CAMD)

GA-based Data Gathering Scheme
Based on the discussion above, to achieve energy efficiency of the whole network, the value of total 
energy consumption E

total
 during each data generation interval t

int
 needs to be minimized:

min ept h
i

n

k

n

ik int

g i

= =
∑∑ +( )
1 1

2 1 	 (6)

subject to:

Figure 4. Illustration of the hybrid Intrusion Detection System proposed
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min D E
SS( ) 	 (7)

Constraint Equation (7) guarantees the energy consumption among sub sinks is even as far as 
possible. Considering the idealistic situation that, during each data interval t

int
 all data packets are 

transmitted to the destination sub sink grids successfully, which means the total bytes received by all 
sub sinks during t

int
 can be regarded as a constant. Therefore, the sum of energy consumed by all 

sub sinks is accordingly a constant. Then constraint Equation (7) can be transformed into:

min
1

1

2

n
n n

ssg i

n

i
sn sn

ssg

=
∑ −( ) 	 (8)

where n
i
sn  is the total amount of data nodes in the data grids that are matched with sub sink grid g

i
ss  

and nsn  is accordingly the arithmetic mean value of all n
i
sn .

Constraint Equation (8) means that, to achieve the equilibrium of energy consumption among 
all sub sinks is approximately equivalent to minimize the variance of the total amounts of data nodes 
matched with each sub sink grid.

According to the above analysis, the goal of the energy-concerned part of CAMD is to look 
for an optimal assignment of data grids to sub sink grids that the amounts of data nodes matched to 
each sub sink grid are almost the same. Besides, the total energy consumption must be minimized 
simultaneously. The energy-efficiency issue in CAMD is named after Optimal Grid Assignment 
(OGA) in the remaining content.

Matrix M
R C Cg g g−( ) ×1

 is introduced to indicate the relationship between two kinds of grids. Matrix 

H
R C Cg g g−( ) ×1

 records the accumulated shortest hops in each data node grid. In addition, row vector 

V
R Cg g1 1× −( )  is adopted to record the amounts of data nodes in each data node grid.

Matrix M
R C Cg g g−( ) ×1

 is constructed by elements m
ij

, where i R C
g g

∈ −( ) ⋅





1 1,  is the sequence 

number of data node grids and i C
g

∈ 

1,  represents the sequence number of sub sink grids. The 

value of m
ij

 is binary with 1 and 0, and subject to:

j

C

ij g g

g

m i R C
=
∑ = ∀ ∈ −( ) ⋅





1

1 1 1, , 	 (9)

because each data node grid selects but only one sub sink grid as its destination.
Specially, the elements h

ij
 in matrix H

R C Cg g g−( ) ×1
 is the accumulated value of shortest hops from 

data nodes in the i th data node grid to the j th sub sink grid, so it can be gotten by:

h h
ij

k

n

k
ij

i

=
=
∑
1

	 (10)

where h
k
ij  represents the shortest hops from node i  to the sub sink grid j .
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Vector V
R Cg g1 1× −( )  has R C

g g
−( ) ⋅1  elements, the values of which indicate the amounts of data 

nodes in each data node grid orderly.
Now, the OGA issue can be described by matrixes discussed above. Firstly, another row matrix 

W
Cg1× that indicates the sum of data nodes matched to each sub sink grid is gotten by 

V M
R C R C Cg g g g g1 1 1× −( )⋅ −( )⋅ ×⋅ . Then the constraint function Equation (8) is equivalent to:

min
1

1
1

2

C
w w

g i

C

i

g

=
∑ −( ) 	 (11)

where w
C

w
g i

C

i

g

=
=
∑

1

1
1

 is the arithmetic mean value of all elements w
i1
 in row matrix W

Cg1× .

Then, the objective function Equation (6) is equivalent to:

min
i

R C

j

C

ij ij

g g g

m h
=

−( )⋅

=
∑ ∑ ⋅
1

1

1

	 (12)

where all constants in Equation (6) are ignored because they exert no impacts on the final results.
Finally, the OGA issue is described by objective function Equation (12) as well as constraint 

functions Equation (9) and Equation (11). The problem is NP-hard (Oncan, 2007) with combinatorial 
optimization. Genetic algorithm (GA) is an effective method to solve the OGA problem. GA usually 
has four phases: encoding, selection, crossover and mutation.

Population Initialization and Selection
A binary chromosome is needed to characterize an individual and the specific chromosome can also 
be a sample that represents the assignment of all data node grids to sub sink grids. So, the matrix 
M

R C Cg g g−( ) ×1
 can directly be regarded as the gene code of a chromosome.

The fitness value f and unfitness value uf of solutions are formulized by:

f m h
i

R C

j

C

ij ij

g g g

= ⋅
=

−( )⋅

=
∑ ∑
1

1

1

	 (13)

uf
C

w w
g i

C

i

g

= −( )
=
∑

1

1
1

2
	 (14)

Then n
ga

 individuals are generated to build the initial population. The generation of the initial 
population is randomly performed, but it has to obey constraint Equation (9). Besides, the initialization 
must obey the rule: each data node grid selects a destination sub sink grid randomly among the sub 
sink grids which are available for it. This rule can avoid infeasible solutions.
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Due to the introduction of graphing, the complexity of OGA matching algorithm is decreased. 
The individuals with the 2nd and 3rd smallest fitness value can directly be selected as parents. This 
selection algorithm is able to protect the best individual in current population.

Crossover and Mutation
Each row of the chromosome matrix is regarded as a gene segment and all gene segments represent 
the assignment of all data node grids orderly. To avoid infeasible gene segment of the child solution, 
parents just exchange their gene segments of the same data node grid. p

1
, p

2
and c  are used to denote 

the parents and their child.
The crossover algorithm is based on the fitness value of parents. Firstly, the ratios of each fitness 

to the sum of the two parents are calculated. Secondly, n
p
cs

1
 gene segments of p

1
 are randomly located 

and substitute corresponding ones of p
2

 to produce c . Besides, n
p
cs

1
 and n

p
cs

2
 are subject to:

n n R C
p
cs

p
cs

g g1 2
1+ = −( ) ⋅ 	 (15)

n

n

f p

f p
p
cs

p
cs

1

2

2

1

≈
( )
( )

	 (16)

Figure 5. The process of crossover and mutation
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Equations (15) and (16) ensure that the child inherits more genetic information from the parent 
with smaller fitness. Figure 5 illustrates the crossover algorithm proposed above.

When the crossover operation is finished, there is a little chance for each child to mutate. The 
mutation mechanism is capable of avoiding premature convergence. If gene mutation occurs in a child 
solution, a gene segment will be randomly located and the bits of which will be changed according 
to the same rule on population initialization.

Population Updating
When the crossover and mutation operation in an iteration is finished, the population may be updated 
with the child solution.

First of all, the chromosome of child solution is examined. If all bits of the chromosome are 
the same with any individual in the parent population, the child solution is regarded as identical and 
will be discarded.

Once a unique child solution is reserved, the fitness value and unfitness value of which are 
compared with the parent population. If its unfitness value is smaller than the individual with the 
largest unfitness among the parent population, the child solution will replace this largest individual 
and the population is updated. Otherwise, if the child solution’s unfitness value is equal to the largest 
unfitness among the parent population, the child solution will replace the largest individual as long 
as the child’s fitness value is smaller than this parent individual. The update algorithm prevents the 
GA from premature convergence for unfitness. In other conditions, the population keeps unchanged.

Malicious Node Detection and Forensics
As mentioned above, all data nodes including sub sinks are homogeneous and will generate data 
from their environment or objects attached. If some data nodes are unfortunately accessed and 
manipulated by cyber criminals, they will generate fake information and send it to a random sub 
sink grid. Malicious nodes consume the resources of the whole network and damage the validity of 
the information gathered.

When the deployment and graphing of IoT are finished, the information of the network system 
can be described by the matrixes proposed in preceding sections. Based on the grid assignment, a 
Centralized and Active Malicious Node Detection (CAMD) with information comparison mechanism 
is designed and installed in the mobile sink to detect the malicious node manipulated by cyber 
criminals and to provide strong digital evidence for forensics. To locate the malicious nodes, CAMD 
checks the assignment of the grids. The matrix-based information comparison mechanism in CAMD 
is illustrated by Figure 6.

When the mobile sink arrives at either end point of its path, which signifies that all buffered data 
in sub sinks has been gathered by the mobile sink, the mobile sink will generate a binary matrix 
denoted by N

n C
realtime

g×
. The value of a certain element n

ij
realtime  in N

n C
realtime

g×
 indicates that whether the 

data packet of a certain data node i  arrives at sub sink grid g
j
ss  finally. Then, the mobile sink compares 

N
n C
realtime

g×
 to the assignment matrix N

n C
assignment

g×
 which is generated by the genetic algorithm. The 

comparison is conducted by matrix subtraction. If the result matrix of the subtraction, denoted by 
N
n C
subtraction

g×
 is not a zero matrix, malicious nodes are believed to exist in the network. What follows 

next is to check every row of N
n C
subtraction

g×
 orderly and the one with non-zero value represents a malicious 

node.
According to the result of the matrix comparison mechanism of CAMD, the location and identity 

of malicious nodes that are manipulated by cyber criminals can be precisely detected. Then the 
information gathered by the mobile sink which is from the detected malicious nodes can be regarded 
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as fake or harmful information. The binary subtraction matrix N
n C
subtraction

g×
 records the fake information 

reporting behavior conducted by cyber criminals and the digital result is strong and reliable evidence 
for forensics.

DISTRIBUTED AND PASSIVE EEA RESISTANCE (DPER)

If cyber criminals make the manipulated nodes transmit data packet more frequently, the nodes along 
the data packet delivery path will deplete more rapidly. In this section, two communication protocols 
are devised for DPER to alleviate the impact of such EEA attack. The protocols are installed in each 
data node, and a grid-based routing table is installed in each node as shown in Table 2.

In the grid routing table, the pipe nodes as well as the grids they belong to are recorded. In the 
grid routing table, there is a pointer named after current_pipe. The data packet forwarded by this data 
node will be transmitted to the pipe node which is pointed to by current_pipe. Once the packet is 
transmitted, current_pipe will point to the next pipe node circularly. With the grid routing table, the 

Figure 6. CAMD algorithm illustration

Table 2. Grid routing table

ID of Local Node ID of Sub Sink Grid Hops of Shortest 
Path ID of Gateway Grid ID of Accessible 

Pipe Nodes

28

1 5 11

* 7

15

45

2 6 11

* 7

15

45

5 7 15
* 5

18
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communication protocols for DPER are capable of dynamically balancing the energy consumption of 
data nodes during the data gathering period and preventing some node from depletion caused by EEA.

The communication protocols are made up of network discovery and packet delivery. The 
protocols are designed based on the graph and Shortest Path Tree (SPT), therefore the technique can 
be regarded as Advanced Shortest Path Tree (ASPT).

Graph-based Network Discovery Protocol
The main task of this protocol is to lay a basis for the data packet deliver process by establishing the 
connection among grids. To achieve these goals, the mobile sink needs to accomplish three round 
trips. The grid routing table and the assignment result of the genetic algorithm are also broadcasted 
to each node by this protocol.

For the first trip, the mobile sink broadcasts sub sink checking packets at a time interval t
int
ck  . 

Once a certain data node receives a sub sink checking packet, it becomes a sub sink logically and 
begin the SPT establishment on its own. When all SPT setup packets are transmitted, each data node 
record the shortest paths and gateways from itself to all reachable sub sinks. Then data node sends 
an ordinary data packet to the nearest sub sink with the information of its location and SPT routing 
information. If the data packets are successfully transmitted, data nodes will clear its memory for 
grid routing information which is established in future.

During the second round trip, the mobile sink will broadcast information request packets, and the 
sub sinks will reply to the mobile sink with a data packet containing the information of data nodes 
collected during the first trip. If the data packets are transmitted successfully, sub sinks will delete 
the information. When the mobile sink finishes its second round trip, it will perform the graphing 
operation and GA-based matching algorithm.

The task during the third round trip is to inform data nodes the result of the GA-based matching 
algorithm and establish the ASPT. The format of the packet during this period is defined as 
OGA Pkt g hop src gtw id pipe adr mapping list_ _ , , _ , _ , _{ } , where g hop_  is the accumulated 
hop from the sub sink grid src  to the grid that contains the node receive the packet. gtw id_  and 
pipe adr_  respectively represent identification of the grid this node belongs to and the address of 
pipe node which forwards this packet. mapping list_  contains information including the algorithm 
results. The mobile sink broadcasts OGA Pkt mapping list_ , , , , _0 0 0 0{ }  during the trip. Data nodes 

which receive OGA Pkt_  acquire the identification of its destination sub sink grid g
i
ss  as well as 

the identification of grid to which it belongs. Meanwhile, data node will update its grid routing table 
with smallest hops from itself to reachable sub sink grids. Before forwarding the OGA packet, the 
node deletes its own item from mapping list_ .

Dynamic Adaptive Packet Delivery Protocol
EEA will boost the data nodes’ energy consuming speed. During the detection delay caused by 
centralized IDS mechanism, the influence of EEA must be alleviated. Conventional SPT protocol 
provide only one gateway node to each data node. Once the routing table for this node is established, 
all packets in the future from this node will be forwarded by the only gateway node provided by SPT 
protocol. The gateway node will deplete due to heavy packet traffic. If EEA attacks are conducted 
by cyber criminals, the fast energy dissipation situation will be deteriorated.

Benefitted by the operation of graphing, all pipe nodes which are potential gateway nodes found 
by the network discover protocol. With these pipe nodes, dynamic gateway method can be easily 
implemented.

During the data delivery phase, each data node consults its grid routing table to find out the pipe 
node by which its data packet is going to be forwarded. Then the data node transmits the data packet 
to current_pipe. The format of data packets is defined as Data Pkt src dst pipe buffer_ , , ,{ } .
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When a certain node receives a Data Pkt_ , it firstly compares the destination sub sink grid of 
this packet with the node’s own grid. If the receiving node happens to belong to the destination sub 
sink grid of this packet, which means the data packet reaches its destination, the receiving node (sub 
sink) stores the information of this data packet in its memory and waits to send it to the mobile sink. 
Otherwise, if the receiving node is not a sub sink, it will forward the data packet to current_pipe. 
Then the current_pipe points to the next pipe node.

SIMULATION IMPLEMENTATION AND RESULTS ANALYSIS

The performance of the hybrid IDS proposed was evaluated on the Network Simulator-3 (NS-3, 
version 3.25) platform (Lacage, Carneiro, & et al., 2008). In the simulation experiments, the area of 
A  is 400 600m m× . The speed of the mobile sink was v m s

m
= 5 / . The data generation rate was 

p bits s= 200 /  and the data transmission interval t
int

. The initial energy of each data node was 
E Jouls
init
= 10  and the energy consumption factor was e J bit= 0 5. /µ . The maximum 

communication radius was r m= 50 2  and the length of grid side was 50m . The data transmission 
rate between any two nodes was 44Kb s/ . The possibility that data nodes might be manipulated by 
cyber criminals during each data interval was 2%.

There were 14 network scales which increased from 110 nodes to 240 nodes. Combined with 
the size of the region A  and communication radius r , the network scales varied from low-density 
distribution to high-density distribution.

According to the previous discussion, the following metrics were adopted to evaluate the hybrid 
IDS and data gathering scheme:

•	 Network Lifetime was defined as the time duration from the beginning of mobile sink assignment 
to the first energy exhaustion of any sink node or the dynamic data gathering percentage drops 
below the threshold. The network lifetime represented the energy-efficiency of the hybrid IDS 
including DPER.

•	 Network Energy Consumption Efficiency (NECE) was defined to measure the power of the whole 
network and NECE was the ratio of total energy consumed by all data nodes to the network 
lifetime.

•	 Malicious Node Detection Ratio (MNDR) represented the performance of matrix comparison 
mechanism in CAMD.

•	 Futile Data Generation represented the impact of the hybrid IDS on decreasing the futile data 
generated by malicious nodes.

Impact of the Hybrid IDS on Network Lifetime
Due to the hierarchy of the topology, it was quite reasonable to treat the lifetime of the first exhausted 
sub sink as the lifetime of the whole network. However, the definition might cause a new problem: 
a lot of ordinary data nodes depleted before sub sinks and the data gathering performance would 
decline. Thus, a threshold on dynamic data gathering percentage was introduced to avoid the extreme 
situation. The threshold was set to be 90% to ensure that the data gathering performance was acceptable.

It can be seen from Figure 7 that the network lifetime was terribly influenced by the EEA 
conducted by the malicious nodes. EEA would deplete data nodes’ energy sources more quickly 
than normal nodes. What’s worse is that when the manipulated nodes exhausted, the data delivery 
performance deteriorated and eventually the network lifetime came to an end ahead of schedule. With 
the hybrid IDS proposed, the malicious nodes manipulated by cyber criminals could be detected 
precisely by CAMD and the influence of the EEA were reduced accordingly. Particularly, DPER 
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balanced the energy consumption among pipe nodes. Besides the manipulated nodes conserved 
energy passively but effectively.

Moreover, the GA-based data gathering scheme was compared with traditional SPT and 
RANDOM schemes. The results were illustrated in Figure 8. The simulation results indicated that 
the GA-based data gathering scheme proposed showed superiority.

Impact of the Hybrid IDS on Network Energy Consumption Efficiency (NECE)
The Network Energy Consumption Efficiency (NECE) represented the accumulated power of all 
the nodes in the IoT network. NECE was affected the network lifetime to some extent. Before the 
malicious nodes were detected by CAMD, cyber criminals would perform EEA attacks and the 
energy consumed by victim nodes greatly increased. If the detection took too much time due to the 
centralized method, the influence of EEA would go on and the NECE level would increase.

Figure 9 showed that the NECE level got much higher when malicious nodes existed and EEA 
was conducted. However, with the hybrid IDS proposed, malicious nodes would be detected and 
corrected in time. The impact of EEA got reduced accordingly. Distributed methods might outperform 
CAMD in the form of real-time performance, but the extra energy consumption of the whole network 
was unacceptable to resource-constrained IoT applications. DPER diluted the impact of EEA and the 
impact of the detection delay was alleviated. The associated work of DPER and CAMD improved 
the Network Lifetime of IoT.

Figure 7. The impact of the hybrid IDS proposed on network lifetime
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Impact of CAMD on Malicious Node Detection Ratio (MNDR)
There was a little possibility that the malicious node completely copied the behaviors of the normal 
node, which meant the destination sub sink grid randomly selected by the malicious node happened 
to be the one OGA algorithm assigned. The proposed CAMD could not deal with this situation so 
far, because CAMD was a centralized method. However, the probability was very low in large-scaled 
deployments as shown in Figure 10.

Impact on Futile Data Generation
The mobile sink identified and located malicious nodes by CAMD, then the maintainer of the network 
would get notification and the malicious nodes in the network would get fixed or replaced in a short 
time. Then the nodes would no longer act malicious behaviors.

The fake data generated by cyber criminals could be regarded as futile data. Figure 11 
demonstrated the total amount of futile data caused by malicious nodes. Without the hybrid IDS, the 
amount of futile data gathered was quite high and the hybrid IDS effectively reduced the harmful data.

CONCLUSION

IoT applications with path-constrained mobile sink can be applied in various practical scenarios to 
achieve information collection and environment monitoring. IoT networks are always privacy sensitive 
and even confidential. However, resource constraint makes traditional network security and network 
forensics technologies un-appropriate for IoT.

Figure 8. Network Lifetime results compared with SPT and RANDOM schemes
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Based on graph theory a hybrid IDS is proposed. A Centralized and Active Malicious Detection 
(CAMD) method is integrated in the Genetic Algorithm-based (GA) data gathering scheme. CAMD 
detects malicious nodes manipulated by cyber criminals and provides strong digital evidence for 
forensics. Then Distributed and Passive EEA Resistance (DPER) is implemented through a set of 
advanced Shortest Path Tree-based (ASPT) communication protocols to alleviate the impact of Energy 
Exhaustion Attacks (EEAs) conducted by cyber criminals.

Simulation results performed on NS-3 showed that the hybrid IDS performed as anticipated. The 
cyber crimes in the form of fake information reporting and EEA attacks were detected and alleviated. 
Reliable digital evidence was provided by the hybrid IDS. Besides, the energy efficiency of the IoT 
network was not deteriorated by the hybrid IDS.
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Figure 10. Impact on malicious node detection ratio (MNDR)
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Figure 11. The impact on futile data generation
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