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ABSTRACT

A non-invasive cum robust voice pathology detection and classification architecture is proposed in 
the current paper. In place of the conventional feature-based machine learning techniques, a new 
architecture is proposed herein which initially performs deep learning-based filtering of the input 
voice signal, followed by a decision-level fusion of deep learning and a non-parametric learner. The 
efficacy of the proposed technique is verified by performing a comparative study with very recent 
work on the same dataset but based on different training algorithms. The proposed architecture has 
five different stages. The results are recorded in terms of nine different classification score indices, 
which are mean average precision, sensitivity, specificity, F1 score, accuracy, error, false-positive 
rate, Matthews correlation coefficient, and the Cohen’s kappa index. The experimental results have 
shown that the use of machine learning classifier can get at most 96.12% accuracy, while the proposed 
technique achieved the highest accuracy of 99.14% in comparison to other techniques.
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1. INTRODUCTION

Speech is the most basic form of communications known between two groups of living entities, 
including human beings, animals, and/or birds. As one of the fastest ways to express one’s desire or to 
having a task performed, speech synthesis is, nevertheless, the result of a chain of complex processes.

In the eye of a specialist, speech reflects many of the speaker’s vital traits, for example, cultural 
or mental health condition, physical trauma or affection, sex, various sorts of emotion, and more. 
Suggestively, if a person’s normal voice deviates from those of the same sex-age group, then after a 
thorough examination, a voice pathologist may describe this to be a case of laryngitis, or other voice 
dysfunction. Dysfunction in voice may be attributed to a series of gradual alteration in the neurological, 
physical, or medicinal activities in the voice synthesis structure of the human body. In most cases, 
disorders such as laryngeal cancer, vocal cord cyst, fold, nodule, polyp, and unilateral nerve paralysis 
are due to prolonged and inappropriate usage of the vocal organ which eventually results in hoarseness 
in the voice. Researchers have also cited that as many as 25% of the world’s population inevitably 
suffer from different types of vocal disorder due to the increasing trend of unhealthy lifestyle and 
self-abuse (Al-nasheri, Muhammad, Alsulaiman, & Ali, 2017; Hammami et al., 2020).
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Some professionals, especially teachers, singers, and religious speakers, have a higher probability 
of being diagnosed with the vocal nodule pathology. The underlying reason being their nature of work 
as they are often required to utter a series of words for quite a long duration daily, which may also lead 
to an abuse of their vocal cords. As more and more swollen regions accumulate in the vocal folds, 
stiffness in the vocal cords will increase with time. A malfunction in the vagus nerve stimulating the 
larynx can also cause a disorder known as unilateral nerve paralysis, which is commonly observed 
as hoarseness in one’s voice. Typically, an indicative breathy phonation in the voice is prominently 
noticed, which in most cases has been observed with symptoms such as having difficulty in swallowing, 
and signs of shortness-of-breath and mild cough. Fortunately, the observed condition may be reversed 
via expert counsel and treatment (Steffen et al., 2011).

1.1 Pathology Assessment
Still, an age-old yet prevailing worldwide practice is the invasive procedure for diagnosing pathologies 
in the human laryngeal set-up. Laryngostroboscopy and surgical micro-laryngoscopy are two 
endoscopic procedures which are required to insert large devices inside the human body for mapping 
the internal structure. They can cause innate distress and discomfort to patients under observation.

Over the years, researchers have devised non-invasive strategies to reduce such sufferings. The 
electroglottography (EGG) is one such instance where the assessment of a person’s voices may be 
performed, alleviating the patient’s discomfort. Yet, there is a cost issue in training individuals to 
use those machines, especially if the implementation isto be on a massive scale. As championed by 
some research enthusiasts, cost-effective, non-invasive, and automated diagnoses of pathologies in 
a voice signal are trending; clearly, such diagnostic procedures for performing in-depth analysis of 
glottal signals represent the future of speech pathology detection.

The glottal signal originates in between the vocal fold and the vocal tract. It is expected that 
research work in this field will heat up especially after having witnessed the tumultuous success of 
deep learning (Krizhevsky et al., 2012) in the different aspects of Artificial Intelligence (AI). Indeed, 
deep learning has quickly replaced the traditional non-parametric classifiers such as the support 
vector machines (SVM), discriminant analysis (DA), k-nearest neighbour (kNN), Naive Bayes (NB), 
conditional random field (CRF), random forest (RF), decision trees (DT) and more. Notwithstanding, 
the benefit of learning to capture handcrafted features which have been the prime focus for the past 
couple of decades cannot and should not be ignored completely. Whereas deep learning algorithms 
train on the basis of using its features, the non-parametric classifiers train via previously extracted 
or handcrafted features. Hence, a platform which can intrinsically and inherently harness the merits 
provided by both these systems for learning and decision making will be more beneficial than using 
either of them individually.

This article offers insights into a novel process of such a methodological fusion for voice pathology 
and detection. So far, no previous work advancing such a system tested on state-of-the-art datasets has 
been found. The rest of the discussion is as follows. Section 2 overviews the background, focusing 
on the art of speech production, related work and key contributions of the present effort. Section 3 
discusses materials and methodological issues while Section 4 concentrates on results and discussion. 
Finally, Section 5 offers summary insights, study limitations and future research directions. It may be 
noted that the sort of computer-aided voice analysis system(s)advocated here may be further studied 
before employing them widely as a screening tool for detecting the onset of laryngeal pathology.

2. BACKGROUND

In order for IJHISI readers to better understand the proposed novel process of methodological fusion 
in the context of voice pathology and detection, we present here first, the art of speech production, 
then discuss a series of related work on the different kinds of computer-based, automated assessment 
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techniques that have emerged over the last several years, and finally, highlight the key contributions 
of our current work.

2.1 The Art of Speech Production
Speech production requires an articulate and systematic functioning of some vital organs with these 
organs responsible for three primary mechanisms, including creating air pressure, providing vibration, 
and resonance. The muscles in the abdomen and chest, together with the rib cage, diaphragms, and 
lungs are collectively responsible to provide an articulate air pressure mechanism which shakes the 
vocal folds repeatedly resulting in a “pitch”. The “pitch” or sound produced by the vibration of the 
vocal fold resonates all-around a person’s throat, then in the oral and nasal cavities. The characteristics 
of the vocal cords and tract in turn influence the sound that the human speech system produces. Via 
this process, a unique voice, representing a signature of these internal organ structures, is finally 
produced; thus, each individual on this planet has a distinct voice.

The minute details of the voice production process are automatically handled by the brain viaan 
internal feedback. The central nervous system (CNS) through the superior laryngeal nerve (SLN) and 
vagus nerve stimulates the larynx muscles with the help of connections and signals from the brain. 
Mucosa, body, and the vocal ligament are three unique layers occurring within the vocal folds of the 
larynx. Owing to their tenderness, these layers are quite sensitively exposed to vibration which may 
occur repeatedly anytime in the vocal fold, thereby developing a mucosal waveform. The flexibility 
of the mucosa to create a normal mucosal wave is intertwined with its integrity to the “superficial 
lamina propria.” For a normal vocal sound to be produced, a fixed volume of air pressure sweeps 
over the vocal fold. The pitch, which is a frequency of the wave produced by the mucosa, determines 
whether a person’s laryngeal functioning is normal or not.

In a normal voice, breathiness is almost absent, as any kind of abnormality in the larynx to result 
in a harsh and breathy sound due to the accumulated swelling of the vocal folds that develop over time 
(and also due to its repeated abuse). Alternatively, a breathy sound is due to a partial loss of nerve 
input that results in air pressure leakage. The recurrent laryngeal nerve (RLN) and SLN stimulate 
the laryngeal muscles for providing the appropriate position of the vocal folds.

Pathology such as gastric reflux or antero-posterior (A-P) squeezing tends to alter the physical 
traits (e.g., elasticity, volume, shape, and more) of vocal folds structures, which may in turninduce 
a different kind of vibration. Constant A-P squeezing damages the muscle tension, while laryngitis 
and gastric reflux cause the larynx to be inflamed, swell-up, and change the elasticity of the left and 
right vocal folds.

2.2 Related Works
For decades, while the art of detecting pathologies in a voice existed, it is only in the last decade that 
a rapid rise in popularity of different kinds of computer-based, automated assessment techniques such 
as algorithms that made use of the wavelet family (Lin & Chen, 1997), fractals (. et al., 2000) and 
computation of neural maps and networks (Hadjitodorov et al., 2000) emerges. Eventually, researchers 
allude to either a long or short duration mode of analysing a voice signal (Al-nasheri, Muhammad, 
Alsulaiman, Ali et al, 2017).

Several descriptors are used by researchers for the long duration mode of analysis. These are based 
largely on the disruption of amplitude and frequency, fundamental frequency, pitch and amplitude 
perturbation quotient, harmonics to noise ratio (HNR), voice turbulence index, the normalized 
energy level of noise, excitation ratio of glottal to noise, amplitude and frequency vibration, and more 
(Boyanov & Hadjitodorov, 1997; Boyanov et al., 1993; Ebihara & Ogawa, 1986; Gavidia-Ceballos & 
Hansen, 1996; Hadjitodorov & Mitev, 2002; Michaelis et al., 1997). An issue with these descriptors is 
their reliance on the deduction of fundamental frequency entirely, which is quite challenging for some 
pathological voice. To remedy, methods have emerged that are devoid of the fundamental frequency, 
thereby giving birth and paving the way for a modern short duration mode of speech signal assessment 
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(Godino-Llorente et al., 2010). Here, promising results to determine the presence of pathology in a 
speech signal have been shown (Godino-Llorente & Gómez-Vilda, 2004).

For detecting disorder, a given speech signal may be divided up into frames via the windowing 
procedure. The classification of these frames as normal or abnormal may be determined by a threshold. 
For analysing a voice, the linear predictive cepstral coefficients (LPCC) and the Mel-frequency 
cepstral coefficients (MFCC) are two examples of such descriptors currently being used. These have 
been developed to replicate respectively the voice and auditory sensation, which are present in human 
beings. Even so, it is vital to state that the LPCC does not provide good results with pathologies as it 
is entirely a linear model, given that pathologies are intrinsically non-linear. The MFCC, conversely, 
has proven to be a good assessor for voice pathologies.

A key limitation with the short-term approach is its inability to be dexterous while working 
within a database. In other words, a classifier trained using features from a dataset will not classify 
another dataset properly. Hence, the lack of generality is a major issue for its massive deployment. 
The cepstral peak prominence smoothed (CPPS) and its mother version, the cepstral peak prominence 
(CPP), are other variants of the cepstral descriptors. Diagnosing a severely dysphonic voice is not 
complicated as these techniques are independent of the variation in time. In fact, they have proved to 
be quite useful (Ali et al., 2017; Benmalek et al., 2017).In the extant literature, multiple authors have 
classified laryngeal and physiological pathologies via MFCC features with three (3) different base 
classifiers: the SVM, DA, and the gaussian mixture model (GMM). Yet, when applied individually, 
these classifiers failed toyield good results; hence, a combined classification approach has now been 
proposed (Cordeiro et al., 2017).

The voice pathology identification scheme employed in most approaches used the vowel /a/. 
Another body of research made use of both the sustained vowel /a/ and running speech with the 
Arabic voice pathology database (APVD) yielding an accuracy of over 99% (Mesallam et al., 2017; 
Muhammad et al., 2012). Prior to any kind of feature extraction, the voice activity detection (VAD) 
technique is typically performed in running-speech techniques. Its function is to automatically identify 
the unvoiced, voice or silent parts of a sound signal is a challenging and complicated operation. Authors 
of (Godino-Llorente et al., 2009) used MFCC with a VAD module for articulately segmenting the 
voice-region of a speech signal to obtain an accuracy of 96%. They implemented their algorithm 
on 23 normal and 117 pathological subjects’ dataset, which is part of the Massachusetts Eye & Ear 
Infirmary (MEEI) database (Weber, 2010).

Finally, past research has also adopted the wavelet family for utilizing the frequency-time 
and localized data to classify voice disorders. For instance, authors of (Fonseca et al., 2007) used 
Daubechies discrete wavelet transform (DWT) along with SVM and linear prediction coding; more 
recently, MFCC-based features with three well-known machine learning (ML) techniques, namely, 
deep learning (DL), GMM, and SVM, have been used (Chen & Chen,). The use of MFCC-based 
descriptors with DL provided the highest accuracy. Yet, as per our knowledge, no current work has 
performed a voice pathology classification and detection via an approach which effectively combines 
DL and these conventional or non-parametric classifiers in one platform, which is the focus of the 
current effort in an attempt to close the noted research gap.

2.3 Contributions of the Current Work
In order to address the aforementioned limitations and contribute to the emerging knowledge in the 
field of voice pathology detection and classification, DL has become popular as it had produced several 
state-of-the-art results in other fields including autonomous vehicles, agriculture, and biomedical 
imaging. Still, a thorough implementation of various DL methods with different features and fusion 
with other parametric and non-parametric classifiers is yet to be demonstrated. The issue of general 
usability in which a trained network performs poorly when other datasets are tested against it is 
another concern of modern pathological voice detection technique. In light of this, our current work 
offers two key contributions.
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1. 	 A voice pathology detection and classification architecture which uses two different feature-
fusion stages.
The first stage is implemented inside a VAD module, while the second fusion takes place at the 

decision or prediction stage. During the second stage, the responses produced by a wavelet 
scattering based ensemble classifier, and a Mel-spectrogram based DL model are fused to 
provide a much more robust prediction.

2. 	 A novel VAD module is proposed which will filter out non-speech or redundant region(s) in a 
speech signal before being adapted for training. Here, a concatenation of nine (9) different feature 
descriptors will be used for training a DL network.

This brings us to a discussion on the study materials and methods.

3. MATERIALS & METHODS

3.1 Dataset
VOiceICarfEDerico II (VOICED), that is, the pathological voice dataset as proposed by Cesari et. 
al. (2018), will be used to demonstrate the functionality and efficacy of our proposed architecture.

Table 1summarizesthe descriptive data of experimental participants in VOICED.In this dataset, 
150 pathological and 58 healthy voice recordings exist, each possessing a characteristic of 85kHz and 
a 32-bit resolution. 98 female v. 52 male candidates contributed to these 150 pathological recordings, 
whereas another 37 females v. 21 males contributed to the 58 healthy recordings. Participants belonged 
to the age group of 18-60 years.

Under the pathology’s category, three (3) different types of disorders were grouped, namely, 
hyperkinetic dysphonia, hypokinetic dysphonia, and reflux laryngitis.The rigidity in vocal folds, 
nodules in the vocal fold, polyps, and more are types of diseases belonging to hyperkinetic dysphonia. 
Notably, voice disorders such as vocal fold paralysis, laryngitis, glottic insufficiency belong to the 
hypokinetic dysphonia category. Finally, pharyngitis, asthma, halitosis, and night-time cough are 
instances belonging to the third category. The signals were acquired by recording the voice obtained 
by uttering the vowel /a/ for five seconds without any interruption. The speech database has been 
developed by the “Institute of High-Performance Computing and Networking of the National Research 
Council of Italy (ICAR-CNR)” in collaboration with the hospital university if Naples “Federico II”.

3.2 Proposed Architecture
A novel and robust architecture for detecting, filtering, and classifying a pathological voice signal 
is proposed herein.

Figure 1 highlights a graphical workflow utilizing five (5) different stages:

• Input sequence and pre-processing;
• Voice filtering and segmentation phase via a VAD module;
• Multiple feature extraction phase;

Table 1. Descriptive data of participants of the experiment

        Age         Healthy Samples         Pathological 
Samples

        Pathology’s category

        18-60 Years         21(M)         52(M)         Hyperkinetic 
dysphonia,hypokinetic dysphonia 
and reflux laryngitis        37(F)         98(F)
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• Multiple training phases, and
• Decision Module.

The architecture utilizes two fusion modules, one of which is inside the proposed VAD module for 
fusing several feature descriptors prior to training the VAD-based filtering network while the second 
fusion module is applied at the decision module for integrating the varying-predicted-responses given 
by the DL model and the ensemble classifier. Owing to the complex nature of a pathological voice 
signal, it is quite important to identify and extract only the most useful signal component.

Simply, the speech sequence is first subjected to a VAD module, inside which lies a feature 
fusion module. Nine (9) different features from signals for training a bidirectional long-short term 
memory recurrent neural network (BiLSTM) are extracted. These varying types of features are then 
integrated before being used in the VAD’s training process. Subjecting a voice signal to this trained 
VAD network will help retain only the most useful component and will also pave the way for fruitful 
feature extraction in the remaining part of the main architecture.

Further, it can be seen from the topmost subfigure of Figure 1 that the trimmed or filtered signal 
projecting from the VAD module is subjected to two different feature extraction modules. Here, two 
features are seen: (a) frequency domain transformation via Mel spectrogram; and (b) wavelet time 
scattering feature vector.

The first set of features is trained viaaDL network and the second set is trained via an ensemble 
classifier. The next phase is testing, during which an input signal is subjected to both the trained 
classifiers for producing two unique set responses, more specifically, a wavelet response, and DL 
response.As noted, the second fusion module (i.e. decision fusion module) is used for further fusing 
these two responses for providing a more robust classification.

The proposed architecture uses a DL-based VAD-based filter module, and learns a different kind 
of features using a decision-fusion of parametric and non-parametric classifiers.

Figure 1. Graphical workflow of the proposed architecture and its sub-component.
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The detailed structure of all associated components is explained thoroughly in the following 
subsections.

3.3. Input Sequence and Pre-Processing
The pathological dataset (see Section 3.1) has an uneven number of recordings, that is, 150 and 58 
for the pathological and healthy voice respectively.For the current work, 58 recordings from each of 
the two categories were selected so that training samples are evenly distributed during the training 
process. It is widely known that an uneven distribution of training samples can result in either 
overfitting or provide false-positive results. Considering both samples, a total of 116 voice recordings 
were selected for our analysis.

In each recording, the vowel sound \a\ can be heard to be pronounced by an individual for about 
4.76 seconds at a sampling rate of 8000 Hz, with 38080 sampling points. Figure 2 graphically 
illustrates the “voice003.dat” file derived from this dataset. All116 samples were further broken up 
into ten (10) different segments (i.e.0.476 second each). This kind of segmentation will safeguard 
any network against overfitting that may crop up due to lengthy training samples. Hence, the total 
number of resulting samples is 1160, in which 580 samples each belong to the healthy and pathological 
categories.

3.4 Voice Filtering-Segmentation Phase via a VAD Module
Past research has shown that using a VAD module is quite helpful although it is quite complex and 
challenging especially in low signal-to-noise ratio (SNR), or where noise is present in very less amount 
(Ramirez et al., 2004). Hence, a VAD-based speech detection and background (noise) signal filtering 
module that uses a fusion of several feature descriptors with a DL trainer is advocated herein. In a 
very low SNR environment, where the noise is present in extremely less amount, this approach has 
been found to be beneficial.

A long short-term memory (LSTM) type recurrent neural network (RNN) is suitable for the 
current application as it can study and remember long term dependencies of time-series data. While 
a LSTM layer observed only the future weights or the forward direction, a bidirectional LSTM 
(BiLSTM) can look into both the past and the future. A fourteen (14) layered BiLSTMDL network 
which uses 5000 number of hidden neurons is proposed for the training procedure. DL can assist 
in remedying the situation but there is need for high quality and a good number of training samples 

Figure 2. Sample number “voice003” pronunciation of the vowel \a\ for a duration of 4.76 seconds.
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especially for a speech-based network. A multi-pronged for extracting spectral features and harmonic 
ratio metric from an input signal is proposed here so that the network can learn different forms of the 
signal which will help in discerning noise from the good components. The second and third rows of 
Figure 1depict the simplified workflow of the proposed VAD module and the BiLSTMDL network. 
A detailed and sequential explanation of the procedure is then given.

• Dataset Preparation

The first stage is the dataset development stage. For this purpose, the 116 voice samples which 
is a collection of data from both healthy and pathological categories is used for representing the 
clean speech regions. A simple washing machine noise is used as the background noise.All the 
116 voice samples are stitched-up together to create a long input audio sequence of length equal 
to116x4.76seconds = 552.16 seconds. A thresholding method is essential to filter out non-voice 
regions from this input clean audio. The regions of speech are annotated using a voice activity mask, 
and after which the second signal is used for corrupting the clean audio. The corrupted signal now 
has the useful regions being marked out. The process of thresholding and annotation are discussed 
as follows.

• Thresholding

The input speech is broken up into non-overlapping segmentations of window length (W) using 
relation, W=LxS, where, L is the desired length in mS, and S is the sampling rate of the speech. The 
segments are then buffered as vectors. Then, the energy and spectral centroid associated with the 
segments are determined followed by normalization of the spectral centroid. The energy and spectral 
centroid are then smoothed by using two median filters consecutively, followed by the determination 
of the average mean of these smoothed components.

The next process is to determine the threshold of these two smoothed signal components 
consecutively using two common and simple steps:(i) Determining the histogram and its local-
maxima; and(ii) If two local maxima values are uncovered, the threshold is the weighted average. 
In case these two conditions are met, then the presence of speech is confirmed. In this way, all the 
speech and non-speech regions in the entire clean audio length are determined. The final step in the 
thresholding process is to merge all the intersecting voice segments for removing the unwanted non-
voice regions completely.

• Annotation of Voice Activity Mask

The new clean audio sequence developed after the thresholding operation is now labelled as L2. 
The speech and non-speech regions are assigned a binary mask, i.e. 1 and 0 respectively. The length 
of a silence or non-speech segment is now specified to be maintained at a maximum duration of 2 
seconds.

A 10-seconds audio signal from the clean category showing the presence of non-speech regions 
is shown in Figure 3. VAD mask is allocated over the speech regions.

The next step process is to create a new voice activity sequence (L3) by adding several random 
non-speech signal regions in L2, but not exceeding a duration of 2 seconds.

The final process is to create a 4th signal sequence (L4) by adding the 8kHz washing machine 
noise signal to L3 to create the corrupted dataset but useful components annotated by voice masks as 
shown in the third subfigure of Figure 4.
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3.5 Feature Fusion Module
It is responsible for extracting multiple type of features from the input signal followed by concatenation 
before subjecting it to a deep learning network. Nine (9) different type of features are considered 
for the current work as discussed below (Kim et al., 2006; Lerch, 2012; Peeters, 2004; Scheirer & 
Slaney, 1997; Smith, 2011).

• Spectral Centroid(SCen) is used for characterizing a spectrum and determines the position of 
the center of mass. It is computed by using a Fourier transform with the average of the frequencies 
present within the signal. The mathematical expression of a spectral centroid is

centroid
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Figure 3. A 10-secondsaudio signal from the clean category showing the presence of non-speech regions. Allocating VAD mask 
over speech regions.

Figure 4.The ten seconds clean audio after being corrupted by noise. This signal uses a VAD mask to annotate the clean region.
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where, fk and sk are the frequency and spectral value respectively for bin k, b1 and b2 areedges 
of band range within which spectral centroid is to be calculated (Peeters, 2004).
• Spectral Crest(SCrest)is mathematically expressed as
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where, sk is the spectral value respectively for bin k, b1 and b2 are edges of band range within 
which spectral crest is to be calculated (Peeters, 2004).
• Spectral Entropy(SEn)calculates the spectral power of an input signal using the Shannon entropy. 

It observes the normalized power of a signal as a statistical probability distribution. It can be 
mathematically expressed as	
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where, sk is the spectral value respectively for bin k, b1 and b2 are edges of band range within 
which spectral entropy is to be calculated (Peeters, 2004).
• Spectral Flux(SFl)is used to observe the rate of change power spectrum between two adjacent 

frames. It is calculated by using the Euclidean distance metric of two adjacent and normalized 
spectra. It is mathematically expressed by
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where, sk is the spectral value respectively for bin k, b1 and b2 are edges of band range within 
which spectral flux is to be calculated, and the value of P will define the type of norm (Peeters, 2004).
• Spectral Kurtosis (SKur) is used for determining the occurrence and location of transient series in 

the frequency domain. It is also quite helpful in classifying power spectral density and capable 
of removing non-stationary information. It is expressed mathematically as
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where, fk- and sk are the frequency and spectral valuerespectivelyfor bin k, b1 and b2 are edges of 
band-range within which spectral kurtosis is to be calculated. The terms µ

1
 and µ

2
 denote spectral 

centroid and spread respectively (Peeters, 2004).
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• Spectral Rolloff(SRoll)Pointis a quantity that is used for measuring the skewedness of a power 
spectrum. It extracts the spectral roll off point. It denotes the percentage of the power spectrum 
which is at lower frequency. It is expressed mathematically as

SRollPoint = I, such that s K s
k

k b

i

k
k b

b

= =
∑ ∑=

1 1

2

, 	 (6)

where, sk is the spectral value for bin k, b1 and b2 are edges of band-range within which spectral 
spread is to be calculated. K denotes the above percentage between b1 and i (Scheirer & Slaney, 1997).
• Spectral Skewness(SSkew)– The normalized skewness of a spectrum is the third central moment 

of this spectrum, divided by the 1.5 power of the second central moment. The spectral skewness 
of the signal over time can be expressed mathematically as
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where, fk is the frequency is Hz corresponding to bin k. sk is the spectral value of bin k. b1 and 
b2 are the band edges, in bins, over which to calculate the spectral skewness. µ

1
 and µ

2
arethe spectral 

centroid and spectral spread respectively (Peeters, 2004).
• Spectral Slope(SSlope) is used to describe the amount of dependence that a reflectance can have 

upon the wavelength of a signal. It is also known by the term spectral gradient. It can be used 
for showing the level of affinity that an audio spectrum may have for high frequency signals. It 
is usually calculated through linear regression of a Fourier magnitude of a signal.
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where, fk and sk are the frequency and spectral value respectively for bin k, b1 and b2 are edges 
of band range within which spectral slope is to be calculated. µ

s
andµ

f
are the mean frequency and 

spectral value respectively (Lerch, 2012).
• Harmonic Ratio is a ratio of the harmonic energy to the total energy of the audio. The autocorrelation 

is given by
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where, s denotes an audio segment containing N number of elements, and the maximum lag is 
denoted by M.

For a given range, the maximum value of a normalized autocorrelation gives the desired harmonic 
ratio.

βHR m
M M

= ≤ ≤0 m
max{ ( )}Γ 	 (10)

where M0 is the minimum level of the searching region/range (Smith, 2011).
The parameters which are initialized for computing the above features are as follows. The length 

of the window is fixed at 256, and a periodic Hann (Hanning) window is used. The overlap length 
and the FFT length are set to 128 and 256 respectively. The range is maintained between 0 and half 
of the sampling rate. Finally, the power spectrum is used for extracting the above features. In the first 
step, a spectrogram which results in a short-time Fourier transform is used to compute the power 
spectrum of the noisy-training signal via a hann window of length 256 and an overlap length of 128. 
This operation results in a vector of frequencies along with their time instances. Next, the first eight 
(8) features are extracted via the information computed vis-à-vis equations E (1) through E (8). 
Let the extracted features be stored in the variables SCen, SCrest, SEn, SFl, SKur, SRoll, SSkew, 
SSlope. The next step is to use the noisy training signal, sampling rate, hann window with the fixed 
overlap length to extract the ninth (9th) feature descriptor, i.e. harmonic ratio. Let this feature vector 
be denoted by “hr”.The final step in this feature fusion module (FFM) is to gather the descriptors 
extracted by all the nine (9) extractors into an array which is the required data that will be used to 
train a DL model defined below.

Thus, the training signal is given by:

features = [SCen, SCrest, SEn, SFl, SKur, SRoll, SSkew, SSlope, Hr] E	 (11)

Let M and S denote the mean and standard deviation respectively. The new features may be 
obtained by normalizing the feature vector of E (12) using the following relation.

feature
(feature M)

=
−

S
	 (12)

The concatenated and normalized features obtained in E (12) are used for training a DL network. 
The same process is also followed for extracting features from the validation dataset.

3.5 Deep BiLSTM Model
A DL model based on the LSTM network is used for differentiating between region of speech and 
background noise or silence. The LSTMs are a special type of DL architecture which has knowledge 
about weights that may further develop with a progress in time. It was first proposed in (Hochreiter 
& Schmidhuber, 1997), then upgraded and applied in various fields by researchers. A bidirectional 
LSTM network is where two LSTM layers moving in opposite direction is integrated together. Here, 
one of them moves in the forward direction and can use information from past to future, whereas the 
second one moves in the backward direction and can use information from future to past.

The BiLSTMs have shown more prowess for dealing with the task of sound classification in 
comparison with the unidirectional classifiers. However, it has been observed that BiLSTM network 
has not yet been implemented in voice pathology detection and classification(Glorot & Bengio, 
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2010). A BiLSTM-based architecture is used as the trainer for both the VAD module and the overall 
architecture for learning time-based dependencies of the voice signals.

A graphical structure of a BiLSTM network which has two LSTM layers pointed in the forward 
and backward direction is shown in Figure 5. In this network, a sequence running from time instance 

T-n to T-1 is used to compute the output sequenceh
→

of the forward layer iteratively while h
←

, which 
denotes the output sequence, uses the reverse inputs. These two outputs are determined using the 
basic equations of an LSTM network.

Let YT be an output vector realized from the BiLSTM layer whose contents are governed by 
the relation

y h h
t
=

→ ←

σ( , ) 	 (13)

where, the forward and backward output sequences are combined by the functionσ . It can 
perform any function such as concatenation, multiplication, summation or mean. The output vector 
from a BiLSTM layer can also be expressed in the format Y y y

T T n T
= − −[ ,..., ]

1
in a similar way as an 

LSTM layer (He et al., 2015).
The proposed deep BiLSTM model utilizes ten (10) BiLSTM layers with each of them having 

300 numbers of hidden units for outputting sequences. The input length of the first BiLSTM layer 
can vary as per the application. For the current VAD network, the length is specified as 9. The 
10thBiLSTM layer is connected to a fully connected layer having a size of 2 for classifying a voice as 
either pathological or healthy. It is finally followed by a softmax and a classification layer.

Figure 5. Architecture of the BiLSTM layer used in the current work involving three consecutive steps.
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3.6 Feature Extraction via Mel-Spectrogram for the DL Classifier
To date, a vast majority of the algorithms that has been proposed for dealing with detection and 
classification of voice pathology used MFCC, or GMM. While some have used feature derived 
via zero crossing rate, SFl/SCen/SRoll, and linear prediction coefficients (LPC), Mel spectrogram 
(Rabiner & Schafer, 2010) is gaining popularity as an alternative feature descriptor for voice signal. 
An integration of this type of feature vector with a DL network is being investigated here.

• Fourier spectral feature is computed via a short-time Fourier transform whose energy x n k
freq

,


2

can be expressed as -

x n k x n m w m j
km

Nfreq
m

N

, ( ) ( )exp


 = − −











=

−

∑
2

0

1
2

2π 	 (14)

where x(n) is the discrete-time input speech sequence, N is the size of the window, and w(m) is 
the sequence within the window.

From E (14), it can be further gathered that x n k
freq

,


2

is a double-indexed function with time 

index n and frequency index k. Usually, the short-time framed Fourier energy E
FT
[n , k]'  will be 

collected for n , n, n,..., n,'= 0 2� � �n and n { }' ∈ +Z ∪ 0  such that

E x k for
FT freq
[n , k] n n, ,' '= 



�
2

n { }' ∈ +Z ∪ 0 ,	 (15)

where�n > 0 is the frame advance step size.
• Mel spectral features are finally obtained via the above Fourier spectral features with a Mel filter 

bank over a non-linear frequency scale, which is also commonly termed as Mel-scale. They can 
be acquired through the weighted Fourier spectral features via the Mel filter bank which is a 
uniformly spaced filter bank on a nonlinearly wrapped frequency scale, known as the Mel-scale, 
as illustrated in Figure 7.
An expressing comprising of both Mel-scale frequency (fmel), and traditional frequency (fcon) in 

hertz can be stated as –

f log ,
mel

con
f

= +










2595 1

700
	 (16)

Without loss of generality, we chose a 128-band Mel filters throughout this work.
As depicted in Figure 10, the squared magnitude response of the ith Mel filter, 

| ( , ) | , ,H i k k N i
mel

2 0 1 1 128≤ ≤ − ≤ ≤ ,

specifies the individual weighting factor for the kth frequency component of the Fourier spectra.	

According to E (15) and E (16), the short-time framed Mel-energy E n i
mel
( , )'  is given by
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Figure 6. Block diagram of mel spectrogram (Rabiner & Schafer, 2010).

Figure 7. A Mel filter bank composed of the triangular band-pass filters each with a bandwidth and the spacing in accordance 
with the Mel-scale in the frequency domain (Rabiner & Schafer, 2010).
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E n i E n k H i k i
mel FT

k

N

mel
( , ) [ , ] | ( , ) | ,' '= ≤ ≤

=

−

∑
0

1
2 1 128 	 (17)

where, i is the Mel filter index. It is noted that the frequency dimensionality of E n i
mel
( , )' is 

reduced from N to E n k
FT
[ , ]' to 20.

The input voice signal segments, which are duly filtered by the VAD module, are initially buffered 
as frames or segments according to the specified length of the periodic hanning window. Adjacent 
segments are made to overlap one another by certain specified number of durations. After overlapping, 
the segments are transformed into the frequency domain with the number of points being deduced 
by the Fast Fourier Transform (FFT). According to the type of spectrum, power or magnitude can 
represent the frequency domain. The frequency-domain transformed signal sequences are now passed 
through a Mel filter bank, and the resulting spectral output terms are summed up. The channels are 
finally concatenated so that they are now transformed into a feature vector ready to undergo training.

• Filter bank design – The Mel filter bank used in our study has triangular filters which are made 
to overlap by 0.5 or half and spaced uniformly over the Mel frequency. As Figures 6 and 7 show, 
the variable N is set as 128, implying that 128 numbers of Mel bandpass filters are used. Two (2) 
frequencies have been allocated to the first and the last filters to serve as a cut-off frequency of the 
filter bank. The filters are then normalized according to their available bandwidth.

3.7 DL Training Network
The Mel-spectrogram features,as extracted from the training samples,will beused for training a 
33-layered DL network.

A repeated structure comprising eight (8) vanilla-CNN modules will be used for extracting deep 
features, which implies8 convolutional layers with a 3x3 kernel, 1x1 stride sizes, and same padding 
arrangement. As Table 2 shows, the number of filters or activation maps increases from 32 to 256 so 
that a vast number of multiple features can be learned. Three3x3 max-pooling layers having 2x2 stride 
and with the same padding convolutional kernels are used after every two convolutional layers for 
reducing overfitting and speeding up the training by downsizing the number of training parameters. 
A 50% dropout rate is utilized to avoid overfitting the network with excess features. The final layers 
of the network consist of (a) a fully connected layer trained to recognize two classes, (b) a softmax 
layer, and (c) a cross entropy output layer.

3.8 Feature Extraction for the Ensemble Classifier
Wavelet features are extracted from all the training samples via the following procedure.

Initially, a filtered sample signal x is taken whose Fourier transform x
∧

is given by

x w x u e duiwu

R

∧
−= ∫( ) ( ) 	 (18)

For a filter Ψ whose Fourier transform Ψ
∧

is located around the dimensionless frequency of 1, 
the wavelet filter bank which can be denoted by { }Ψλ λ>0 is determined by dilating the mother wavelet 
Ψ and can be expressed as

Ψ Ψλ λ λ( ) ( )t t= 	 (19)



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

17

The property of the filter Ψ is such that for negative frequencies, its Fourier transform is zero, 

which shows that it is analytic. Similarly, another filter Ψ
∧

 revolving around 1 may be considered, 

and thus its wavelet filter bank Ψ
∧

λ is also located aroundλ .
The pseudo-analytic Gammatone wavelet is compatible for the current case of Ψ , and is 

mathematically given by

Table 2. The proposed deep learning network structure for training the mel-spectrogram features.

    Sl.     Name Features     Type

    1     imageinput     Image Input

    2     batchnorm_1     Batch Normalization

    3     conv_1 32 3x3x1 convolutions with stride [1 1] and padding ‘same’     Convolution

    4     batchnorm_2     Batch Normalization

    5     relu_1     ReLU

    6     conv_2 32 3x3x32 convolutions with stride [1 1] and padding ‘same’     Convolution

    7     batchnorm_3     Batch Normalization

    8     relu_2     ReLU

    9     maxpool_1 3x3 max pooling with stride [2 2] and padding ‘same’     Max Pooling

    10     conv_3 64 3x3x32 convolutions with stride [1 1] and padding ‘same’     Convolution

    11     batchnorm_4     Batch Normalization

    12     relu_3     ReLU

    13     conv_4 64 3x3x64 convolutions with stride [1 1] and padding ‘same’     Convolution

    14     batchnorm_5     Batch Normalization

    15     relu_4     ReLU

    16     maxpool_2 3x3 max pooling with stride [2 2] and padding ‘same’     Max Pooling

    17     conv_5 128 3x3x64 convolutions with stride [1 1] and padding ‘same’     Convolution

    18     batchnorm_6     Batch Normalization

    19     relu_5     ReLU

    20     conv_6128 3x3x128 convolutions with stride [1 1] and padding ‘same’     Convolution

    21     batchnorm_7     Batch Normalization

    22     relu_6     ReLU

    23     maxpool_3 3x3 max pooling with stride [2 2] and padding ‘same’     Max Pooling

    24     conv_7 256 3x3x128 convolutions with stride [1 1] and padding ‘same’     Convolution

    25     batchnorm_8     Batch Normalization

    26     relu_7     ReLU

    27     conv_8 256 3x3x256 convolutions with stride [1 1] and padding ‘same’     Convolution

    28     batchnorm_9     Batch Normalization

    29     relu_8     ReLU

    30     dropout 50%     Dropout

    31     fc 2 fully connected layer     Fully Connected

    32     softmax     Softmax

    33     class output cross entropy     Classification Output
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Ψ( ) ((n )t ) ( )( )
[ , )

t it e tn n b i t= − +− − − +
∞1 12 1
0

	 (20)

where b is the bandwidth which is approximately equal to 2-1/Q, Q is the quality factor whose 
value can be chosen as desired. Initially, the value of Q is chosen as 4.

Let x be any input signal decomposable via a wavelet filter bank to producex t* ( ), forΨλ1 λ
1
0> , 

here * is a standard convolution operation. This process is called the wavelet decomposition of the 
input signal x.

The requirement to sampleλ
1
regularly does not arise due to the dilation arrangement of the 

wavelet filter bank. Instead, it may be sampled using the relation 2j/Q, where Q is the mother wavelet
Ψ ’s Q-factor. In other words, sampling can be done uniformly using the log (λ

1
).

A wavelet scalogram is thus created in this process which is expressed mathematically using 
the relation

x t x t
1 1 1
( , log ) | * ( ) | .λ λ= Ψ 	 (21)

Unwanted time-shifting and warping during decomposition of wavelet is reduced by using a 
complex modulus. The wavelet scalogram depicts the frequency and time contained within a signal 
quite nicely. E (22) means that a wavelet scalogram for a combination of ( , log )t λ

1
 can be obtained 

by using the information of x at the logλ
1

 and time t. Additionally, for imparting further stability 
and invariance, the scalogram is averaged in time by using φ

T
(t) , which is a low pass filter having 

a duration time T. Therefore,

S ( , log ) (., log ) * (t) | * | * (t),
1 1 1 1 1
x t x x

T T
λ λ φ φλ= = Ψ 	 (22)

For the current implementation, a Gabor filter is used as the low pass filterφ
T
(t)whose frequency 

is centered at 0. T is the bandwidth in time. S1x gives the coefficient of the first order wavelet scattering, 
which is like the coefficients of a Mel spectrogram. However, the weighted mean ofφ

T
(t) subtracted 

the fine-scaled temporal arrangement of the x1. To remedy this situation, a second wavelet 
decomposition is performed by using Q=1. The new expression is

x t x t x
2 1 2 1 1 2 1 2
( , log , log ) (., log ) * ( ) || * | * (t) |λ λ λ λ λ λ= =Ψ Ψ Ψ 	 (23)

E (23) is the new scalogram (x2) but of second-order centered around logλ
1

of x1. Similarly, for 
enhancing stability and invariance, the average of x2 is performed in time using the same filter, and 
thereby resulting in

S ( , log , log ) (., log , log ) * (t) || * | * | *
2 1 2 2 1 2 1 2
x t x x

T
λ λ λ λ φ φλ λ= = Ψ Ψ

TT
(t) ,	 (24)

The above procedure can be performed successively for determining the third or higher order 
coefficients, however, second order is sufficient.

Now, all the resulting coefficients of the first-order are concatenated together into a single vector.
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S ( ) {S ( , log )} ,
1 1 1 01
x t x t= >λ λ 	 (25)

The same is done for the coefficients belonging to second-order.

S ( ) {S ( , log , log )} ,
,2 2 1 2 0 01 2

x t x t= > >λ λ λ λ 	 (26)

The final step is to combine the vectors in E (25) and E (26) into a single vector for time t.

Sx t x t x t( ) {S ( ),S ( )}=
1 2

	 (27)

We use wavelet scattering for extracting feature descriptors from the 928 training sound signals. 
We use an invariance scale of 0.5 for all the training samples.

3.9 Ensemble Classifier via Random Subspace
The ensemble classifier is trained via the random subspace technique using very limited memory 
while providing a better technique than other ensemble techniques. It uses some important parameters 
such as m,d,x and n.

Here, m stands for the number of dimensions for sampling the learners, x is the feature vector 
matrix whose dimension is d, and finally, n is a number representing the quantity of learners in the 
ensemble classifier.

There are four simple steps for training it. Firstly, a set containing m number of predictors are 
chosen randomly from d number of possible values. Secondly, a weak learner is trained by utilizing 
the m predictors. Thirdly, the above two steps are repeated until n number of weak learners have been 
created. The final classification or prediction score is obtained by averaging all the scores.

3.10 Decision Fusion Module
The decision fusion module is applied at the testing stage.

Using the test samples, two sets of feature vectors are extracted via Mel-spectrogram and wavelet 
scattering coefficient. The first set made up of Mel-spectrogram features are passed into the trained 
convolutional neural network (CNN) for extracting prediction scores whereas the second set is passed 
into the trained ensemble classifier. This process has resulted in the creation of two unique sets of 
prediction scores of the same test sample database. Here, a healthy test sample can be classified 
as pathological with a certain probability by the ensemble category, while the same sample can be 
correctly classified by the DL network. There may be many such occurrences, and therefore, a fusion 
of all the prediction responses derived from the two trained networks maybe combined to create a 
new prediction response.

Let WR and DR be the responses produced by the ensemble and DL classifiers respectively. The 
new response can be computed using the expression

fused = WR⊗DR, 	 (28)

where, ⊗  is the element-wise matrix multiplication operator.

4. RESULTS & DISCUSSION

Below, we present the implementation of the proposed work.
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4.1 The Voice Activity Detector (VAD)
As noted previously, the length of the clean audio signal that is masked by 1 is 552.16 seconds, which 
is obtained by combining 116 samples. All the samples are broken up to ten (10) segments each to 
create 1160 samples to prevent overfitting during training. Roughly 80%or920 samples were retained 
and then combined to create a 920x0.476s=437.92 seconds long clean audio signal for training. The 
remaining 20%or 240 samples were retained and then combined to create a 240x0.476s=114.24 
seconds long test signal from which noise was to be removed.

The training was performed using the following set of parameters. In order to make the network 
iterate 100 rounds via the training data, the number of epochs was set as 100. The number of minibatch 
size was maintained at 64. The training segments were made to shuffle every epoch, and a piecewise 
learning rate schedule was employed for decreasing the learning rate by a factor of 0.1 after an elapse 
of 10 epochs. The adaptive moment estimation (ADAM) optimizer was used asit was more compatible 
with a RNN than the stochastic gradient descent (SGD) optimizer.

Figure 8 shows the convergence of accuracy with respect to validation accuracy, and the training 
loss with respect to the validation loss. The test sample of length 114.24 seconds is tested against the 
trained network, yielding an accuracy of 87.8% as shown by the confusion matrix of Figure 9.The 
result of testing a random 50-second portion of the validation signal isshown in Figure 10, where 
the background noise component is represented by blue color, and the speech region by red color. 
This trained VAD network will serve as a filter in the main architecture for safeguarding against 
unwanted noise or background components that may be present in the voice signal (whether healthy 
or pathological).

4.2 Classification Metrics
A comparison with recent analytic work using the same dataset is hereby presented. While six (6) 
metrics for classification have been suggested, we have used nine (9) metrics, which included popular 
ones such as mean average precision, sensitivity, specificity, F1 score, accuracy, and error.

Other popularly used metrics have also been considered, including false positive rate (FPR), 
Matthews Correlation Coefficient (MCC), and the Cohen’s Kappa index (CKI) with brief summaries 
given below. Here, TP, TN, FP, FN stands for true positive, true negative, false positive, and false 
negative respectively.

• Sensitivity, also known as true positive rate (TPR), describes the actual number of positive samples 
as belonging to the true category.

Sensitivity
TP

TP FN
=

+
	 (29)

• Specificity, also known as true negative rate (TNR), describes the actual number of negative samples 
as belonging to the negative category.

Specificity
TN

TN FP
=

+
	 (30)

• Precision is a probability by which a network can make true positive classification.

Precision
TP

TP FP
=

+
	 (31)
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Figure 8. Training of the proposed VAD module with the BiLSTM network

Figure 9. Confusion matrix showing classification of speech and non-speech regions in the input test signal. Here, 1 and 0 denotes 
the speech and non-speech regions respectively.



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

22

• F1 score is a harmonic mean of precision which is also known as Dice similarity coefficient (DSC).

F
TP

TP FP FN1

2

2
=

+ +
	 (32)

• FPR is the probability with which a trained network is capable of false rejecting a sample during test.

FPR
FP

FP TN
=

+
	 (33)

• MCC, providing an index of a binary classification’s quality, takes into consideration TPs, TNs, FPs, 
FNs, and is mostly highly regarded for being able to give good classification even in situation 
where classes are unbalanced.

MCC
TP TN FP FN

=
× − ×

+ + + +(TP FP)(TP FN)(TN FP)(TN FN)
	 (34)

• CKI measures the intra- and inter- rater’s ability to provide good classification for categorical 
items. It is more robust than simple accuracy or most of the aforementioned metrics as it takes 
into account the chance of an agreement being reached by chance.

Figure 10. The top image shows the speech signals (red colour) being detected in the presence of noise (blue colour). The second 
image is the extraction of the baseline-speech signal from the noise corrupted signal.
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,	 (35)

where, po and pe are the observed and expected agreements respectively.

• Accuracy (Acc.) demonstrates the level of comfort with which a trained classifier can predict positive 
and negative class. It is determined by dividing the sum of TP and TN by the total population.

Acc
TP TN

TP TN FP FN
=

+
+ + +

	 (36)

• Error refers to the expression for error:

Error Acc= −100 	 (37)

4.3 Results Implementation
Altogether, 1160 of samples whose length are all 0.476 seconds were available for both training and 
testing as noted earlier.80% or928 records were set aside for training which includes 464 healthy and 
pathological samples each whereas the remaining 20% or 232 records, which includes 116 healthy 
and pathological test samples were kept for the testing the trained network.

The first task was to create a new healthy and pathological audio signal database by using all 
the 1160 samples with the trained VAD network. For all the 928 training samples, an overlap index 
of 0.5 was used to extract a 128-bin Mel spectrogram. This overlapping arrangement is beneficial on 
two accounts. First, the dimension of the feature vector was further reduced, and second, the spectral 
property was also maintained. The window size was fixed at 1024 with 512 points hopping size.

Additionally, an overlap of 512 per window, and 1024points were used for the FFT. The Mel-
spectrogram obtained was expressed in the logarithmic scale and normalized in the same way as in E 
(12). The resulting normalized feature vectors were made available for training the DL network. The 
network was then trained to learn and classify between healthy and pathological voice samples via the 
following parameters. The number of minibatch size was set as 32, maximum number of epochs was 
set as 150 but it was made to stop manually depending on the convergence of the training-progress.

Additional training parameters include the learning rate, which was maintained at a constant 
rate of 0.0003, and the use of stochastic gradient descent with momentum (SGDM) optimizer. The 
training progress of this Mel-spectrogram based DL network is shown in Figure 11.

The training was conducted smoothly with the accuracy converged to 100% after only 17 epochs; 
therefore, the training was made to stop manually. The next step is to train the ensemble classifier 
via the wavelet scattering features.

In order to implement the decision fusion module, it was desirable that another classifier be 
trained, but using a different a set of feature extraction, specifically, using the wavelet scattering 
with an invariance scale of 0.5features that were extracted from all the 928 training samples. The 
number of wavelet features which were deduced from the wavelet scattering coefficient that could 
be used for training was approximately170 wavelet features per second, which amounted to a total 
of 928x170=157760 features. These features were used together with the random subspace method 
based ensemble classifier by fixing the number of learning cycle as 50.
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The confusion matrices for testing the samples against the three trained networks are shown 
in Figure 12a,b,c. In Figure 12a, the trained-CNN classifier unveiled classifying 113 healthy v. 
pathological samples out of 116 test samples correctly, thereby providing a mean accuracy of 97.41%. 
The confusion matrix of Figure 12b reveals that out of 116, 115 healthy test samples are classified 
correctly. The same applies to 108 pathological voice test samples out of 116.

In comparison to the ensemble classifier, the CNN network gave a consistent performance 
over all the classification metrics, that is, 97.4% mean accuracy each for healthy v. pathological 
categories respectively. It also displayed consistent values over important metrics such as mean 
accuracy, sensitivity, specificity, precision and F1 score. However, there is still room for improvement 
as demonstrated by the values of FPR, MCC and CKI. Conversely, the proposed ensemble-CNN 
decision fusion technique yielded a comparatively higher mean accuracy of 99.14%.The remaining 
eight (8)metrics also demonstrated higher values. A combination of prediction responses obtained 
by testing the test samples against each of the two trained classifiers is thus capable of boosting the 
true positive classification rate.

Table 3 highlights a comparison of the performance achieved by the proposed fusion model, 
ensemble, and CNN classifiers’ prediction scores. Out of the three trained classifiers, the ensemble 
classifier received the lowest mean accuracy, that is, 96.12%. The performance on the same dataset by 
a deep neural network (DNN), SVM, and RF classifiers which were obtained by authors of (Chen & 
Chen,) has also been recorded in this table. They used six(6)classification metrics, including accuracy, 
error, sensitivity, specificity, precision, and F1 score but left out three popular and important metrics 
which should also be used for judging network predictions, namely, FPR, MCC, and Cohen’s kappa 
index.

Nevertheless, the results via three (3) different state-of-the-classifiers have yielded considerable 
accuracy. Specifically, the SVM classifier provided a high accuracy of 92.9% in comparison to the RF 
which yielded only 90.3% accuracy. These two techniques have shown somewhat similar performance 
in terms of F1 score and specificity. However, using a stacked auto-encoder based DL approach, the 
researchers achieved an astounding performance over their SVM and RF implemented counterparts.

Figure 11. Training progress showing the convergence of accuracy and loss.
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Figure 12. Confusion matrix resulting from the testing of the a) trained CNN, b) ensemble classifier, and c)Proposed decision fusion.

Figure 12b. Confusion matrix resulting from the testing of the trained ensemble classifier
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Our proposed approach has nonetheless outperformed this DNN technique in seven (7) out of 
nine (9) metrics by yielding a mean accuracy of 99.14% in comparison to their 98.6%.

5. CONCLUSION

This work investigates improving the accuracy of the diagnosis of voice pathology in search of more 
robust solutions. The key contribution of this work is the deployment of a novel architecture to initially 
perform a deep learning-based filtering of the input voice signal followed by a decision-level fusion 
of deep learning and a non-parametric learner to provide highly precise voice pathology detection 
results. The efficacy of the proposed technique is verified vis-a-vis results of recently performed 
research on the same dataset but based on different training algorithms. Our results show that the 
use of ML classifier can reach up to 96.12% accuracy whereas the proposed fusion model with good 
selection of different features, filter, and the integration of DL and non-parametric leaner provided 
the highest accuracy of 99.14%. The proposed approach has successfully produced remarkable and 

Table 3. Tabulation of the performance shown by various techniques and metrics. All values are recorded in percentage (%).

Method Acc. Error Sen. Spe. Pre. FPR F1 MCC CKI

Ensemble 96.12 0.38 99.14 93.10 93.50 6.90 96.23 92.41 92.24

CNN 97.41 2.59 97.41 97.41 97.41 2.59 97.41 94.83 94.83

Proposed fusion model 99.14 0.86 1 98.28 98.31 1.72 99.15 98.29 98.28

DNN (Chen & Chen,) 98.6 1.4 97.8 99.4 99.4 - 98.4 - -

SVM (Chen & Chen,) 92.9 7.1 91.6 94.4 93.6 - 92.2 - -

RF (Chen & Chen,) 90.3 9.7 90.3 94.1 93.8 - 92 - -

Figure 12c. Confusion matrix resulting from the testing of the trained Proposed decision fusion.
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convincing results that may benefit future researchers and practitioners in attempting to detect voice 
pathology non-invasively.

Notwithstanding, several limitations should be noted. First, the amount of data needed to train 
the model can be a challenge to this sort of research. While the PhysioNet’s VoiceICar fEDerico 
II database may be comprehensive in terms of the number of people being recorded, yet in term of 
the number of samples of pathological patients, fewer samples of healthy people than desired were 
available. The statistically uneven distribution of individual pathologies is another issue, making the 
identification of voice pathology a complex issue. Finally, even though countermeasures to balance 
the classes with sample weights have been taken, we did not conduct our experiments separately on 
subsets of data for different genders.

Future work should consider the extraction of enhanced dimensions of the dataset and embedded 
quality attributes, including a new vowel combination and gender separation. In addition, the voice 
pathology identification technique may be further improved by reviewing various forms of CNN and 
training models. We believe that the use of DL methods for novelty detection, such as deep autoencoder, 
for modeling the normophonic voice can be an interesting idea for future investigation with prospect 
to identify challengingly disordered voices that are sparsely distributed across databases. Importantly, 
our work implies that the next step towards the goal of computerized acoustic analysis of voice signals 
can provide clinicians with fast, supportive methodology applicable to various state-of-the-art ML 
algorithms for massive datasets that could benefit from automated voice pathology detection.
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