
DOI: 10.4018/JOEUC.2020040103

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

42

Unsupervised Model for Detecting
Plagiarism in Internet-based
Handwritten Arabic Documents
Mahmoud Zaher, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt

Abdulaziz Shehab, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt

Mohamed Elhoseny, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt

Farahat Farag Farahat, Sadat Academy, Cairo, Egypt

ABSTRACT

Due to the rapid increase of internet-based data, there is urgent need for a robust intelligent documents
security mechanism. Although there are many attempts to build a plagiarism detection system in
natural language documents, the unlimited variation and different writing styles of each character in
Arabic documents make building such systems challenging. Based on its position in a word, the same
Arabic letter can be written three different ways, which makes the handwritten character recognition a
cumbersome process. This article proposes an intelligent unsupervised model to detect plagiarism in
these documents called ASTAP. First, a handwritten Arabic character recognition system is proposed
using the Grey Wolf Optimization (GWO) algorithm. Then, a modified Abstract Syntax Tree (AST)
is used to match the contents of the Arabic documents to detect any similarity. Compared to the
state-of-the-art methods, ASTAP improves the effectiveness of the plagiarism detection in terms of
the matched similarity ratio, the precision ratio, and the processing time.

Keywords
Abstract Syntax Tree, Gray Wolf Optimization, Handwritten Character Recognition, Hash value, Internet Data
Security, Plagiarism Detection, Similarity Index, Unsupervised Documents Analysis

AN INTRODUCTION

The ever-increasing smart information processing services and applications offered by the Internet
have explosively widened the span of the global inter-network. The recent advancements in designing
low-cost small scaled devices have harbingered a great surge in the number of Internet-enabled
devices which generate a big amount of data. Accordingly, internet data management for discovering
plagiarized documents plays a vital role in many applications such as file management, copyright
saving, and electronic theft prevention (Lam, et al., 2016; Abdi et al., 2015). Plagiarism not only
depends on the content ratio that is copied but dramatically relates to using the work of others, i.e.,
ideas; without proper citation (Kahloula & Berri, 2016; Abdelrahman & Khalid, 2014).

In Internet-based document processing applications (Chen & Zhao,2017), the Arabic language is
considered one of the most complicated languages, especially if the document contains handwritten
words. The features of Arabic alphabets have various shapes of the written form based on their
position and can be extended by making a dash between the two letters. For Arabic in electronic or
printed media, no pronouncement makes misunderstanding for some words in an inevitable situation.

This article, originally published under IGI Global’s copyright on April 1, 2020 will proceed with publication as an Open Access article
starting on January 21, 2021 in the gold Open Access journal, Journal of Organizational and End User Computing (converted to gold Open

Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and

original publication source are properly credited.

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

43

These challenges make the plagiarism detection in Arabic documents an arduous task. Dependently,
many machine learning and artificial intelligence based methods have been developed (Hussein,
2016; Wise, 2012). For example, an online Arabic plagiarism detection tool called APD (Alzahrani
& Salim, 2015) is proposed to detect the plagiarism on the Arabic web pages. However, this tool
does not handle the synonyms alternations or the rewording problem. To avoid that, another system
called Plaggie (Ahtiainen et al., 2011) is proposed. Besides its disability to handle the handwritten
documents, Plaggie needs a long processing time to manage a computerized Arabic document.

Due to the Hugging of information, and correlation networks, the discovery of electronic thefts
is a difficult task, and the discovery of the thefts started in the Arabic language and the most difficult
task no doubt. And in light of the growing e-learning systems in the Arab countries, this requires
special techniques to detect thefts electronic written in Arabic. And although it could use some search
engines like Google, it is very difficult to copy and paste the sentences into the search engines to
find these thefts. For this reason, it must develop a good tool for the discovery of electronic thefts
written the Arabic language to protect e-learning systems, and to facilitate and accelerate the learning
process, where it can automatically detect electronic thefts automatically by this tool.

This paper shows, ASTAP, a system that works on the Internet to enable specialists to detect
thefts of electronic texts in Arabic so it can be integrated with e-learning systems to ensure the safety
of students and research papers and scientific theses of electronic thefts.

The paper also describes the major components of this system, including stage outfitted, and in the
end, we will establish an experimental system on a set of documents and Arabic texts and compared
the results obtained with some of the existing systems, particularly TurnItIn.

Accordingly, a new plagiarism_detection system has been proposed in this paper which can
handle the internet based handwritten Arabic documents called ASTAP (Abstract Syntax Tree
Arabic Plagiarism). ASTAP consists of two main phases. The first one aims to provide an Optical
Character Recognition (OCR) tool for internet-based handwritten Arabic Documents. The proposed
OCR has two primary functions, feature extraction and feature selection. The feature extraction
process aims to remove redundancy from handwritten Arabic characters. While in the selected feature
the most relevant are only reserved for improving the accuracy classification. The proposed OCR
is implemented using a well-known optimizer called GWO (Seyedali, et al., 2014) that is used to
optimize a character features selection. The second phase of ASTAP aims to detect the similarity of
Arabic documents using a modified AST (Aiken, 2015; El Bachir & Bagais, 2014). For each node
of the AST, the algorithm determines the hash value of AST and compares it with the other nodes in
the form of node by node. Also, the algorithm compares sub_trees based on the tree_structure with
some reduction in the execution. We have improved the way of syntax tree similarity and proposed
a plagiarism detection algorithm that rearranges the nodes of AST to the longitudinal framework.
The modified AST consists of five components: AST construction, hash value computation, node
classification, hash comparison, and degree of similarity evaluation.

There are two main contributions of that paper. First, an intelligent unsupervised model for
internet-based handwritten Arabic character recognition system is proposed using GWO algorithm.
Second, a modified AST is proposed for matching the contents of the Arabic documents to detect
any similarity. The proposed system improves the similarity accuracy for the plagiarized document
by replacing the word synonyms and minimizing time consumption by enhancing the performance
of AST algorithm.

The rest of this paper is organized as follow: Section 2 presents an overview of the different related
works. Section 3 describes the working steps of the proposed system ASTAP. Section 4 explains the
methodology and the internal ASTAP components and their roles in detecting a document similarity.
Section 5 presents a discussion of the results. Finally, Section 6 concludes the paper.

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

44

RELATED WORKS

As general, many types of research aim to detect documents similarities. Despite the enormous efforts
to discover the similarity of Arabic documents, most of the previous work focused the electronic form
of these documents. This paper is the first attempt towards detecting plagiarism in internet-based
handwritten Arabic documents.

A content-based system (Chen & Zhao, 2017) for analysis and visualization the Arabic documents
matching was proposed using Latent Semantic Analysis (LSA) and TF-IDF models. However, this is
a simple system that aims to handle light content documents with a limited count of words. Besides,
it did not provide a way to handle the synonyms alternations or the rewording problem.

In (Hussein, 2016) a proposed algorithm is used to evaluate the performance of the document
visualizations methodologies to detect the relationships inside and between the graphic components
of those documents. Recently the essential concepts of design document visualization, and challenges,
as well as hopeful sides of future development, have been checked out.

(Subba, 2014) proposed an anti-plagiarism, automated, and flexible grading system for
assignments Web-CAT. It works as an e-learning system to test software and helps the students for
automatically assess their assignments. Also, the tests offered a number of possible futures adds it
does not clear if it is an open source or not.

Plaggie (Ahtiainen, et al., 2011) developed an open-source plagiarism detection system for
detecting matches between two source code files. However, if the number of sending files is large,
Plaggie takes more time and effort to explain the result.

(Aiken, 2015) developed a web-service Moss. It can measure matches between documents and
uses an algorithm called winnowing fingerprinting. The fingerprinting splits a document into hashed
sub_strings named k_grams. Next, these fingerprints are used to match couples of programs. As a
final point, the results come out as an HTML output on its private server for two weeks and give the
URL to the customer.

(El Bachir & Bagais, 2014) APlag is another system for detecting plagiarism in Arabic documents.
APlag has three main operations called tokenization, stopwords removing, and roots conversion.
Besides its disability to handle the handwritten documents, APlag cannot handle the synonyms
alternations problem.

SRL (Osman, et al., 2012) is used to build a plagiarism detection scheme by producing arguments
for each sentence semantically. The proposed schema aimed to handle a multi-language document
including Arabic. However, an extended analysis is required to evaluate its effectiveness in Arabic
documents.

(Grozea & Popescu, 2011) proposed a cross-lingual method for detecting plagiarized documents
using an arithmetical model to evaluate the matches between assumed and original documents. Their
method uses an English-Spanish dictionary to detect matches in cross-language. In their future
work, the authors aim to enlarge their system to include more complicated documents with different
languages, such as Arabic documents.

(Mozgovoy & Frederiksson, 2014) developed a detection system with online and offline
subsystems. Online subsystem matches detection system which can review text for crumbs that can
be found in the web search engines where offline subsystem matches detection system operates on
text into a specific collection which can also review the data stored in a local database.

(Chow & Salim, 2013) have developed a structure-based plagiarism detection in programming
code called JPlag at Karlsruhe University which is not an open source and consequently cannot
be spread by the users. Conversely, JPlag changes codes into some token sequences that basically
symbolize the program. Then codes are matched in couples using an algorithm called ‘Greedy_String_
Tiling’ The outcomes have come as HTML files. JPlag helps the Scheme of some programming
languages such as Java, and natural_language manuscript.

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

45

(Clough, 2014) have developed an open-source plagiarism detection system Plaggie is used
single for Java codes and can be spread. Plaggie outcomes by configuration parameters wanted,
Plaggie looks like JPlag, but it is a Java application stand_alone command_line and has to be set up
locally. They use tokenization and Greedy String Tiling algorithms for detecting matches between
two source code files namely followed by the GST (Greedy_String_Tiling) algorithm. The outcomes
recovered as HTML files. However, if the number of sending files is large, Plaggie takes more time
and effort to explain the result because it doesn’t use grouping to display outcomes instead it displays
all matches in a list.

(Borner, et al., 2012) have introduced a system to check the Plagiarism in Arabic documents.
It uses tokenization, removes stop-words, and convert the words to their roots in the preprocessing
phase, after that the words are switched to their synonyms.

APD (Si, et al., 2012) is proposed as an e-learning tool for Arabic plagiarism detection in
web-based documents. APD helps the users of an e-learning system to identify plagiarized online
documents. APD allows the teachers to check similarity ratio of the students’ assignments that they
submitted to the e-learning system after searching online for the most related contents. However, the
system does not handle the synonyms alternations or the rewording problem.

Consequently, Turnitin (Alzahrani & Salim, 2008) is a well-known system which is used mostly
to evaluate students’ works at educational institutions. It uses a cloud-based service for originality
checking, online grading, and peer review saves instructors time and provides rich feedback to students.
It consists of 3 main tools: PeerMark, GradeMark and OriginalityCheck. However, the system is fragile
when handling the synonyms alternations and does not treat the rewording problem. Furthermore, it
is too hard to track the similarities of the compared texts.

(Alzahrani & Salim, 2015) proposed a statement-based Arabic plagiarism detection system based
on fuzzy-set information retrieval model. Their proposed system is based on computing the similarity
between two statements and then comparing it to a threshold value. However, their proposal does
not take into account the sentence paraphrasing with different synonyms. Moreover, dealing with the
various inflexion forms for the same words were not considered.

ASTAP Components and Working Steps
As mentioned previously, ASTAP provides the ability to handle both handwritten and electronic
Arabic documents. As shown at Figure 1, the main operations of ASTAP in these two different cases
are mostly the same except only one additional OCR function that is needed to convert the document
to its electronic form.

The source document retrieval module holds the user submitted document in an electronic form
which contains text preprocessing module, query generation module and query submission module.
The preprocessing module aims at doing three main tasks: 1-Tokenization, 2- Remove Stop Words
and 3- Replacement of Synonym.

The framework of ASTAP is subdivided into three main modules as shown in Figure 2. First,
document registration module (including submitted module, source document retrieval module, and
Document Representation). Second, database module (including source documents collection, and
web Saudi Digital Library (SDL) (Elhoseny et al., 2017). Third, similarity detection module (including
Similarity Computation model and Similarity Report Generation module).

The Tokenization (Wang, et al., 2016) is responsible for breaking the stream of characters into
tokens. Without recognizing the tokens, it is hard to see extracting higher_level info from the text.
Each one is a kind of a type, so the number of tokens is much higher than the number of types. A
computer software would catch the task more difficult. Therefore, after the user submits a document,
the Tokenization module reads the file and breaks it down into tokens. The character space that we
suggest is all the time delimiters and are not calculated as tokens.

A period, comma, or colon between numbers would not usually be considered a delimiter but
rather part of the number. Any other commas or colons are delimiters and may be tokens. A period can

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

46

be part of an abbreviation when space follows it. However, some of these are the end of sentences. For
tokenization, it is probably best to treat any ambiguous period as a word delimiter and also as a token.

The Stop_words_Removal and Rooting (Vani & Gupta, 2015) works on the raw manuscript to
extract terms from text. Remove the non_informative text is usually uses a method in text recovery
and classification. Stop words characterize the regularly happening, unimportant words that seem
in a text file. Public stop words in English such as a, an, the, in, of, on, are, be, if, into, which,
Whereas stop words in Arabic include: “(,”الله“ ,)”من, إلى, عن, على, في .)“بسم”, “الله”, “الرحمن”, “الرحيم

Figure 1. The ASTAP main operations

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

47

 الذى”, “لا”,, “عبد”, “عبيد”, “هذا”, “هذه”, “هذان”, “هتان”, “هؤلاء”, “انت”, “انا”, “نحن”, “إني”, “إنني”, “انتما”,
 “انتن”, “أيا”, “ايها”, “ايتها”, “كان”, “امسى”, “اصبح”, “صار”, “ليس”, اضحى”, “منذ”, “ماذا”, “لماذا”, “عند”,
 “متى”, “كيف”, “كيفما”, “اين”, “اينما”, “الذي”, “التي”, “الذين”, “اللائي”, “اللاتي”, “بما”, “لمن”, “لأن”,)“لا”, “اله”,
 “الا”, “الله, “النبي”,)“القرآن”, “الكريم”(, “إياي”, “إياك”, “إيانا”, “اياكما”, “اياكن”, “اياه”, “اياها”, “اياهما”, “اياهم”,
 “اياهن”, “أيان”, “اينما”, “حيثما”, “كأن”, “ويكأن”, “هيهات”, “شتان”, “سرعان”, “مهما”, “الى”, “على”, “إذا”, “لولا”,
 etc. These words do not.... ,”“لما”, “ما زال”, “ما دام”, “بات”, “ما برح”, “ما انفك”, “كاد “, “اوشك”, “عسى
provide important meaning to the documents.

So, they should be deleted to minimize ‘noise’ and the calculation time. Some practitioners
have felt that normalization more aggressive than stemming is advantageous for at least some
text-preprocessing applications. These stemmers intend to reach a root form with no derivational
prefixes and suffixes. For example, ” سألتمونيها ” is reduced to the stem ” سأل “.

Figure 2. The ASTAP Framework

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

48

The final outcome of such violent stemming is to decrease the number of types in text group, thus
creation distributional statics more consistent. Moreover, Word Stemming (Sindhu & Idicula,
2015) or Rooting: It will be altered to the word’s basic shape. Firstly, the documents are broken
down into words. Secondly, the words are characterized by their stems, for example, ‘’ ,‘يمشي
.’ مشى ‘ would be represented by the stem ’ تمشي ‘ and ’المشي

The group set of features is usually called a lexicon, and it works as an input a text token. Some
rules must be defined such as token length, token content, token ends if the token has a special
character and what to do if the token has a special word.

formerly reconnoitered
Using the Synonym (Sahi & Gupta, 2016) Replacement, the words are transformed to their most

common alternative word which can assist to fined advanced forms of unseen plagiarism. The first
alternative word in the list is considered as the most common one.

After processing the document, the query generation module starts its work to generate all
possible parameter used for query submission module. Then, the query submission module sends
all the query’s parameters to SDL (Saudi Digital Library) to search the web for possible plagiarized
documents. Dependently, the source document collection module downloads the searching results
from SDL. The searching results are then prepared in the required file format, i.e., Docx, or PDF.
The document representation component creates a document_tree_structure that defines its interior
demonstration and filters the plagiarized source documents to save it in the repository. Using the
similarity computation (Sharma & Jindal, 2016) module, tree definition (Thompson, et al., 2015)
is made for each document to define its reasonable structure. Thus, the root defines the document
himself, the next level defines the paragraphs, and the next nodes defines the sentences. It is intended
to escape unimportant assessments among some documents. Trees are formerly reconnoitered top-
down and compared first at the document level, then at the paragraph level and at the end at the
sentence level. Finally, the similarity report generation module generates a report for the plagiarized
documents including the sources and their URLs.

ASTAP is consists of three major modules, it can be classified into three major modules: Document
registration module, database module, Similarity detection module.

1- Document Registration Module

Document registration module or source document retrieval module used to preprocess the
text and prepare it for similarity detection and add the document to the database. For a given input
document, add The workflow in the database is:

(1) 	 for a given document D, calculate the Df digital fingerprint;
(2) 	 query the database whether there is the same digital fingerprint;
(3) 	 If the document exists, skip this document and go to (i); otherwise, the system automatically

generates a unique document id number Save, and then add the document id and the actual
document name to the name mapping list;

(4) 	 preprocessing the document to convert the digital documents of different formats into plain text
formatted documents of uniform format;
2- Database Module

The system’s database using MS-SQL Server database, the main table, including table_files and
Table_text, respectively, the original document storage at the time of uploading the document and
the contents of the preprocessed text. Which are included in the table table_filesId field, a file field
to save the file name, a fingerprint field to save the text File generated by the digital fingerprint, and
a URL field to save the document stored in the server-side physical path. table table_text include

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

49

txt_text Field, an XML._text field, a segment_text field, and a sentence_text field, the contents of
which are explained below:

(1) 	 txt_text field, pre-processed the original document text format make sure it is .doc
(2) 	 xml_text field, XML formatted documents. XML format contains document properties (such as

title, abstract, etc.) And document content.
(3) 	 segment_text field, after the document word segmentation results. Content is a collection of

ordered words, and mark each word The part of speech. In the word segmentation at the same
time need to remove the text of the function words and stop words.

(4) 	 sentence_text field, stored sentences that semantic meaning of verbs, nouns, and adjectives, as
the digital fingerprint of the sentence.
3- Similarity Detection Module

It is the core module of the plagiarism detection system, the system goes through the document
digital fingerprint comparison and determines whether or not the document was plagiarism detected
before of the existing document in the database. Root (Val, P), where Val is the digital fingerprint of
the entire document, P points to all Paragraph generated fingerprint tree; Paragraph Fingerprint tree
node, Par (Val i, S i, C,) where Val i is the I-th paragraph number Fingerprints, S i is the i-th paragraph

Figure 3. The feature selection optimization model

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

50

all the sentences generate the fingerprint tree, C points to other nodes; the nodes of the fingerprint
tree K i, Where Val i is the digital fingerprint of the i-th sentence, K i is the fingerprint tree of the
corresponding text block of this sentence, and C is the other finger Chu(Val, N, V, A), where Val is
the fingerprint of the text block and N points to the node of the text block, V is a collection of verbs,
and A is a collection of adjectives. When detecting the matches of two documents, the fingerprints
are first compared from each other, and if the fingerprints of the two documents are identical, the
document to be tested is fully replicated. A paragraph with the same fingerprint records its position
information, and the paragraph match counter is incremented by one. If the paragraph of the fingerprint
is different, find the sentence the fingerprint tree of the child, and the sentence fingerprint tree, the
same fingerprint of the sentence to write down its position information, the sentence match counter
plus one. and find the sentence corresponding to the text block of the fingerprint tree, until the traversal
of the entire tree when the matching task is completed,

METHODOLOGY

GWO-based OCR
The proposed OCR consists of three main phases. The pre-processing applies a set of operation on a
raw image such as binarization and noise removing. Then, feature extraction and selection phase starts.
This second phase is the core of the OCR functions which is implemented using GWO. As shown at
Figure 3, in this phase, the most informative knowledge is extracted from a character image which
helps us to recognize the characters in the document and selection of a relevant feature extraction
algorithm is probably the most critical factor in achieving high recognition performance. Finally, the
classification phase is essential before feeding to OCR as there is no universal OCR which recognizes
multiple scripts. For that, we applied several machine learning techniques including Support Vector
Machines (SVM) and Random forest (RF) (Poulos, 2016).

In this paper, GWO is designed to optimize/ reduce the feature subset; a solution represents the
feature subset. In this section, we present basics of GWO algorithm and our proposed approach using
GWO Algorithm together with SVM classifier to find the best combination of features. The dataset
is separated into two parts, exercise and evaluation. The input is training dataset feature vectors with
their corresponding classes and evaluation dataset in addition to the initialization of the parameters of
both GWO and SVM, whereas the output is the optimal feature subset. Radial basis function (RBF)
kernel function is selected and used in this paper, as it’s the most sufficient for SVM.

Similarity Detection Using Modified AST
In different applications such as image and document processing applications (Yuan, et al., 2017)
Abstract Syntax Tree (AST) is a similarity detection (Zaher, et al., 2017) algorithm that analyzes
similar detection schemes to detect plagiarism efficiently. This paper proposes a modified version
of AST. For each node, the modified AST determines a hash value (Hattab, 2015) and compares it
with all other nodes. Also, the algorithm compares sub-trees based on the tree-structure with various
reduction in its execution. ASTAP improves the way of syntax tree similarity and proposes a new
procedure that reorders the nodes of ASTs to the longitudinal framework. The procedure consists
of five main working steps. First, it generates AST. Second, it calculates the hash value (s). Third,
it classifies the information of the node. Fourth, it compares these hash values. Finally, it calculates
the degree of similarity. More details about the proposed procedure are presented in the next section.

ASTs Generation
ASTs generation is shown in Table 1. Initially, to produce Lexical Analyzer LA, we use lex, and to
create Basics Analyzer BA (Arabic grammar called Basics) we use yacc. BA and LA act as a separate
module to produce ASTs. After preprocessing, some changes are made on BA and LA to bring the
symmetric ASTs groups {ST} and {TT} which have many of these changes. In our proposed system,

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

51

a whole AST for an Arabic document is produced from a class, an interface or a function. Suppose
that the group all nodes of AST{TN} is included in {TT} and {SN} is included in {ST}. Assume that
TMC is the total of all nodes of the AST in {TT}, and SMC is the total of all nodes of the AST in {ST}.

Hash Values Calculation
The hash values are calculated by going through all the ASTs within {TT} and determining a hash
value for each node by collecting from end to top of the tree. In ASTAP, As seen in Figure 4, we
suppose that the hash value of the subtree by node X as its top is known as Hash(x) (Jain & Kumar,
2016), the type hash value of X is x, and sub_nodes of X are C C Cn TN1 2, , ,… ∈ { } while n ≠ 0, in
which n happens n N∈ . Formerly, we have an equation as follows:

Hash x
X Hash Ci n TMC

X n o
i

n

() = + () < <

=










=
∑
1

1

0,
	 (1)

Also, for {ST} the Hash values of all the nodes are determined in the same way, as shown in
Table 2. Where Hash(x) is the Hash value of the sub_tree whose root is x; x represents the Hash value
of x’s type and TMC is the total of all nodes of the AST with the all nodes in {TT}.

Node Information Classification

The working steps of a node information classification are shown in Table 3. For any node X TN∈ { } ,
its actual information includes line start number StNx, hash value Hx, type of the node NdNx line end
number EdNx and the number of sub-nodes CCx. They create the information vector.

Table 1. Algorithm 1: AST generation algorithm

Algorithm 1. AST Generation Algorithm

1 Input: D:= document text

2 Output: SD:= similarity degree

3 Initialize: // abstract class

4 Set Lex to Lexical analyzer LA

5 Set yacc to Basics analyzer BA //(Arabic grammar called Basics)

6 Set TT to target text {TT}

7 Set ST to suspect text {ST}

8 Set AST{TN} ∈ {TT}

9 Set AST{SN} ∈ {ST}

10 Set TMC:= count all nodes in {TT}

11 Set SMC:= count all nodes in {ST}

12 // end class

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

52

INFO x= (H, StN, EdN, NdN, CC)	 (1)

After that, we make a group of the vector elements having the same number of sub_nodes,

INFOx INFON N TN CCN CCx� � � ,� }∈ ∈ { } ={ | 	 (2)

Where INFON is the actual information node N vector and CCN is the node N number of sub-
nodes. The real information in {ST} for all nodes is determined in the same way.

Hash Values Matching
In this phase, ASTAP goes through all nodes referred to their total of sub_nodes as illustrated in
Table 4. For all nodes that achieve the case condition:

Figure 4. Hash values calculation of an AST

Table 2. Algorithm 2: Hash value calculation algorithm

Algorithm 2: Hash Value Calculation Algorithm

1 Input: n, all AST in {TT}

2 Output: hs:= total hash value for {TT}

3 Initialize: ci:= node i, TMC:= count for all nodes, x:= node value

4 for each ci in {TT} do

5 if 0 < n < TMC then

6 ks:= x + ci

7 Else

8 ks:= x

9 End if

10 hs:= ks

11 Endfor

12 return hs

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

53

0� � ,≤ < ()i SMC TMCmin 	

Then the H values of all the components in

{ | , }INFON N TN CCN i∈ { } = 	

are compared with these in

{ | , }INFON N SN CCN i∈ { } = 	

Since the difference between the constructions of sub_trees and sub_node, we only match hash
values of sub_trees with the same number of sub_nodes. Comparing all the nodes of {TT} with {ST}.
For ASTs, the algorithm complexity is O n2() , where n is the minimum one through the whole amounts
of {T} and {S}. Though, when classifying the nodes referred to their number of sub_nodes, the
algorithm difficulty will down in the range of

O
n

MC
andO n� � �

2
2









 () 	

where

MC=Min (SMC, TMC)	

the minor one between SMC and TMC. This all shown in Figure 5 and Figure 6.

Table 3. Algorithm 3: Node Information classification algorithm

Algorithm 3: Node information classification algorithm

1 Input: n, all AST in {TT}

2 Output: INFO (x):= Information for Node x in {TT}

3 Initialize: StNx = line start number, Hx = hash value for node x, NdNx = type of the node x.

4 EdNx = line end number for node x, CCx = number of sub-nodes

5 For any node X ∈ {TN}

6 INFO x = (H,StN,EdN,NdN,CC) x

7 INFOx ∈ {INFON | N ∈ {TN},CCN=CCx}

8 return INFO(x)

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

54

Similarity Calculation
Finally, the similarity calculation is shown in Table 5. After the Hash Values Matching (Bhushan,2015;
Danti, 2015) process end, the similarity is calculated for all nodes that meet

INFOx INFON N TN CCN i∈ ∈ { } =�{ | � ,� } 	 (3)

and

INFOy INFON N SN CCN i∈ ∈ { } =�{ | � ,� } 	 (4)

if Hy = Hx, where Hx is component number one of INFOx and Hy, is component number one
of INFOy. We consider the document crumbs symmetric when node X and node Y are similar. Then,
we add (INFOx, INFOy) to a group and remove repeated information from the group that referred
to the values of StNx and EdNx in INFOx to avoid redundancy calculations and makes a group of
similar node information SMINFO. After that, the similarity degree SD (Elhoseny, et al., 2017) is
calculated by using Eq. 2.

Figure 5. Hash values matching process

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

55

Figure 6. An example for hash values matching

Table 4. Algorithm 4: Hash values comparing algorithm

Algorithm 4. Hash Values Comparing Algorithm

1 Input: hs(i), hash value for node i

2 Output: H(i), hash value for compared node i

3 Initialize:

4 TMC = the total of all nodes of the AST in {TT}

5 SMC = the total of all nodes of the AST in {ST}

6 MC=min(SMC,TMC)

7 For any node i ∈ {TT}

8 if 0 ≤ i < MC then

9 compare H(i) in {INFON|N ∈ {SN},CCN=i} with

10 H(i) in {INFON|N ∈ {TN},CCN=i} endif

11 endfor

12 return H(i)

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

56

SD =
∑ ()f StNx

LC
	

where, X node of the target of AST, across INFOx INFOy SMINFO,() ∈ and LC is the number
of the lines in the target node.

As a final point, for all

INFOx INFOy SMINFO,() ∈ V	

we calculate the number of similar nodes according to NdTx in INFOx.
Many similarity measures use fingerprint comparison, overall LCS (Longest Common Substring)

and Levenshtein distance (LD). In the LD metric, it measures the smallest number of process: adding,
deleting, or substituting to convert one txt to another. whereas, the LD between “Monday” and
“Sunday” is four. The LCS depends on finding the longest substring which common in pair of texts.
whereas, the longest common substring in “Monday” and “Sunday” is “nday.” The ASTAP For all
substrings, there is a hash value of length s of the pattern string and for all substrings of length s of the

Table 5. Algorithm 5: Similarity calculation algorithm

Algorithm 5. Similarity Calculation Algorithm

1 Input: H(i), hash value for compared node i

2 Output: SD:= similarity degree

3 Initialize: Hx is component number one of INFOx

4 Hy is component number one of INFOy,

5 SMINFO a group of similar node information

6 For all nodes where

7 INFOx ∈ {INFON | N ∈ {TN},CCN=i} and

8 INFOy ∈ {INFON | N ∈ {SN},CCN=i}

9 if Hx = Hy then

10 INFO x = (H,StN,EdN,NdN,CC) x

11 INFO y = (H,StN,EdN,NdN,CC) y

12 SMINFO(INFO x, INFO y)

13 calculate SD(i) endif

14 endfor

15 SD= = sum (SD(i))

16 return SD

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

57

text string. After comparing the hash values of both the pattern and the text string. If the values of the
hash for text and pattern are equal, then there is similarity between these text and pattern substrings.

A key issue in matching finding is to select the proper measure method. When detecting
plagiarism, LCS and LD are more appropriate, because plagiarism includes of a text (Adding, deleting,
etc.). Therefore, LCS have been used, since it is based on matches rather than distance.

RESULTS AND DISCUSSION

In this part, we discuss the experimental results of the suggested ASTAP system. The discussion is
divided to two main parts. First, the experimental results and dataset of the proposed GWO-based
OCR are described. Second, the results that are related to the similarity detection of Arabic documents
using three different datasets are clarified.

The Results of GWO-based OCR
CENPARMI dataset (Shehab, et al., 2016)] is used in this work. The dataset contains about thousands
of handwritten isolated Arabic character images. 328 writers wrote each. The samples were carefully
selected to represent the 28 Arabic character forms (initial, medial, and final). In this paper, it was
focused on the basic 28 characters.

The samples were divided into exercise and trying sets randomly. Three times of GWO search
were done which produced three feature sets. Table 6 represents the best three sequences results for
the well-known factor SVM.

In Table 6, the best three experiments by GWO and the whole feature set (SVM tested that)
were chosen by adjusting carefully, the cost and the Gamma parameters. As seen, GWO achieved
great accuracy in the range of 90.83% to 92.78% which is very acceptable rate. In addition, the time
efficiency was between 1927 second to 8187 second. The complexity of the writing way greatly
affects the required time to process the document. However, the accuracy is still close for all cases.

SIMILARITY DETECTION RESULTS

Evaluation Criteria and Datasets
The performance (Acampora & Cosma, 2015) of the suggested ASTAP is calculated using three
different datasets (See Table 7). These datasets are formed using 60 Arabic documents. The datasets
are gathered through extracting these documents from different Arabic resources available on SDL.
Each dataset contains 20 different documents. Whereas the run of ASTAP and the other state-of-the-
art systems are executed on processor Intel Core i5 with CPU speed of 2.4 GHz and 6 GB RAM with
operating system Windows 7 Ultimate 64-bit. The description of these datasets is discussed below.
The performance of the proposed ASTAP is calculated in different terms, such as the similarity, the

Table 6. The accuracy ratio and the period for the whole features set and for three best GWO rounds by SVM

Feature Set Number of features
(decrease) SVM (Factors) Accuracy Ratio (%) Period (secs)

The total features set 717 (0%) C=4.30e+02,
G=0.003 92.78 8187

1st GWO round 242 (34%) C=76.109, G=0.009 90.09 2641

2nd GWO round 265(37%) C=76.109, G=0.008 91.37 1927

3rd GWO round 254 (35%) C=1.81e+02,
G=0.006 90.83 3211

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

58

precision, and the time efficiency using these different datasets. The similarity ratio is measured by
searching for the matching contents of each document in the Datasets with those that are stored at
SDL. A set of comparisons is conducted, as listed below, with the state-of-the-art methods.

Dataset 1: Synonym Replacement
Dataset 1 is prepared by selecting 20 documents from the list of documents that are stored on SDL.
These selected documents are created by changing fifty percent (50%) of the whole sum of words
randomly in each document with one of their synonyms. However, in Dataset 1 the Stop-words are
not considered.

Dataset 2: Structure Change
To create the dataset 2, another 20 documents are generated from the documents that are stored on
SDL by altering the structure of selected sentences randomly. The number of produced sentences
represented fifty percent (50%) of the total number of sentences per each document.

Dataset 3: Hybrid
In addition to the 40 documents that are selected for Dataset 1 and Dataset 2, the remaining 20
documents are assigned to Dataset 3. The documents of Dataset 3 are formed by randomly copying
words chosen with one of their replacements (twenty percent (20%) of the total number of words) and
changing the structure of selected sentences (forty percent (40%) of the total number of sentences).

Results and Discussion
To measure the similarity ratio of ASTAP, Figure 7, Figure 8, and Figure 9 show the similarity ratio
using Dataset 1, Dataset 2, and Dataset 3, respectively.

As shown in Figure 7, ASTAP detects the highest similarity ratio in each document. Regarding
the second best method, ASTAP improves the similarity in the range of 10% and 43%. Turnitin
yields the lowest similarity ratio. Despite APD is more recent than APlag and is designed for Arabic
documents, it is shown that its results are not consistent.

Contrary to Figure 7, the performances of all methods at Figure 8, which shows the similarity
ratio using Dataset 2, are close. However, in most cases, ASTAP achieved the highest performance.
Whereas, the highest percentage detected by ASTAP is 53% in D2-4. Consequently, Figure 9 reflects
the performance of the ASTAP and the other state-of-the-art methods using Dataset 3.

However, the similarity cannot be used as the only performance measure criteria to evaluate
the plagiarism detection systems. Therefore, the performance of ASTAP is measured using another
important metric called Precision (Yalamanchili et al., 2016). The precision can be calculated as
shown in Eq.1. It aims to evaluate the level of the credibility or the trustiness of the system.

Table 7. Statistics of the datasets

Dataset 1 Dataset 2 Dataset 3

Average Count of Words/ Document 1029.6 1072.55 1054.6

Total Count of Images 94 75 91

Total Count of Tables 55 49 51

Synonyms Replacement Ratio 50% 0% 20%

Structure Change Ratio 0% 50% 0%

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

59

Precision =�
number�of�plagerized�sequences�identified

total�nnumber�of�sequences�determined
×�100 	

Dependently, the results of precision are listed in Table 8, Table 9 and Table 10 using Dataset
1, Dataset 2, and Dataset 3, respectively. Documents that are returned with a small percent of
matches by less than 1% are excluded and counted as irrelevant documents. As shown in Table 8,
Dataset 1 results indicate that the average precision of ASTAP is approximately 75%. The highest
improvement of precision achieved by ASTAP regarding the second best method is 49%, which is
shown at document D1-8. The reason for that is because most of the contents of document D1-8
are plaintexts. For that, the number of the identified plagiarized sequences is higher than the same
number of the other documents.

The same was followed using Dataset 2. However, the overall precision ratio using Dataset 2
is less than the precision ratio for Dataset 1. As shown in Table 9, ASTAP achieves more stability
in detecting the structure changes in all documents. The performance of all methods is close in that
case due to the ignoring synonyms replacement.

Furthermore, Table 10 shows the precision results using Dataset 3. Since the documents at Dataset
3 are prepared using a hybrid method between the synonyms, which is used at Dataset 1, and the
structure change, which is used at Dataset 2, the results show the balancing between the precision
results that are obtained using Dataset 1 and Dataset 2.

Finally, the time efficiency (Elkhidir et al., 2015) is used as an essential factor to calculate the
performance of the suggested method. Therefore, Table 11 compares the time efficiency of ASTAP
with the different state-of-the-art methods. For each Dataset, the maximum, the minimum, and the
average time are calculated.

Figure 7. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 1

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

60

Figure 8. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 2

Figure 9. The similarity of ASTAP, Turnitin, APlag and APD using Dataset 3

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

61

The results of the time efficiency indicate that the max processing time required by ASTAP
using Dataset 1 is 122 which is still shorter than the necessary processing time that is consumed by
any other method. The longer running time is obtained in D1-8 which contains, the larger number
of plaintexts. By avoiding the complexity of APlag and APD in document processing, AST is highly
simplified the tokenization, the stopword removal, and rooting processes, which make the proposed
method faster than the other method in all Datasets.

CONCLUSION AND FUTURE WORK

In Internet-based documents, processing handwritten documents for mining their contents is
considered as one of the most difficult challenges. Therefore, the process of plagiarism detection in
such documents, especially in handwritten Arabic documents, is an urgent need. Dependently, this
paper presents an intelligent model for a plagiarism detection system called ASTAP which is used
to detect some unobserved forms of plagiarism such as synonym alternation or change of sentence
structure in such complicated multimedia documents. There are two main contributions of that paper.
First, a handwritten Arabic character recognition system is proposed using Grey Wolf Optimization
(GWO) algorithm. Second, a modified Abstract Syntax Tree (AST) is used to match the contents of
the Arabic documents to detect any similarity. Compared to the state-of-the-art methods, ASTAP
improves the effectiveness of plagiarism detection in handwritten Arabic documents regarding the
matched similarity ratio, the precision ratio, and the processing time. Regarding the second-best

Table 8. The precision of ASTAP, Turnitin, APlag and APD using Dataset 1

ASTAP APlag APD Turnitin

D1-01 70 40 38 25

D1-02 72 42 44 28

D1-03 75 49 55 35

D1-04 74 35 51 29

D1-05 75 40 55 31

D1-06 79 43 58 33

D1-07 85 50 62 38

D1-08 88 55 59 38

D1-09 78 57 58 35

D1_10 75 55 55 29

D1_11 76 44 60 35

D1_12 69 53 62 29

D1_13 65 56 55 31

D1_14 68 44 50 33

D1_15 71 42 44 36

D1_16 73 47 50 32

D1_17 72 45 52 31

D1_18 77 48 54 35

D1_19 80 49 51 37

D1_20 81 50 56 30

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

62

method, ASTAP improves the detected similarity ratio in a range of 10% and 43%, while it enhances
the precision in a variety of 22% and 49%. Besides, it reduces the running time by 12.5%. Also, the
proposed GWO-based OCR achieved great accuracy in the range of 90.83% to 92.78%. In addition,
its time efficiency was between 1927 second to 8187 seconds.

This result shows, ASTAP, a system that works on the Internet to enable specialists to detect
thefts of electronic texts in Arabic so it can be integrated with e-learning systems to ensure the safety
of students and research papers and scientific theses of electronic thefts. It also describes the major
components of this system, including stage outfitted, and in the end, we will establish an experimental
system on a set of documents and Arabic texts and compared the results obtained with some of the
existing systems, particularly TurnItIn.

The future work will concentrate on improving and adding more choices in this tool. Most
essentially is to test our ASTAP system in various universities.

Table 9. The precision of ASTAP, Turnitin, APlag and APD using Dataset 2

ASTAP APlag APD Turnitin

D2-01 50 48 43 40

D2-02 52 47 45 42

D2-03 53 45 42 40

D2-04 49 45 41 42

D2-05 49 44 44 40

D2-06 51 43 45 45

D2-07 49 45 46 42

D2-08 52 46 46 40

D2-09 50 45 45 42

D2-10 53 45 41 40

D2_11 52 42 46 45

D2_12 54 45 44 41

D2_13 55 48 45 43

D2_14 51 45 46 42

D2_15 49 44 42 40

D2_16 49 45 41 39

D2_17 51 44 43 38

D2_18 53 45 44 40

D2_19 52 47 42 42

D2_20 53 44 45 40

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

63

Table 10. The precision of ASTAP, Turnitin, APlag and APD using Dataset 3

ASTAP APlag APD Turnitin

D3-01 55 45 45 38

D3-02 57 47 50 40

D3-03 60 47 52 41

D3-04 62 50 54 44

D3-05 65 52 50 45

D3-06 62 54 48 44

D3-07 60 51 45 40

D3-08 58 50 44 38

D3-09 60 48 44 36

D3_10 64 50 43 39

D3_11 66 48 45 40

D3_12 65 46 40 40

D3_13 62 45 44 38

D3_14 60 47 42 36

D3_15 58 49 45 38

D3_16 62 51 42 40

D3_17 64 49 40 43

D3_18 60 50 41 40

D3_19 62 52 45 38

D3_20 64 50 44 40

Table 11. Time efficiency of ASTAP compared to the state-of-the art methods

ASTAP APlag APD Turnitin

Dataset 1

Max. 122 132 133 135

Min. 109 117 122 123

Avg. 115.3 125.85 126.5 128.75

Dataset 2

Max. 125 130 132 134

Min. 120 123 125 129

Avg. 122.7 127.1 129.05 130.85

Dataset 3

Max. 126 130 133 135

Min. 117 122 127 129

Avg. 122.2 127 129.6 132.55

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

64

REFERENCES

Abdelrahman, Y., Khalid, A., & Osman, I. (2014). A survey of plagiarism detection for Arabic documents.
International Journal of Advancements in Computing Technology, 4(6), 34–38.

Abdi, A., Idris, N., Alguliyev, R., & Aliguliyev, R. M. (2015). PDLK: Plagiarism detection using linguistic
knowledge. Science Direct. Expert Systems with Applications, 42(1), 8936–8946. doi:10.1016/j.eswa.2015.07.048

Acampora, G., & Cosma, G. (2015). A Fuzzy-based approach to programming language independent source-
code plagiarism detection. Journal of Digital Information Management, 14(2), 124–135.

Ahtiainen, A., Surakka, S., & Rahikainen, M. (2011). Plaggie: Gnulicensed source code plagiarism detection
engine for java exercises. In Proceedings of the 6th Baltic Sea Conference on Computing Education Research:
Koli Baltic (pp. 141–142). Academic Press.

Aiken, A. (2015). Moss: A system for detecting software plagiarism. University of California–Berkeley, 23(4),
245–259.

Alzahrani, S., & Salim, N. (2015). Statement-based fuzzy-set IR versus fingerprints matching for plagiarism
detection in Arabic documents. In Proc. of the 5th Postgraduate Annual Research Seminar (PARS09), Johor
Bahru, Malaysia (pp. 33-49). Academic Press.

Alzahrani, S. M., & Salim, N. (2008). Plagiarism detection in Arabic scripts using fuzzy information retrieval.
In Proceedings of the 2008 Student Conference on Research and Development (SCOReD 2008), Johor, Malaysia
(pp. 112-119). Academic Press.

Bhushan, S. B., Danti, A., & Fernandes, S. L. (2017). A novel integer representation-based approach for
classification of text documents. In Proceedings of the International Conference on Data Engineering and
Communication Technology (pp. 557-564). Springer Singapore.

Borner, K., Chen, C., & Boyack, K. (2012). Knowledge Domain Visualization. Information Visualization.

Chen, J. Y., & Zhao, C. Z. (2017). Tianji: Implementation of an Efficient Tracking Engine in the Mobile Internet
Era. IEEE Access, 5(1), 16592–16600. doi:10.1109/ACCESS.2017.2736064

Chow, K., & Salim, N. (2013). Web based cross language plagiarism detection. In Proceedings of the Second
International Conference on Computational Intelligence, Modeling and Simulation journal of computing (pp.
199–204). Academic Press.

Clough, P. (2014). Plagiarism in Natural and Programming Languages: An Overview of Current Tools and
Technologies. University of Sheffield.

El Bachir, M., & Bagais, M. (2014). APlag: A Plagiarism Checker for Arabic Texts. I.J. Information Technology
and Computer Science, 10(2), 80–89.

Elhoseny, M., Metawa, N., & Hassanien, A. (2017). Intelligent Information System to Ensure Quality in Higher
Education Institutions, Towards an Automated E-University. International Journal of Computational Intelligence
Studies, 6(2), 115–149. doi:10.1504/IJCISTUDIES.2017.089049

Elhoseny, M., Zaher, M., & Shehab, A. (2017). FPSS: Fingerprint-Based Semantic Similarity Detection in Big
Data Environment. In Proceedings of the 8th IEEE International Conference on Intelligent Computing and
Information Systems (ICICIS) (pp. 1221-1233). IEEE.

Elkhidir, M., Ibrahim, M., & Awadalla, M. (2015). Plagiarism detection using free-text fingerprint analysis. In
Proceedings of the World Symposium on Computer Networks and Information Security (WSCNIS) (pp. 213-
223). Academic Press.

Grozea, C., & Popescu, M. (2011). ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to
Plagiarism Detection. In Proceedings of the 25th Annual Conference of the Spanish Society for Natural Language
Processing, SEPLN (pp. 10–18). Academic Press.

Hattab, E. (2015). Cross-Language Plagiarism Detection Method: Arabic vs. English. In Proceedings of the
International Conference on Developments of E-Systems Engineering (DeSE). Academic Press. doi:10.1109/
DeSE.2015.25

http://dx.doi.org/10.1016/j.eswa.2015.07.048
http://dx.doi.org/10.1109/ACCESS.2017.2736064
http://dx.doi.org/10.1504/IJCISTUDIES.2017.089049
http://dx.doi.org/10.1109/DeSE.2015.25
http://dx.doi.org/10.1109/DeSE.2015.25

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

65

Hussein, A. (2016). Visualizing Document Similarity Using N-Grams and Latent Semantic Analysis. In
Proceedings of the SAI Computing Conference, London (pp. 269-279). Academic Press. doi:10.1109/
SAI.2016.7555994

Jain, V. K., & Kumar, S. (2016). Extraction of emotions from multilingual text using intelligent text processing
and computational linguistics. Journal of Computational Science, 21(3), 316–326.

Kahloula, B., & Berri, J. (2016). Plagiarism detection in arabic documents: approaches, architecture and systems.
Journal of Digital Information Management, 14(2), 124–135.

Lam, S., Lee, K., & Choi, S. (2016). iChecker: An efficient plagiarism detection tool for learning management
systems. International Journal of Systems and Service-Oriented Engineering, 3(6), 16–31.

Mozgovoy, M., & Frederiksson, K. (2014). Fast Plagiarism Detection System, String Processing and Information
Retrieval. In Proceedings of the 12th International Conference (SPIRE 2014) (pp. 267–270). Academic Press.

Osman, A., Salim, N., Binwahlan, M., Alteeb, R., & Abuobieda, A. (2012). An improved plagiarism
detection scheme based on semantic role labeling. Applied Soft Computing, 12(2), 1493–1502. doi:10.1016/j.
asoc.2011.12.021

Poulos, M. (2016). Near duplicate text detection using graph depiction. In Proceedings of the 7th International
Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 121-127). Academic Press.
doi:10.1109/IISA.2016.7785368

Sahi, M., & Gupta, V. (2016). Efficiency comparison of various plagiarism detection techniques. In Proceedings
of the International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 161–172).
Academic Press. doi:10.1109/ICEEOT.2016.7755245

Seyedali, M., Seyed, M., & Andrew, L. (2014). Grey wolf optimizer. Journal of Advances in Engineering
Software, 69(7), 46–61.

Sharma, K., & Jindal, L. (2016). An improved online plagiarism detection approach for semantic analysis using
custom search engine. In Proceedings of the 3rd International Conference on Computing for Sustainable Global
Development (INDIACom) (pp. 124-129). Academic Press.

Shehab, S., Elhoseny, M., & Hassanien, A. (2016). A hybrid scheme for Automated Essay Grading based on
LVQ and NLP techniques. In Proceedings of 12th International Computer Engineering Conference (ICENCO)
(pp. 65-70). Academic Press. doi:10.1109/ICENCO.2016.7856447

Si, A., Leong, H., & Lau, R. (2012). CHECK a document plagiarism detection system. In Proceedings of ACM
Symposium for Applied Computing (pp. 70-77). Academic Press.

Sindhu, L., & Idicula, S. (2015). Fingerprinting based detection system for identifying plagiarism in Malayalam
text documents. In Proceedings of the International Conference on Computing and Network Communications
(CoCoNet) (pp. 553-558). IEEE.

Subba, L. (2014). An anti-plagiarism add-on for web-CAT [Doctoral dissertation]. National University of
Ireland Maynooth.

Thompson, V., Panchev, C., & Oakes, M. (2015). Performance evaluation of similarity measures on similar and
dissimilar text retrieval. In Proceedings of the 7th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management (IC3K) (pp. 229-234). Academic Press.

Vani, K., & Gupta, D. (2015). Investigating the impact of combined similarity metrics and POS tagging in
extrinsic text plagiarism detection system, International Conference on Advances in Computing Communication
Information, 11(9), 727–738.

Wang, X., Evanini, K., & Mulholland, K. (2016). Automatic plagiarism detection for spoken responses in an
assessment of English language proficiency. In Proceedings of the Ninth Workshop on Innovative Use of NLP
for Building Educational Applications (pp. 22–27). Academic Press. doi:10.1109/SLT.2016.7846254

Wise, M. (2012). Yap3: Improved detection of similarities in computer program and other texts. ACM SIGCSE
Bulletin, 28(1), 130–134.

http://dx.doi.org/10.1109/SAI.2016.7555994
http://dx.doi.org/10.1109/SAI.2016.7555994
http://dx.doi.org/10.1016/j.asoc.2011.12.021
http://dx.doi.org/10.1016/j.asoc.2011.12.021
http://dx.doi.org/10.1109/IISA.2016.7785368
http://dx.doi.org/10.1109/ICEEOT.2016.7755245
http://dx.doi.org/10.1109/ICENCO.2016.7856447
http://dx.doi.org/10.1109/SLT.2016.7846254

Journal of Organizational and End User Computing
Volume 32 • Issue 2 • April-June 2020

66

Yalamanchili, J., Green, R., & Xu, K. (2016). Performance enhanced multiset similarity joins. Computer
Communications, 15(1), 21–28.

Yuan, X., Elhoseny, M., & Riad, A. (2017). A genetic algorithm-based, dynamic clustering method towards
improved WSN longevity. Journal of Network and Systems Management, 25(1), 21–46.

Zaher, M., Shehab, A., Elhoseny, M., & Osman, L. (2017, September). A New Model for Detecting Similarity
in Arabic Documents. In Proceedings of the International Conference on Advanced Intelligent Systems and
Informatics (pp. 488-499). Cham: Springer.

