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ABSTRACT

Due to the rapid increase of internet-based data, there is urgent need for a robust intelligent documents 
security mechanism. Although there are many attempts to build a plagiarism detection system in 
natural language documents, the unlimited variation and different writing styles of each character in 
Arabic documents make building such systems challenging. Based on its position in a word, the same 
Arabic letter can be written three different ways, which makes the handwritten character recognition a 
cumbersome process. This article proposes an intelligent unsupervised model to detect plagiarism in 
these documents called ASTAP. First, a handwritten Arabic character recognition system is proposed 
using the Grey Wolf Optimization (GWO) algorithm. Then, a modified Abstract Syntax Tree (AST) 
is used to match the contents of the Arabic documents to detect any similarity. Compared to the 
state-of-the-art methods, ASTAP improves the effectiveness of the plagiarism detection in terms of 
the matched similarity ratio, the precision ratio, and the processing time.
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AN INTRODUCTION

The ever-increasing smart information processing services and applications offered by the Internet 
have explosively widened the span of the global inter-network. The recent advancements in designing 
low-cost small scaled devices have harbingered a great surge in the number of Internet-enabled 
devices which generate a big amount of data. Accordingly, internet data management for discovering 
plagiarized documents plays a vital role in many applications such as file management, copyright 
saving, and electronic theft prevention (Lam, et al., 2016; Abdi et al., 2015). Plagiarism not only 
depends on the content ratio that is copied but dramatically relates to using the work of others, i.e., 
ideas; without proper citation (Kahloula & Berri, 2016; Abdelrahman & Khalid, 2014).

In Internet-based document processing applications (Chen & Zhao,2017), the Arabic language is 
considered one of the most complicated languages, especially if the document contains handwritten 
words. The features of Arabic alphabets have various shapes of the written form based on their 
position and can be extended by making a dash between the two letters. For Arabic in electronic or 
printed media, no pronouncement makes misunderstanding for some words in an inevitable situation. 
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These challenges make the plagiarism detection in Arabic documents an arduous task. Dependently, 
many machine learning and artificial intelligence based methods have been developed (Hussein, 
2016; Wise, 2012). For example, an online Arabic plagiarism detection tool called APD (Alzahrani 
& Salim, 2015) is proposed to detect the plagiarism on the Arabic web pages. However, this tool 
does not handle the synonyms alternations or the rewording problem. To avoid that, another system 
called Plaggie (Ahtiainen et al., 2011) is proposed. Besides its disability to handle the handwritten 
documents, Plaggie needs a long processing time to manage a computerized Arabic document.

Due to the Hugging of information, and correlation networks, the discovery of electronic thefts 
is a difficult task, and the discovery of the thefts started in the Arabic language and the most difficult 
task no doubt. And in light of the growing e-learning systems in the Arab countries, this requires 
special techniques to detect thefts electronic written in Arabic. And although it could use some search 
engines like Google, it is very difficult to copy and paste the sentences into the search engines to 
find these thefts. For this reason, it must develop a good tool for the discovery of electronic thefts 
written the Arabic language to protect e-learning systems, and to facilitate and accelerate the learning 
process, where it can automatically detect electronic thefts automatically by this tool.

This paper shows, ASTAP, a system that works on the Internet to enable specialists to detect 
thefts of electronic texts in Arabic so it can be integrated with e-learning systems to ensure the safety 
of students and research papers and scientific theses of electronic thefts.

The paper also describes the major components of this system, including stage outfitted, and in the 
end, we will establish an experimental system on a set of documents and Arabic texts and compared 
the results obtained with some of the existing systems, particularly TurnItIn.

Accordingly, a new plagiarism_detection system has been proposed in this paper which can 
handle the internet based handwritten Arabic documents called ASTAP (Abstract Syntax Tree 
Arabic Plagiarism). ASTAP consists of two main phases. The first one aims to provide an Optical 
Character Recognition (OCR) tool for internet-based handwritten Arabic Documents. The proposed 
OCR has two primary functions, feature extraction and feature selection. The feature extraction 
process aims to remove redundancy from handwritten Arabic characters. While in the selected feature 
the most relevant are only reserved for improving the accuracy classification. The proposed OCR 
is implemented using a well-known optimizer called GWO (Seyedali, et al., 2014) that is used to 
optimize a character features selection. The second phase of ASTAP aims to detect the similarity of 
Arabic documents using a modified AST (Aiken, 2015; El Bachir & Bagais, 2014). For each node 
of the AST, the algorithm determines the hash value of AST and compares it with the other nodes in 
the form of node by node. Also, the algorithm compares sub_trees based on the tree_structure with 
some reduction in the execution. We have improved the way of syntax tree similarity and proposed 
a plagiarism detection algorithm that rearranges the nodes of AST to the longitudinal framework. 
The modified AST consists of five components: AST construction, hash value computation, node 
classification, hash comparison, and degree of similarity evaluation.

There are two main contributions of that paper. First, an intelligent unsupervised model for 
internet-based handwritten Arabic character recognition system is proposed using GWO algorithm. 
Second, a modified AST is proposed for matching the contents of the Arabic documents to detect 
any similarity. The proposed system improves the similarity accuracy for the plagiarized document 
by replacing the word synonyms and minimizing time consumption by enhancing the performance 
of AST algorithm.

The rest of this paper is organized as follow: Section 2 presents an overview of the different related 
works. Section 3 describes the working steps of the proposed system ASTAP. Section 4 explains the 
methodology and the internal ASTAP components and their roles in detecting a document similarity. 
Section 5 presents a discussion of the results. Finally, Section 6 concludes the paper.
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RELATED WORKS

As general, many types of research aim to detect documents similarities. Despite the enormous efforts 
to discover the similarity of Arabic documents, most of the previous work focused the electronic form 
of these documents. This paper is the first attempt towards detecting plagiarism in internet-based 
handwritten Arabic documents.

A content-based system (Chen & Zhao, 2017) for analysis and visualization the Arabic documents 
matching was proposed using Latent Semantic Analysis (LSA) and TF-IDF models. However, this is 
a simple system that aims to handle light content documents with a limited count of words. Besides, 
it did not provide a way to handle the synonyms alternations or the rewording problem.

In (Hussein, 2016) a proposed algorithm is used to evaluate the performance of the document 
visualizations methodologies to detect the relationships inside and between the graphic components 
of those documents. Recently the essential concepts of design document visualization, and challenges, 
as well as hopeful sides of future development, have been checked out.

(Subba, 2014) proposed an anti-plagiarism, automated, and flexible grading system for 
assignments Web-CAT. It works as an e-learning system to test software and helps the students for 
automatically assess their assignments. Also, the tests offered a number of possible futures adds it 
does not clear if it is an open source or not.

Plaggie (Ahtiainen, et al., 2011) developed an open-source plagiarism detection system for 
detecting matches between two source code files. However, if the number of sending files is large, 
Plaggie takes more time and effort to explain the result.

(Aiken, 2015) developed a web-service Moss. It can measure matches between documents and 
uses an algorithm called winnowing fingerprinting. The fingerprinting splits a document into hashed 
sub_strings named k_grams. Next, these fingerprints are used to match couples of programs. As a 
final point, the results come out as an HTML output on its private server for two weeks and give the 
URL to the customer.

(El Bachir & Bagais, 2014) APlag is another system for detecting plagiarism in Arabic documents. 
APlag has three main operations called tokenization, stopwords removing, and roots conversion. 
Besides its disability to handle the handwritten documents, APlag cannot handle the synonyms 
alternations problem.

SRL (Osman, et al., 2012) is used to build a plagiarism detection scheme by producing arguments 
for each sentence semantically. The proposed schema aimed to handle a multi-language document 
including Arabic. However, an extended analysis is required to evaluate its effectiveness in Arabic 
documents.

(Grozea & Popescu, 2011) proposed a cross-lingual method for detecting plagiarized documents 
using an arithmetical model to evaluate the matches between assumed and original documents. Their 
method uses an English-Spanish dictionary to detect matches in cross-language. In their future 
work, the authors aim to enlarge their system to include more complicated documents with different 
languages, such as Arabic documents.

(Mozgovoy & Frederiksson, 2014) developed a detection system with online and offline 
subsystems. Online subsystem matches detection system which can review text for crumbs that can 
be found in the web search engines where offline subsystem matches detection system operates on 
text into a specific collection which can also review the data stored in a local database.

(Chow & Salim, 2013) have developed a structure-based plagiarism detection in programming 
code called JPlag at Karlsruhe University which is not an open source and consequently cannot 
be spread by the users. Conversely, JPlag changes codes into some token sequences that basically 
symbolize the program. Then codes are matched in couples using an algorithm called ‘Greedy_String_
Tiling’ The outcomes have come as HTML files. JPlag helps the Scheme of some programming 
languages such as Java, and natural_language manuscript.
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(Clough, 2014) have developed an open-source plagiarism detection system Plaggie is used 
single for Java codes and can be spread. Plaggie outcomes by configuration parameters wanted, 
Plaggie looks like JPlag, but it is a Java application stand_alone command_line and has to be set up 
locally. They use tokenization and Greedy String Tiling algorithms for detecting matches between 
two source code files namely followed by the GST (Greedy_String_Tiling) algorithm. The outcomes 
recovered as HTML files. However, if the number of sending files is large, Plaggie takes more time 
and effort to explain the result because it doesn’t use grouping to display outcomes instead it displays 
all matches in a list.

(Borner, et al., 2012) have introduced a system to check the Plagiarism in Arabic documents. 
It uses tokenization, removes stop-words, and convert the words to their roots in the preprocessing 
phase, after that the words are switched to their synonyms.

APD (Si, et al., 2012) is proposed as an e-learning tool for Arabic plagiarism detection in 
web-based documents. APD helps the users of an e-learning system to identify plagiarized online 
documents. APD allows the teachers to check similarity ratio of the students’ assignments that they 
submitted to the e-learning system after searching online for the most related contents. However, the 
system does not handle the synonyms alternations or the rewording problem.

Consequently, Turnitin (Alzahrani & Salim, 2008) is a well-known system which is used mostly 
to evaluate students’ works at educational institutions. It uses a cloud-based service for originality 
checking, online grading, and peer review saves instructors time and provides rich feedback to students. 
It consists of 3 main tools: PeerMark, GradeMark and OriginalityCheck. However, the system is fragile 
when handling the synonyms alternations and does not treat the rewording problem. Furthermore, it 
is too hard to track the similarities of the compared texts.

(Alzahrani & Salim, 2015) proposed a statement-based Arabic plagiarism detection system based 
on fuzzy-set information retrieval model. Their proposed system is based on computing the similarity 
between two statements and then comparing it to a threshold value. However, their proposal does 
not take into account the sentence paraphrasing with different synonyms. Moreover, dealing with the 
various inflexion forms for the same words were not considered.

ASTAP Components and Working Steps
As mentioned previously, ASTAP provides the ability to handle both handwritten and electronic 
Arabic documents. As shown at Figure 1, the main operations of ASTAP in these two different cases 
are mostly the same except only one additional OCR function that is needed to convert the document 
to its electronic form.

The source document retrieval module holds the user submitted document in an electronic form 
which contains text preprocessing module, query generation module and query submission module. 
The preprocessing module aims at doing three main tasks: 1-Tokenization, 2- Remove Stop Words 
and 3- Replacement of Synonym.

The framework of ASTAP is subdivided into three main modules as shown in Figure 2. First, 
document registration module (including submitted module, source document retrieval module, and 
Document Representation). Second, database module (including source documents collection, and 
web Saudi Digital Library (SDL) (Elhoseny et al., 2017). Third, similarity detection module (including 
Similarity Computation model and Similarity Report Generation module).

The Tokenization (Wang, et al., 2016) is responsible for breaking the stream of characters into 
tokens. Without recognizing the tokens, it is hard to see extracting higher_level info from the text. 
Each one is a kind of a type, so the number of tokens is much higher than the number of types. A 
computer software would catch the task more difficult. Therefore, after the user submits a document, 
the Tokenization module reads the file and breaks it down into tokens. The character space that we 
suggest is all the time delimiters and are not calculated as tokens.

A period, comma, or colon between numbers would not usually be considered a delimiter but 
rather part of the number. Any other commas or colons are delimiters and may be tokens. A period can 



Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

46

be part of an abbreviation when space follows it. However, some of these are the end of sentences. For 
tokenization, it is probably best to treat any ambiguous period as a word delimiter and also as a token.

The Stop_words_Removal and Rooting (Vani & Gupta, 2015) works on the raw manuscript to 
extract terms from text. Remove the non_informative text is usually uses a method in text recovery 
and classification. Stop words characterize the regularly happening, unimportant words that seem 
in a text file. Public stop words in English such as a, an, the, in, of, on, are, be, if, into, which, 
Whereas stop words in Arabic include: “( ,”الله“ ,)”من, إلى, عن, على, في . )“بسم”, “الله”, “الرحمن”, “الرحيم 

Figure 1. The ASTAP main operations
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 الذى”, “لا”,, “عبد”, “عبيد”, “هذا”, “هذه”, “هذان”, “هتان”, “هؤلاء”, “انت”, “انا”, “نحن”, “إني”, “إنني”, “انتما”,
 “انتن”, “أيا”, “ايها”, “ايتها”, “كان”, “امسى”, “اصبح”, “صار”, “ليس”, اضحى”, “منذ”, “ماذا”, “لماذا”, “عند”,
 “متى”, “كيف”, “كيفما”, “اين”, “اينما”, “الذي”, “التي”, “الذين”, “اللائي”, “اللاتي”, “بما”, “لمن”, “لأن”, )“لا”, “اله”,
 “الا”, “الله, “النبي”, )“القرآن”, “الكريم”(, “إياي”, “إياك”, “إيانا”, “اياكما”, “اياكن”, “اياه”, “اياها”, “اياهما”, “اياهم”,
 “اياهن”, “أيان”, “اينما”, “حيثما”, “كأن”, “ويكأن”, “هيهات”, “شتان”, “سرعان”, “مهما”, “الى”, “على”, “إذا”, “لولا”,
 etc. These words do not.... ,”“لما”, “ما زال”, “ما دام”, “بات”, “ما برح”, “ما انفك”, “كاد “, “اوشك”, “عسى
provide important meaning to the documents.

So, they should be deleted to minimize ‘noise’ and the calculation time. Some practitioners 
have felt that normalization more aggressive than stemming is advantageous for at least some 
text-preprocessing applications. These stemmers intend to reach a root form with no derivational 
prefixes and suffixes. For example, ” سألتمونيها ” is reduced to the stem ” سأل “.

Figure 2. The ASTAP Framework
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The final outcome of such violent stemming is to decrease the number of types in text group, thus 
creation distributional statics more consistent. Moreover, Word Stemming (Sindhu & Idicula, 
2015) or Rooting: It will be altered to the word’s basic shape. Firstly, the documents are broken 
down into words. Secondly, the words are characterized by their stems, for example, ‘’ ,‘يمشي 
.’ مشى ‘ would be represented by the stem ’ تمشي ‘ and ’المشي

The group set of features is usually called a lexicon, and it works as an input a text token. Some 
rules must be defined such as token length, token content, token ends if the token has a special 
character and what to do if the token has a special word.

formerly reconnoitered
Using the Synonym (Sahi & Gupta, 2016) Replacement, the words are transformed to their most 

common alternative word which can assist to fined advanced forms of unseen plagiarism. The first 
alternative word in the list is considered as the most common one.

After processing the document, the query generation module starts its work to generate all 
possible parameter used for query submission module. Then, the query submission module sends 
all the query’s parameters to SDL (Saudi Digital Library) to search the web for possible plagiarized 
documents. Dependently, the source document collection module downloads the searching results 
from SDL. The searching results are then prepared in the required file format, i.e., Docx, or PDF. 
The document representation component creates a document_tree_structure that defines its interior 
demonstration and filters the plagiarized source documents to save it in the repository. Using the 
similarity computation (Sharma & Jindal, 2016) module, tree definition (Thompson, et al., 2015) 
is made for each document to define its reasonable structure. Thus, the root defines the document 
himself, the next level defines the paragraphs, and the next nodes defines the sentences. It is intended 
to escape unimportant assessments among some documents. Trees are formerly reconnoitered top-
down and compared first at the document level, then at the paragraph level and at the end at the 
sentence level. Finally, the similarity report generation module generates a report for the plagiarized 
documents including the sources and their URLs.

ASTAP is consists of three major modules, it can be classified into three major modules: Document 
registration module, database module, Similarity detection module.

1- Document Registration Module

Document registration module or source document retrieval module used to preprocess the 
text and prepare it for similarity detection and add the document to the database. For a given input 
document, add The workflow in the database is:

(1) 	 for a given document D, calculate the Df digital fingerprint;
(2) 	 query the database whether there is the same digital fingerprint;
(3) 	 If the document exists, skip this document and go to (i); otherwise, the system automatically 

generates a unique document id number Save, and then add the document id and the actual 
document name to the name mapping list;

(4) 	 preprocessing the document to convert the digital documents of different formats into plain text 
formatted documents of uniform format;
2- Database Module

The system’s database using MS-SQL Server database, the main table, including table_files and 
Table_text, respectively, the original document storage at the time of uploading the document and 
the contents of the preprocessed text. Which are included in the table table_filesId field, a file field 
to save the file name, a fingerprint field to save the text File generated by the digital fingerprint, and 
a URL field to save the document stored in the server-side physical path. table table_text include 
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txt_text Field, an XML._text field, a segment_text field, and a sentence_text field, the contents of 
which are explained below:

(1) 	 txt_text field, pre-processed the original document text format make sure it is .doc
(2) 	 xml_text field, XML formatted documents. XML format contains document properties (such as 

title, abstract, etc.) And document content.
(3) 	 segment_text field, after the document word segmentation results. Content is a collection of 

ordered words, and mark each word The part of speech. In the word segmentation at the same 
time need to remove the text of the function words and stop words.

(4) 	 sentence_text field, stored sentences that semantic meaning of verbs, nouns, and adjectives, as 
the digital fingerprint of the sentence.
3- Similarity Detection Module

It is the core module of the plagiarism detection system, the system goes through the document 
digital fingerprint comparison and determines whether or not the document was plagiarism detected 
before of the existing document in the database. Root (Val, P), where Val is the digital fingerprint of 
the entire document, P points to all Paragraph generated fingerprint tree; Paragraph Fingerprint tree 
node, Par (Val i, S i, C,) where Val i is the I-th paragraph number Fingerprints, S i is the i-th paragraph 

Figure 3. The feature selection optimization model
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all the sentences generate the fingerprint tree, C points to other nodes; the nodes of the fingerprint 
tree K i, Where Val i is the digital fingerprint of the i-th sentence, K i is the fingerprint tree of the 
corresponding text block of this sentence, and C is the other finger Chu(Val, N, V, A), where Val is 
the fingerprint of the text block and N points to the node of the text block, V is a collection of verbs, 
and A is a collection of adjectives. When detecting the matches of two documents, the fingerprints 
are first compared from each other, and if the fingerprints of the two documents are identical, the 
document to be tested is fully replicated. A paragraph with the same fingerprint records its position 
information, and the paragraph match counter is incremented by one. If the paragraph of the fingerprint 
is different, find the sentence the fingerprint tree of the child, and the sentence fingerprint tree, the 
same fingerprint of the sentence to write down its position information, the sentence match counter 
plus one. and find the sentence corresponding to the text block of the fingerprint tree, until the traversal 
of the entire tree when the matching task is completed,

METHODOLOGY

GWO-based OCR
The proposed OCR consists of three main phases. The pre-processing applies a set of operation on a 
raw image such as binarization and noise removing. Then, feature extraction and selection phase starts. 
This second phase is the core of the OCR functions which is implemented using GWO. As shown at 
Figure 3, in this phase, the most informative knowledge is extracted from a character image which 
helps us to recognize the characters in the document and selection of a relevant feature extraction 
algorithm is probably the most critical factor in achieving high recognition performance. Finally, the 
classification phase is essential before feeding to OCR as there is no universal OCR which recognizes 
multiple scripts. For that, we applied several machine learning techniques including Support Vector 
Machines (SVM) and Random forest (RF) (Poulos, 2016).

In this paper, GWO is designed to optimize/ reduce the feature subset; a solution represents the 
feature subset. In this section, we present basics of GWO algorithm and our proposed approach using 
GWO Algorithm together with SVM classifier to find the best combination of features. The dataset 
is separated into two parts, exercise and evaluation. The input is training dataset feature vectors with 
their corresponding classes and evaluation dataset in addition to the initialization of the parameters of 
both GWO and SVM, whereas the output is the optimal feature subset. Radial basis function (RBF) 
kernel function is selected and used in this paper, as it’s the most sufficient for SVM.

Similarity Detection Using Modified AST
In different applications such as image and document processing applications (Yuan, et al., 2017) 
Abstract Syntax Tree (AST) is a similarity detection (Zaher, et al., 2017) algorithm that analyzes 
similar detection schemes to detect plagiarism efficiently. This paper proposes a modified version 
of AST. For each node, the modified AST determines a hash value (Hattab, 2015) and compares it 
with all other nodes. Also, the algorithm compares sub-trees based on the tree-structure with various 
reduction in its execution. ASTAP improves the way of syntax tree similarity and proposes a new 
procedure that reorders the nodes of ASTs to the longitudinal framework. The procedure consists 
of five main working steps. First, it generates AST. Second, it calculates the hash value (s). Third, 
it classifies the information of the node. Fourth, it compares these hash values. Finally, it calculates 
the degree of similarity. More details about the proposed procedure are presented in the next section.

ASTs Generation
ASTs generation is shown in Table 1. Initially, to produce Lexical Analyzer LA, we use lex, and to 
create Basics Analyzer BA (Arabic grammar called Basics) we use yacc. BA and LA act as a separate 
module to produce ASTs. After preprocessing, some changes are made on BA and LA to bring the 
symmetric ASTs groups {ST} and {TT} which have many of these changes. In our proposed system, 
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a whole AST for an Arabic document is produced from a class, an interface or a function. Suppose 
that the group all nodes of AST{TN} is included in {TT} and {SN} is included in {ST}. Assume that 
TMC is the total of all nodes of the AST in {TT}, and SMC is the total of all nodes of the AST in {ST}.

Hash Values Calculation
The hash values are calculated by going through all the ASTs within {TT} and determining a hash 
value for each node by collecting from end to top of the tree. In ASTAP, As seen in Figure 4, we 
suppose that the hash value of the subtree by node X as its top is known as Hash(x) (Jain & Kumar, 
2016), the type hash value of X is x, and sub_nodes of X are C C Cn TN1 2, , ,… ∈ { }  while n ≠ 0, in 
which n happens n N∈ . Formerly, we have an equation as follows:

Hash x
X Hash Ci n TMC

X n o
i

n

( ) = + ( ) < <

=










=
∑
1

1

0,
	 (1)

Also, for {ST} the Hash values of all the nodes are determined in the same way, as shown in 
Table 2. Where Hash(x) is the Hash value of the sub_tree whose root is x; x represents the Hash value 
of x’s type and TMC is the total of all nodes of the AST with the all nodes in {TT}.

Node Information Classification

The working steps of a node information classification are shown in Table 3. For any node X TN∈ { } , 
its actual information includes line start number StNx, hash value Hx, type of the node NdNx line end 
number EdNx and the number of sub-nodes CCx. They create the information vector.

Table 1. Algorithm 1: AST generation algorithm

Algorithm 1. AST Generation Algorithm

1 Input: D:= document text

2 Output: SD:= similarity degree

3 Initialize: // abstract class

4 Set Lex to Lexical analyzer LA

5 Set yacc to Basics analyzer BA //(Arabic grammar called Basics)

6 Set TT to target text {TT}

7 Set ST to suspect text {ST}

8 Set AST{TN} ∈  {TT}

9 Set AST{SN} ∈  {ST}

10 Set TMC:= count all nodes in {TT}

11 Set SMC:= count all nodes in {ST}

12 // end class
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INFO x= (H, StN, EdN, NdN, CC)	 (1)

After that, we make a group of the vector elements having the same number of sub_nodes,

INFOx INFON N TN CCN CCx� � � ,� }∈ ∈ { } ={ | 	 (2)

Where INFON is the actual information node N vector and CCN is the node N number of sub-
nodes. The real information in {ST} for all nodes is determined in the same way.

Hash Values Matching
In this phase, ASTAP goes through all nodes referred to their total of sub_nodes as illustrated in 
Table 4. For all nodes that achieve the case condition:

Figure 4. Hash values calculation of an AST

Table 2. Algorithm 2: Hash value calculation algorithm

Algorithm 2: Hash Value Calculation Algorithm

1 Input: n, all AST in {TT}

2 Output: hs:= total hash value for {TT}

3 Initialize: ci:= node i, TMC:= count for all nodes, x:= node value

4 for each ci in {TT} do

5 if 0 < n < TMC then

6 ks:= x + ci

7 Else

8 ks:= x

9 End if

10 hs:= ks

11 Endfor

12 return hs
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0� � ,≤ < ( )i SMC TMCmin 	

Then the H values of all the components in

{ | , }INFON N TN CCN i∈ { } = 	

are compared with these in

{ | , }INFON N SN CCN i∈ { } = 	

Since the difference between the constructions of sub_trees and sub_node, we only match hash 
values of sub_trees with the same number of sub_nodes. Comparing all the nodes of {TT} with {ST}. 
For ASTs, the algorithm complexity is O n2( ) , where n is the minimum one through the whole amounts 
of {T} and {S}. Though, when classifying the nodes referred to their number of sub_nodes, the 
algorithm difficulty will down in the range of

O
n

MC
andO n� � �

2
2









 ( ) 	

where

MC=Min (SMC, TMC)	

the minor one between SMC and TMC. This all shown in Figure 5 and Figure 6.

Table 3. Algorithm 3: Node Information classification algorithm

Algorithm 3: Node information classification algorithm

1 Input: n, all AST in {TT}

2 Output: INFO (x):= Information for Node x in {TT}

3 Initialize: StNx = line start number, Hx = hash value for node x, NdNx = type of the node x.

4 EdNx = line end number for node x, CCx = number of sub-nodes

5 For any node X ∈  {TN}

6 INFO x = (H,StN,EdN,NdN,CC) x

7 INFOx ∈  {INFON | N ∈  {TN},CCN=CCx}

8 return INFO(x)
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Similarity Calculation
Finally, the similarity calculation is shown in Table 5. After the Hash Values Matching (Bhushan,2015; 
Danti, 2015) process end, the similarity is calculated for all nodes that meet

INFOx INFON N TN CCN i∈ ∈ { } =�{ | � ,� } 	 (3)

and

INFOy INFON N SN CCN i∈ ∈ { } =�{ | � ,� } 	 (4)

if Hy = Hx, where Hx is component number one of INFOx and Hy, is component number one 
of INFOy. We consider the document crumbs symmetric when node X and node Y are similar. Then, 
we add (INFOx, INFOy) to a group and remove repeated information from the group that referred 
to the values of StNx and EdNx in INFOx to avoid redundancy calculations and makes a group of 
similar node information SMINFO. After that, the similarity degree SD (Elhoseny, et al., 2017) is 
calculated by using Eq. 2.

Figure 5. Hash values matching process
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Figure 6. An example for hash values matching

Table 4. Algorithm 4: Hash values comparing algorithm

Algorithm 4. Hash Values Comparing Algorithm

1 Input: hs(i), hash value for node i

2 Output: H(i), hash value for compared node i

3 Initialize:

4 TMC = the total of all nodes of the AST in {TT}

5 SMC = the total of all nodes of the AST in {ST}

6 MC=min(SMC,TMC)

7 For any node i ∈  {TT}

8 if 0 ≤ i < MC then

9 compare H(i) in {INFON|N ∈  {SN},CCN=i} with

10 H(i) in {INFON|N ∈  {TN},CCN=i} endif

11 endfor

12 return H(i)
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SD = 
∑ ( )f StNx

LC
	

where, X node of the target of AST, across INFOx INFOy SMINFO,( ) ∈  and LC is the number 
of the lines in the target node. 

As a final point, for all

INFOx INFOy SMINFO,( ) ∈ V	

we calculate the number of similar nodes according to NdTx in INFOx.
Many similarity measures use fingerprint comparison, overall LCS (Longest Common Substring) 

and Levenshtein distance (LD). In the LD metric, it measures the smallest number of process: adding, 
deleting, or substituting to convert one txt to another. whereas, the LD between “Monday” and 
“Sunday” is four. The LCS depends on finding the longest substring which common in pair of texts. 
whereas, the longest common substring in “Monday” and “Sunday” is “nday.” The ASTAP For all 
substrings, there is a hash value of length s of the pattern string and for all substrings of length s of the 

Table 5. Algorithm 5: Similarity calculation algorithm

Algorithm 5. Similarity Calculation Algorithm

1 Input: H(i), hash value for compared node i

2 Output: SD:= similarity degree

3 Initialize: Hx is component number one of INFOx

4 Hy is component number one of INFOy,

5 SMINFO a group of similar node information

6 For all nodes where

7 INFOx ∈  {INFON | N ∈  {TN},CCN=i} and

8 INFOy ∈  {INFON | N ∈  {SN},CCN=i}

9 if Hx = Hy then

10 INFO x = (H,StN,EdN,NdN,CC) x

11 INFO y = (H,StN,EdN,NdN,CC) y

12 SMINFO(INFO x, INFO y)

13 calculate SD(i) endif

14 endfor

15 SD= = sum (SD(i))

16 return SD
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text string. After comparing the hash values of both the pattern and the text string. If the values of the 
hash for text and pattern are equal, then there is similarity between these text and pattern substrings.

A key issue in matching finding is to select the proper measure method. When detecting 
plagiarism, LCS and LD are more appropriate, because plagiarism includes of a text (Adding, deleting, 
etc.). Therefore, LCS have been used, since it is based on matches rather than distance.

RESULTS AND DISCUSSION

In this part, we discuss the experimental results of the suggested ASTAP system. The discussion is 
divided to two main parts. First, the experimental results and dataset of the proposed GWO-based 
OCR are described. Second, the results that are related to the similarity detection of Arabic documents 
using three different datasets are clarified.

The Results of GWO-based OCR
CENPARMI dataset (Shehab, et al., 2016)] is used in this work. The dataset contains about thousands 
of handwritten isolated Arabic character images. 328 writers wrote each. The samples were carefully 
selected to represent the 28 Arabic character forms (initial, medial, and final). In this paper, it was 
focused on the basic 28 characters.

The samples were divided into exercise and trying sets randomly. Three times of GWO search 
were done which produced three feature sets. Table 6 represents the best three sequences results for 
the well-known factor SVM.

In Table 6, the best three experiments by GWO and the whole feature set (SVM tested that) 
were chosen by adjusting carefully, the cost and the Gamma parameters. As seen, GWO achieved 
great accuracy in the range of 90.83% to 92.78% which is very acceptable rate. In addition, the time 
efficiency was between 1927 second to 8187 second. The complexity of the writing way greatly 
affects the required time to process the document. However, the accuracy is still close for all cases.

SIMILARITY DETECTION RESULTS

Evaluation Criteria and Datasets
The performance (Acampora & Cosma, 2015) of the suggested ASTAP is calculated using three 
different datasets (See Table 7). These datasets are formed using 60 Arabic documents. The datasets 
are gathered through extracting these documents from different Arabic resources available on SDL. 
Each dataset contains 20 different documents. Whereas the run of ASTAP and the other state-of-the-
art systems are executed on processor Intel Core i5 with CPU speed of 2.4 GHz and 6 GB RAM with 
operating system Windows 7 Ultimate 64-bit. The description of these datasets is discussed below. 
The performance of the proposed ASTAP is calculated in different terms, such as the similarity, the 

Table 6. The accuracy ratio and the period for the whole features set and for three best GWO rounds by SVM

Feature Set Number of features 
(decrease) SVM (Factors) Accuracy Ratio (%) Period (secs)

The total features set 717 (0%) C=4.30e+02, 
G=0.003 92.78 8187

1st GWO round 242 (34%) C=76.109, G=0.009 90.09 2641

2nd GWO round 265(37%) C=76.109, G=0.008 91.37 1927

3rd GWO round 254 (35%) C=1.81e+02, 
G=0.006 90.83 3211
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precision, and the time efficiency using these different datasets. The similarity ratio is measured by 
searching for the matching contents of each document in the Datasets with those that are stored at 
SDL. A set of comparisons is conducted, as listed below, with the state-of-the-art methods.

Dataset 1: Synonym Replacement
Dataset 1 is prepared by selecting 20 documents from the list of documents that are stored on SDL. 
These selected documents are created by changing fifty percent (50%) of the whole sum of words 
randomly in each document with one of their synonyms. However, in Dataset 1 the Stop-words are 
not considered.

Dataset 2: Structure Change
To create the dataset 2, another 20 documents are generated from the documents that are stored on 
SDL by altering the structure of selected sentences randomly. The number of produced sentences 
represented fifty percent (50%) of the total number of sentences per each document.

Dataset 3: Hybrid
In addition to the 40 documents that are selected for Dataset 1 and Dataset 2, the remaining 20 
documents are assigned to Dataset 3. The documents of Dataset 3 are formed by randomly copying 
words chosen with one of their replacements (twenty percent (20%) of the total number of words) and 
changing the structure of selected sentences (forty percent (40%) of the total number of sentences).

Results and Discussion
To measure the similarity ratio of ASTAP, Figure 7, Figure 8, and Figure 9 show the similarity ratio 
using Dataset 1, Dataset 2, and Dataset 3, respectively.

As shown in Figure 7, ASTAP detects the highest similarity ratio in each document. Regarding 
the second best method, ASTAP improves the similarity in the range of 10% and 43%. Turnitin 
yields the lowest similarity ratio. Despite APD is more recent than APlag and is designed for Arabic 
documents, it is shown that its results are not consistent.

Contrary to Figure 7, the performances of all methods at Figure 8, which shows the similarity 
ratio using Dataset 2, are close. However, in most cases, ASTAP achieved the highest performance. 
Whereas, the highest percentage detected by ASTAP is 53% in D2-4. Consequently, Figure 9 reflects 
the performance of the ASTAP and the other state-of-the-art methods using Dataset 3.

However, the similarity cannot be used as the only performance measure criteria to evaluate 
the plagiarism detection systems. Therefore, the performance of ASTAP is measured using another 
important metric called Precision (Yalamanchili et al., 2016). The precision can be calculated as 
shown in Eq.1. It aims to evaluate the level of the credibility or the trustiness of the system.

Table 7. Statistics of the datasets

Dataset 1 Dataset 2 Dataset 3

Average Count of Words/ Document 1029.6 1072.55 1054.6

Total Count of Images 94 75 91

Total Count of Tables 55 49 51

Synonyms Replacement Ratio 50% 0% 20%

Structure Change Ratio 0% 50% 0%
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Precision =�
number�of�plagerized�sequences�identified

total�nnumber�of�sequences�determined
×�100 	

Dependently, the results of precision are listed in Table 8, Table 9 and Table 10 using Dataset 
1, Dataset 2, and Dataset 3, respectively. Documents that are returned with a small percent of 
matches by less than 1% are excluded and counted as irrelevant documents. As shown in Table 8, 
Dataset 1 results indicate that the average precision of ASTAP is approximately 75%. The highest 
improvement of precision achieved by ASTAP regarding the second best method is 49%, which is 
shown at document D1-8. The reason for that is because most of the contents of document D1-8 
are plaintexts. For that, the number of the identified plagiarized sequences is higher than the same 
number of the other documents.

The same was followed using Dataset 2. However, the overall precision ratio using Dataset 2 
is less than the precision ratio for Dataset 1. As shown in Table 9, ASTAP achieves more stability 
in detecting the structure changes in all documents. The performance of all methods is close in that 
case due to the ignoring synonyms replacement.

Furthermore, Table 10 shows the precision results using Dataset 3. Since the documents at Dataset 
3 are prepared using a hybrid method between the synonyms, which is used at Dataset 1, and the 
structure change, which is used at Dataset 2, the results show the balancing between the precision 
results that are obtained using Dataset 1 and Dataset 2.

Finally, the time efficiency (Elkhidir et al., 2015) is used as an essential factor to calculate the 
performance of the suggested method. Therefore, Table 11 compares the time efficiency of ASTAP 
with the different state-of-the-art methods. For each Dataset, the maximum, the minimum, and the 
average time are calculated.

Figure 7. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 1
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Figure 8. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 2

Figure 9. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 3
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The results of the time efficiency indicate that the max processing time required by ASTAP 
using Dataset 1 is 122 which is still shorter than the necessary processing time that is consumed by 
any other method. The longer running time is obtained in D1-8 which contains, the larger number 
of plaintexts. By avoiding the complexity of APlag and APD in document processing, AST is highly 
simplified the tokenization, the stopword removal, and rooting processes, which make the proposed 
method faster than the other method in all Datasets.

CONCLUSION AND FUTURE WORK

In Internet-based documents, processing handwritten documents for mining their contents is 
considered as one of the most difficult challenges. Therefore, the process of plagiarism detection in 
such documents, especially in handwritten Arabic documents, is an urgent need. Dependently, this 
paper presents an intelligent model for a plagiarism detection system called ASTAP which is used 
to detect some unobserved forms of plagiarism such as synonym alternation or change of sentence 
structure in such complicated multimedia documents. There are two main contributions of that paper. 
First, a handwritten Arabic character recognition system is proposed using Grey Wolf Optimization 
(GWO) algorithm. Second, a modified Abstract Syntax Tree (AST) is used to match the contents of 
the Arabic documents to detect any similarity. Compared to the state-of-the-art methods, ASTAP 
improves the effectiveness of plagiarism detection in handwritten Arabic documents regarding the 
matched similarity ratio, the precision ratio, and the processing time. Regarding the second-best 

Table 8. The precision of ASTAP, Turnitin, APlag and APD using Dataset 1

ASTAP APlag APD Turnitin

D1-01 70 40 38 25

D1-02 72 42 44 28

D1-03 75 49 55 35

D1-04 74 35 51 29

D1-05 75 40 55 31

D1-06 79 43 58 33

D1-07 85 50 62 38

D1-08 88 55 59 38

D1-09 78 57 58 35

D1_10 75 55 55 29

D1_11 76 44 60 35

D1_12 69 53 62 29

D1_13 65 56 55 31

D1_14 68 44 50 33

D1_15 71 42 44 36

D1_16 73 47 50 32

D1_17 72 45 52 31

D1_18 77 48 54 35

D1_19 80 49 51 37

D1_20 81 50 56 30
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method, ASTAP improves the detected similarity ratio in a range of 10% and 43%, while it enhances 
the precision in a variety of 22% and 49%. Besides, it reduces the running time by 12.5%. Also, the 
proposed GWO-based OCR achieved great accuracy in the range of 90.83% to 92.78%. In addition, 
its time efficiency was between 1927 second to 8187 seconds.

This result shows, ASTAP, a system that works on the Internet to enable specialists to detect 
thefts of electronic texts in Arabic so it can be integrated with e-learning systems to ensure the safety 
of students and research papers and scientific theses of electronic thefts. It also describes the major 
components of this system, including stage outfitted, and in the end, we will establish an experimental 
system on a set of documents and Arabic texts and compared the results obtained with some of the 
existing systems, particularly TurnItIn.

The future work will concentrate on improving and adding more choices in this tool. Most 
essentially is to test our ASTAP system in various universities.

Table 9. The precision of ASTAP, Turnitin, APlag and APD using Dataset 2

ASTAP APlag APD Turnitin

D2-01 50 48 43 40

D2-02 52 47 45 42

D2-03 53 45 42 40

D2-04 49 45 41 42

D2-05 49 44 44 40

D2-06 51 43 45 45

D2-07 49 45 46 42

D2-08 52 46 46 40

D2-09 50 45 45 42

D2-10 53 45 41 40

D2_11 52 42 46 45

D2_12 54 45 44 41

D2_13 55 48 45 43

D2_14 51 45 46 42

D2_15 49 44 42 40

D2_16 49 45 41 39

D2_17 51 44 43 38

D2_18 53 45 44 40

D2_19 52 47 42 42

D2_20 53 44 45 40
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Table 10. The precision of ASTAP, Turnitin, APlag and APD using Dataset 3

ASTAP APlag APD Turnitin

D3-01 55 45 45 38

D3-02 57 47 50 40

D3-03 60 47 52 41

D3-04 62 50 54 44

D3-05 65 52 50 45

D3-06 62 54 48 44

D3-07 60 51 45 40

D3-08 58 50 44 38

D3-09 60 48 44 36

D3_10 64 50 43 39

D3_11 66 48 45 40

D3_12 65 46 40 40

D3_13 62 45 44 38

D3_14 60 47 42 36

D3_15 58 49 45 38

D3_16 62 51 42 40

D3_17 64 49 40 43

D3_18 60 50 41 40

D3_19 62 52 45 38

D3_20 64 50 44 40

Table 11. Time efficiency of ASTAP compared to the state-of-the art methods

ASTAP APlag APD Turnitin

Dataset 1

Max. 122 132 133 135

Min. 109 117 122 123

Avg. 115.3 125.85 126.5 128.75

Dataset 2

Max. 125 130 132 134

Min. 120 123 125 129

Avg. 122.7 127.1 129.05 130.85

Dataset 3

Max. 126 130 133 135

Min. 117 122 127 129

Avg. 122.2 127 129.6 132.55
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