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ABSTRACT

The most important application of voice profiling is pathological voice detection. Parkinson’s disease 
is a chronic neurological degenerative disease affecting the central nervous system responsible for 
essentially progressive evolution movement disorders. Seventy to ninety percent of Parkinson’s 
disease (PD) patients show an affected voice. This paper proposes a methodology for PD based on 
acoustic, glottal, physical, and electrical parameters. The results show that the acoustic parameter is 
more important in the case of Parkinson’s disease as compared to glottal and physical parameters. 
The authors achieved 97.2% accuracy to differentiate Parkinson and healthy voice using jitter to pitch 
ratio proposed algorithm. The authors also proposed an algorithm of poles calculation of the vocal 
tract to find formants of the vocal tract. Further, formants are used for finding the transfer function 
of vocal tract filter. In the end, the authors suggested parameters of the electrical vocal tract model 
are also changed in the case of PD voices.
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1. INTRODUCTION

In multiple aspects, neurodegenerative, psychiatric and developmental disorders will adversely 
impact humans at all levels. Not only will these illnesses adversely affect one’s quality of life, but also 
shorten one’s average life span. Importantly, mental disabilities are often followed by a progressive 
deterioration of mental and physical abilities, which can in turn lead to one becoming dependent 
upon public-private healthcare resources, one’s family and/or extended social networks for life. A 
key contribution of this work is towards improving the overall standards of human life and wellbeing 
vis-à-vis ongoing societal interactions since early detection of these devastating diseases will lessen 
the impact of the adverse effects, allowing timely monitoring of the evolution of these diseases.

Parkinson disease (PD) is a neurodegenerative disorder affecting predominately dopamine-
producing “dopaminergic” neurons (Singh, 2007). According to World Health Organization (WHO), 
PD currently has 0.351 Disability Adjusted Life Years (DALYs) (Braga, 2019). Moreover, rates of PD 
occurrence are now expected to grow with increased life expectancy. While no cure for PD has yet 
been found, the quality of life for infected patients may be significantly improved with early diagnosis 
and interventions (Lang, 1998).Today, we know that a decrease of dopamine producing cells in the 
brain causes PD, but the root cause of decrease in dopamine producing cells is still unknown. The 
decrease in these cells affects the role of the neural activities and results in PD (Ho, 1999).
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Typical indicators of PD consist of muscular inflexibility, resting shake, postural volatility and 
cognitive destruction (Ramaker, 2002). PD is most common characterized by quiet voice, heaviness, 
slow and monotonous expression, imprecise articulation, air shortage and voice tremor. Owing to a 
slow initiation, delays in responses can also be observed, which can also be followed by speech rushes. 
During the course of the disease, there is often a reduced rate of speech and reading (Martin,2016; 
Sachin, 2008). Speech and voice can be studied by voice analysis and by evaluating other parameters 
of speech and language, such as subtle variations in voice frequencies (jitter), voice cycle-to-cycle 
magnitude difference (shimmer), volume (amplitude), vocal cord opening pressure, and more. More 
specifically, individuals affected by PD tend to have shorter average phonation time, higher jitter and 
glow, lower pitch range and decreased phonation threshold pressure (Chenausky, 2011).

In this article, the detection of PD via acoustic, physical, glottal parameters, frequency response 
of vocal tract as well as its equivalent electrical parameters is explored. In order for IJHISI readers 
to better understand the proposed methodologies in the context of voice pathology and detection, 
we present first, a method for detection and classification of PD voice based on acoustic, glottal 
and physical parameters, then discuss a series of details of the circuit for vocal tract filter for PD 
voice classification, and finally, proposed equivalent electrical circuit of vocal tract to compute its 
electrical parameters. The varying values of these parameters have been successfully used to classify 
PD affected subjects.

The remainder of this paper is organized as follows. Section 2reviewsthe extant literature related 
to the detection of PD. Section 3details the speech database and the proposed study methodology used 
to explore PD detection. Section4 describes study results and practical implications of the findings. 
Finally, Section 5offers a summary of the key contributions of this work, highlights potential study 
limitations and provides insights into future work.

2. LITERATURE REVIEW

Over the years, increasing attention has been given to studying people suffering from PD on the 
basis of voice and speech patterns (Rusz, 2015; Saxena, 2014). To date, about 90% of PD patients 
are projected to suffer speech related problems (Little, 2009). Rouzbahani & Daliri (2011) defined a 
technique to diagnose PD in humans using voice signals. Saloni, et al. (2016) had proposed classifying 
PD via local angular frequency and instantaneous deviation in the waveform. In advance-stage PD, 
the voice is often neither audible nor intelligible, thereby leading to deterioration in the functioning 
of vocal folds. To identify the effects of speech and voice disorders in PD, there are many speaking 
exercises that could be used. Sustained phonation, freely spoken spontaneous expression are the most 
traditional of these (Mittal, 2020).

It is estimated that a PD patient would have some type of speech and language impairment 
(Robin, 2015). Significant differences of speech can be affected, such as spoken language production 
(dysprosody), voice production (dysphony), and articulation (dysarthria) (e.g., Galaz, 2016;.
Pawlukowska, 2015;Lirani-Silva, 2015;Sapir, 2014).Recent research has also made great progress 
in speech-based measures for PD, producing interesting results due to the non-invasive nature of 
the methods. Polat, et al. (2020),presented a novel data sampling approach for the classification 
of PD based on the acoustic characteristics of speech signals. Some changes in vocal cords have 
been described in Parkinson’s associated hypokinetic dysarthria, which can be observed by direct 
laryngoscopy (Blumin, 2004).

Prior research has focused on emerging approaches in the detection of PD. Several studies on 
the prediction and classification of Parkinson’s disease via different approaches have been reviewed 
herein. A recent simple approach based on handwriting from people with PD has been advanced in 
(Gupta, et al.,2020).The combination of empirical mode decomposition and neural network (NN) 
method used for Parkinson’s disease classification has also been advocated (e.g., Zeng, et al, .2019). 
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Tsanas et al. (2011) proposed the Relief and Local Learning-Base Feature Selection (LLBFS)
techniques for the detection of PD.

Other classification algorithms and smart methods have also been suggested, for example, some 
researchers have argued the use of prediction support tools for PD classification (e.g., Affonso, 2017; 
Hrelja, 2013; Ficko,2010), but accurate predictions can only be made to a certain degree (Liu,2015).
Alku(2011)discussed the idea of Glottal inverse filtering (GIF) for use infitting a model for the vocal 
tract filter, resulting in an estimate of the glottal flow signal. (Drugman, 2012; Sakar, et al. 2013) 
examined various kinds of sound recordings obtained from people with PD. The extracted features 
have been fed into Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) classifiers for 
PD diagnosis via a leave-one-subject-out (LOSO) cross-validation scheme and summarized Leave-
One-Out.Also, several experiments on voice recordings were originally conducted at the University 
of Oxford (Little,2009).Shahbakhi, et al. (2014) presented the best PD classification results at 94.50% 
accuracy. A method for acoustical analysis of PD speech, the classification of the extent of speech 
impairment with the aim of improving speech therapy success rates described by (Baasch, et al.,2016)

Some published work using Random Forest (RF) algorithm to detect PD can also be found. 
Vaiciukynas, et al. (2017) recommended a technique for detecting PD using RF from sustained 
phonations. The possibility of combining the Multi-Edit-Nearest-Neighbor (MENN) and RF techniques 
to identify PD was discussed by Zhang, et al. (2016). To develop a classification model, Caglar, et al. 
(2009) used Machine Learning Programming (MLP). The supervised learning algorithm focused at 
separating massive amounts of data using the hyper plane and margin concept described by (Sewell, 
2017).

Another body of research work discussed the detection of healthy and pathological voices 
via the electrical modeling of the vocal tract (Mittal, 2019). Wee, et al. (2008) presented the first 
experimental integrated-circuit vocal tract can be used to generate speech. Wee, et al.(2011) described 
an integrated-circuit vocal tract to create speech-locked loop. A two-mass model characterizing the 
properties of vocal folds was explored by Yao (2013). For the classification of normal and stressed 
voice, he used the vocal tract to simulate speech production. Dixit (2014) examined the variations 
between PD patients v. normal subjects using Praat as the software for extracting features from the 
voice signal, taking into consideration the voice parameter analysis.

With the overall goal to detect PD via voice analysis, this study investigates the detection of PD 
via acoustic, physical, glottal parameters, frequency response of vocal tract as well as its equivalent 
electrical parameters.

3. MATERIALS AND METHOD

3.1. Sampling
The dataset used in this work was drawn fromKing’s College London (KCL) Hospital, Denmark 
Hill, Brixton, London SE5 9RS. KCL used a typical examination room with about ten (10) square 
meters area and a typical reverberation time of approximately 500ms to perform the voice recordings.

The dataset comprises phonation from 16 Parkinson and 21 control subjects. The samples were 
recorded with Motorola Moto G4 Smartphone using “Toggle Recording App”. The recordings were 
done by test executor at a sampling frequency of 44.1 KHz with 16 bit resolution of spontaneous 
dialog with the participants. The test executor starts asking random questions about places of interest, 
local traffic, or personal interests, where and if acceptable. For each normal v. PD participant, the 
voice recordings are labeled in the following format:

SI_ HS_ HYR_ UPDRS II-5_UPDRS III-18	

Where:
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•	 SI is subject identification in the form IDNN, N in [0, 9]
•	 HS is the health status label (Normal or PD accordingly)
•	 HYR is the expert assessed H&Y scale rating
•	 UPDRS II-5 is according to expert peer-reviewed score
•	 UPDRS III-18 is the according expert assessed score

3.2 Method
Figure 1 shows the proposed methodology used for PD detection.

Parameters used in proposed methodology are briefly described below.

3.2.1 Acoustic Parameters:

•	 Pitch: In phonetics, the “pitch” is the frequency (or harmonic height) of the lowest tone wave in 
voice (Forero Mendoza, 2014).

•	 Jitter: The cycle-to-cycle variance of the basic frequency, that is, the average absolute difference 
between successive cycles, express as a jitter(Forero Mendoza,2014).

Jitter = 
1
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where, Ti is the ithextracted F0 period length and N is the number of extracted F0 periods.

•	 Shimmer: Variability in decibels (dB) of peak-to-peak amplitude. The process used to evaluate 
the shimmer is similar to jitter, the only difference being that the jitter takes into account intervals 
and shimmer takes into account the full signal amplitude (Forero Mendoza,2014).

Figure 1. Proposed Methodology
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where, Ai is the ith extracted F0 period amplitude.

•	 Jitter to Pitch Ratio (JPR): It is defined as ratio of Jitter to the Pitch of voice signal.

3.2.2 Glottal Parameters:
The QOQ and NAQ are often selected as the glottal parameters as they are robust to measuring noise 
and do not require the difficult task of estimating the glottal opening moment (Fant, 1985).

•	 Normalized Amplitude Quotient(NAQ): The NAQ is computed as:

NAQ= 
AQ

T
	 (3)

•	 Quasi Opening Quotient (QOQ):This is defined as the time interval during which the glottal 
flow is 50% above the minimum flow.

•	 L-F model Parameters: The LF model is used to represent the glottal flow derivative (GFD) 
(Finkelhor,1988).

Typically, the four parameters are three time points te, tp, te and one amplitude parameter Ee. As 
shown in Figure2,te is the glottal closing instant, ta is related to return phase, tp is positive peak of 
glottal flow and Ee is negative peak of derivative function.

Figure 2. Waveform of Glottal Flow Derivated(Finkelhor,1988)
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3.2.3 Physical Parameters:

•	 Stiffness (k):

Stiffness is related to muscle tension and fundamental frequency. In the Ishizaka-Flanagan (1972)
model, the standard value of m1 can be considered to be equal to 0.125g.Moreover,Dejonckere(1984) 
relates m1& m2 and k1 & k2 as:

m2 = 
m
1

5
and k2 = 

k
1

10
	 (4)

where, k1is lower spring stiffness and m1 is lower mass. Similarly, k2 is upper spring stiffness and 
m2 is upper mass.

F0, as a function of k and m can be defined as:

F0 = 1
2À

k

m
	 (5)

where k = k1 + k2 and m = m1 + m2.Consequently, F0 reduces to:

F0 = 1
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From equation (6), k1may be computed as:

k1 =
F * * m0 2 1 2

1 1

2

1
À( ) ( ).

.
	 (7)

•	 Viscosity:

Viscosity of vocal foldsmay be calculated as[38]:

r m r m k
1 1 1 2 2 2 2
2 1 2

� �
= =ζ ζk 	 (8)

whereζ1 , ζ 2  refer to damping ratios for the viscous resistances r1 and r2 .

3.2.4 Classifier
Largely based on similarity feature, the kNN classifier is used for classification. Put simply, this 
classifier checks how similar any data point is to its neighboring data points, and it then classifies 
the objects automatically based on the principal of the computed minimum distance to the centroid 
(Agarwal, 2016).



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

7

4. RESULTS AND IMPLICATIONS

The acoustic, glottal and physical parameters results for every normal v. PD subject have been 
computed and provided in Table 1. In the case of a PD person’s voices, it has been observed that 
the comparative values of pitch and the fundamental frequency are smaller whereas the jitter and 
shimmer values are bigger. The roughness in the voice is increased due to the increase in jitter in PD 
persons. An increase in shimmer means an increase in the amplitude of signal with increase inthe 
voice perturbation, resulting in a less clear voice in the case of PD.

As shown in Table 2 and Figure 3, mean values of shimmer and jitter tend to be bigger with the 
pitch being smaller in case of PD group. Table 2 depicts the mean and standard deviation values of 
the acoustic parameters. The standard deviation value of shimmer is greater while thepitch and jitter 
are smaller in the case of the PD group.

Figure 3 shows the bar graph of mean (μ) and standard deviation (σ) values of each acoustic 
parameter.

Table 1. Computed values of Acoustic Parameters

Normal Subjects Parkinson(PD) Subjects

Pitch 
(Hz)

Jitter 
(%)

Shimmer 
(dB)

(Jitter/Pitch) 
Ratio

Pitch 
(Hz)

Jitter 
(%)

Shimmer 
(dB)

(Jitter/Pitch) 
Ratio

217.3 1.42 0.67 0.65 154.6 3.73 1.44 2.42

217.9 2.59 0.95 1.19 157.8 3.21 1.66 2.04

211.7 1.57 0.75 0.74 179.7 2.70 1.46 1.5

183.9 1.98 0.85 1.08 176.4 4.44 1.62 2.52

204.4 1.56 0.74 0.76 160.2 2.80 1.11 1.75

183.2 2.12 0.84 1.15 174.5 2.76 1.42 1.58

207.8 2.67 0.96 1.28 165.3 2.74 1.14 1.66

275.4 2.67 1.27 0.97 148.2 2.95 0.84 1.99

266.0 2.69 1.08 1.01 141.0 2.84 1.02 2.01

263.8 2.72 1.36 1.03 196.0 3.36 1.38 1.71

214.6 2.02 1.26 0.94 225.7 3.79 1.63 1.68

186.4 2.71 1.06 1.45 226.4 3.85 1.75 1.70

187.9 1.65 0.77 0.88 179.2 3.37 0.97 1.88

189.8 2.60 0.96 1.37 177.5 3.05 1.12 2.07

195.4 1.52 0.78 0.77 147.6 3.43 1.64 2.33

189.4 1.51 0.83 0.79

191.5 2.59 0.71 1.35

260.2 2.93 1.18 1.12

254.4 1.96 0.83 0.77

283.4 2.81 0.58 0.99

395.8 2.52 0.62 0.63
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NAQ is an estimation of the duration of the glottal closing phase. It is the most effective measure 
for describing voice qualities. Table 3 shows the variations of glottal parameters for normal v. PD 
subjects’ voices.In the case of PD subjects, values of NAQ are higher.

An increased NAQ indicates a breathy phonation. The variation in the values of Quasi Opening 
Quotient (QOQ) quantify the glottal cycle in the case of normal v. PD subjects. In the case of PD 
subjects, the positive peak time(Tp) of glottal wave is large and changes the period of glottal wave.
The glottal closing time (Te)is increased in the voice of the PD subjects.

Table 4 represents the values of mean and standard deviation of glottal and LF parameters. As 
shown inFigure 4, in the case of PD subjects, the mean values of NAQ, QOQ, Tp and Te parameters 
and standard deviation of Tp and Te increased; also, from Figure 4 and Table 4, it is apparent thatthe 
standard deviation of NAQ and QOQ decreased in the case of PD.

Table 5 shows the values of stiffness (k1) and viscous resistance (r1) in voices of normal v. PD 
subjects. In the case of PD subjects,the values of stiffness(k1)and viscous resistance (r1) are smaller.

From Table 6 and Figure 5, it is apparent that the mean value of physical parameters is smaller 
while the standard deviation of physical parameters is bigger in the case of PD subjects.

Table 2. Mean and Standard Deviation of Acoustic Parameters

Acoustic Parameters Normal PD

Mean (μ) Standard deviation 
(σ)

Mean (μ) Standard deviation 
(σ)

Pitch 227.6 51.09 174.04 25.8

Jitter 2.23 0.522 3.27 0.51

Shimmer 0.91 0.22 1.35 0.29

Figure 3. Mean (μ) and Standard deviation (σ) of acoustic parameters
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4.1 Classification
The aim of KNN classifying algorithm is to automatically distinguish normal v. PD subjects via 
discriminatory features derived from speech signals. In order to measure the performance of each 
parameter in distinguishing between normal v. PD speech signals, the receiver operating characteristic 
(ROC) and the area under curve (AUC) were used.

Table 3. Computed values of glottal parameters

Normal Subjects Parkinson(PD) Subjects

NAQ QOQ Tp (ms) Te(ms) NAQ QOQ Tp (ms) Te(ms)

0.08 0.17 0.89 2.53 0.18 0.45 5.53 7.58

0.06 0.38 0.006 0.01 0.15 0.58 4.43 7.01

0.11 0.23 2.17 3.36 0.08 0.28 8.05 14.8

0.09 0.32 0.01 0.02 0.051 0.16 0.09 0.21

0.07 0.29 2.28 5.01 0.09 0.49 1.45 3.39

0.05 0.24 0.03 0.03 0.12 0.34 0.021 0.027

0.02 0.09 0.01 0.04 0.11 0.45 0.09 0.12

0.21 0.60 1.15 3.50 0.13 0.49 0.07 0.11

0.07 0.31 2.79 3.86 0.23 0.58 3.61 7.81

0.14 0.55 3.47 5.38 0.12 0.20 1.67 2.27

0.14 0.42 4.94 7.15 0.17 0.49 4.72 7.00

0.04 0.34 1.96 2.97 0.15 0.30 0.03 0.13

0.07 0.39 3.18 4.44 0.10 0.40 0.04 0.06

0.04 0.12 0.28 0.53 0.15 0.42 1.31 2.74

0.07 0.17 3.86 4.86 0.08 0.49 2.54 3.88

0.05 0.30 0.001 0.002

0.06 0.22 0.04 0.05

0.07 0.39 0.009 0.017

0.21 0.40 1.25 3.40

0.08 0.21 2.49 3.66

0.12 0.45 3.37 3.38

Table 4. Mean and Standard Deviation of Time-based and LF-Model Glottal Parameters

Glottal Time-based and 
LF-Model Parameters

Normal PD

Mean (μ) Standard deviation (σ) Mean (μ) Standard deviation (σ)

NAQ 0.09 0.05 0.13 0.04

QOQ 0.13 0.31 0.41 0.12

TP 1.63 1.56 2.24 2.50

Te 2.16 2.58 3.81 4.29



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

10

Figure 4. Mean (μ) and Standard Deviation (σ) of glottal parameters

Table 5. Computed values of stiffness (k1) and viscous resistance (r1)

Normal Subjects Parkinson(PD) Subjects

Fundamental 
Frequency F0 (Hz)

Stiffness (k1)
(kdyn/cm)

Viscous 
Resistance (r1)

Fundamental 
Frequency F0 (Hz)

Stiffness (k1)
(kdyn/cm)

Viscous 
Resistance (r1)

180 174.2 0.93 91 44.5 0.47

183 180.1 0.94 122 80 0.63

118 74.8 0.61 62 20.6 0.32

261 223.5 1.05 142 108.4 0.73

141 106.9 0.73 251 338.8 1.3

242 314.9 1.25 229 282 1.18

267 383.3 1.38 180 174.2 0.93

242 314.9 1.25 193 200.3 1

178 170.3 0.92 116 72.3 0.6

144 111.5 0.74 228 279.5 1.18

127 86.7 0.65 121 78.7 0.62

188 190 0.97 179 172.3 0.92

136 99.4 0.70 228 279.5 1.18

234 294.4 1.21 193 183.6 0.95

73 28.6 0.37 213 243.9 1.10

191 196.1 0.99

185 184 0.95

174 162.8 0.90

212 241.7 1.09

158 134.2 0.81

164 144.6 0.85
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4.1.1 The Receiver Operating Characteristic (ROC):
In ROC, the false positive rate (FPR) indicates an incorrect observation by current classifier whereas 
the true positive rate (TPR) indicates the correct observation by the current classifier. As shown 
inTable7, the value of AUC is larger in case of acoustic parameters as compared to other parameters. 
Essentially, a larger AUC in acoustic parameters represents better performance for PD detection.

In order to test the classifier performance, sensitivity (SE), specificity (SP), the overall accuracy 
(AUC) and Matthews’s correlation coefficient (MCC) are all measured (Aggarwal,2016) as follows:

Sensitivity =
TP

TP FN+
	

Specificity = 
TN

TN FP+
	

Overall Accuracy= 
TP TN

TP TN FP FN
�� �

� � �� �
	

MCC = 
TP TN FP FN

TP FP TP FN TN FP TN FN

* *� � � � �
�� � �� � �� � �� �

	

Table 6. Mean and Standard deviation of Physical Parameters

Physical Parameters Normal PD

Mean (μ) Standard deviation (σ) Mean (μ) Standard deviation (σ)

Stiffness (k1)
(kdyn/cm)

181.7 89.3 170.5 99.8

Viscous Resistance (r1) 0.91 0.24 0.87 0.29

Figure 5. Mean (μ) and Standard Deviation (σ) of physical parameters
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MCC: Matthews’s correlation coefficient is 1 for perfect prediction while 0 for extremely arbitrary 
prediction.

Table 8 shows the comparison of kNN classifier performance for acoustic, glottal and physical 
parameters. Result shows 97.2% accuracy with acoustic parameters.

The next subsections describe all pole and electrical modeling of vocal tract to differentiate 
between normal v. PD voices.

4.2 All Pole Modeling of Vocal Tract
The acoustic tube model of vocal tract is all-pole (Ali, 2016). Using LPC modeling of the vocal tract 
filter, its transfer function is computed. Thereafter, with the help of the transfer function, the values 
of components of vocal tract filter circuit are further computed. Table 9 shows the computed values 
of transfer functions and formants for each normal v. PD subject.

4.2.1 Circuit Design of vocal tract filter
The transfer function of second order filter is given as:

H(s) = 
A

s
Q
s2 0

0

2� �
� �

	 (9)

The unity gain sallen-key low pass circuit shown in Figure 6.
The transfer function of the circuit is given by:

Table 7. Computed values of AUC for different parameters

Parameters TPR FPR Area Under Curve(AUC)

Acoustic 0.95 0.07 0.93

Glottal 0.71 0.40 0.60

Physical 1 1 0.53

Table 8. Performance Analysis of kNN classifier

Parameters Sensitivity (SE) Specificity (SP) Overall Accuracy 
(AUC) in %

MCC

Acoustic 0.95 0.93 97.2 0.88

Glottal 0.71 0.70 66.7 0.31

Physical 0.58 0 58.3 0
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Table 9. Computed values of formants and transfer function

Normal Subjects Parkinson(PD) Subjects

F1 F2 F3 Transfer Function H(s) F1 F2 F3 Transfer Function H(s)

351 9500 11420
1

1 322 0 3367
2s s+ +. .

4051 10400 12460
1

1 159 0 1815
2s s+ +. .

6435 10110 12890
1

0 99 0 086
2s s+ +. .

4484 9238 13250
1

1 383 0 403
2s s+ +. .

203 5341 9319
1

1 25 0 27
2s s+ +. .

6268 10230 13530
1

1 281 0 310
2s s+ +. .

520 6244 10040
1

1 096 0 138
2s s+ +. .

194 5599 10470
1

1 175 0 175
2s s+ +. .

502 6746 9589
1

1 19 0 27
2s s+ +. .

233 8256 8729
1

0 982 0 017
2s s+ +. .

7102 10610 14440
1

0 9128 0 0137
2s s+ +. .

425 5825 10430
1

1 082 0 100
2s s+ +. .

280 6923 10070
1

1 054 0 0110
2s s+ +. .

5646 9975 14170
1

0 978 0 0137
2s s+ +. .

5901 10230 12490
1

0 896 0 119
2s s+ +. .

2467 9381 10440
1

1 279 0 297
2s s+ +. .

594 5067 10150
1

1 21 0 26
2s s+ +. .

92 6348 8783
1

1 218 0 238
2s s+ +. .

8696 9279 12070
1

1 114 0 200
2s s+ +. .

342.2 5685 10550
1

1 095 0 103
2s s+ +. .

663 6301 9790
1

0 971 0 061
2s s+ +. .

4185 10250 13800
1

1 019 0 039
2s s+ +. .

6853 9709 14500
1

1 04 0 134
2s s+ +. .

261 6991 10380
1

1 129 0 2553
2s s+ +. .

7431 9635 12840
1

1 12 0 25
2s s+ +. .

1633 9449 13180
1

1 458 0 4731
2s s+ +. .

501 4469 9799
1

1 059 0 974
2s s+ +. .

352 5760 10150
1

1 143 0 150
2s s+ +. .

continued on next page
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Figure 6. Circuit for vocal tract filter

Normal Subjects Parkinson(PD) Subjects

F1 F2 F3 Transfer Function H(s) F1 F2 F3 Transfer Function H(s)

624 7309 10310
1

1 391 0 435
2s s+ +. .

253 6247 8966
1

1 167 0 217
2s s+ +. .

5918 11010 14140
1

0 841 0 088
2s s+ +. .

395 8573 9846
1

1 08 0 156
2s s+ +. .

7287 10720 11290
1

1 136 0 1772
2s s+ +. .

2715 9805 12270
1

1 268 0 3085
2s s+ +. .

4694 9725 13520
1

1 143 0 172
2s s+ +. .

6477 10310 13700
1

1 002 0 048
2s s+ +. .

Table 9. Continued
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1
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�
�
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�
� �

	 (10)

Comparing equations4&5

A = ω
0

2 = 
1

2

1 2
R C C

	 (11)

Consider, R1=R2=R

C1 = 
2

0

Q
Rω

and C2 = 
1

2
0

ω RQ
	 (12)

Table 10 shows all the computed values of components for each normalv. PD subject obtained 
from the circuit as given in Figure 6using equations 10,11 and 12.

Viewing the computed values in Table 11, it is clearthat in the case of most of PD subjects, the 
3-dB freuency is lower as compare to normal subjects. This means that the frequency response of 
the vocal tract filter is more stable at high values of frequency for normalsubjects.

4.2.2 An Electrical Analogue of the Vocal Tract
All speech sounds depend on the vocal tract configuration, glottal excitation and degree of coupling 
with the nasal tract. By making an electronic or electrical analogue of the vocal tract, it should be 
possible to synthesize its connected speech.

The vocal tract may be approximated as a cascade of short circular cylinders. The T-section 
electrical analogue for vocal tract is shown in Figure 7. The current (I) is analogous to volume velocity, 
inductances (L1, L2) are analogous to the inertance of air mass and capacitance(C) is analogous to 
the compliance of the air volume [33]. The resistance (R) represents the power dissipated in viscous 
friction at the tube wall, and the conductance (G) represents the power loss due to heat conduction 
at tube wall. Given that their values being small for the frequencies of interest, (R)and (G) may be 
neglected.

In the analogue, the glottis becomes a current source and current is given as:

i(t) = A(t) 
2Pso
ρ

	 (13)

Where,
A(t) is the area of glottal opening, Pso is mean value of sub-glottal pressure and ρ is density of air.

The inductances are L
n

 = 
Ál

kA

n

n2
and the capacitances are C

n
=
kl A

Ác

n n

2
. The transmission 

line is terminated byL
Á

À
A

r n
�
8

3
�  and R

Ác

A
r

n

�
128

9
2�

, where An is the final (mouth) area.
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Table 11 shows the computed values of vocal tract length and area of each subject required for 
the computation of values of different components values of electrical equivalent of vocal tract.Figure 
7. shows the equivent electrical circuit of the vocal tract.

Table 10. Computed values of components of vocal tract filter circuit for each Normal and PD subject

Normal Subjects Parkinson(PD) Subjects

R1(k) R2(k) C1(nf) C2(nf) 3dB 
Frequency(kHz)

R1(k) R2(k) C1(nf) C2(nf) 3dB 
Frequency(kHz)

10 10 1.8 1.8 5.6 10 10 4.7 9.8 2.4

10 10 .58 22 6.9 10 10 5.4 0.74 1.5

10 10 1.9 2.2 5.6 10 10 1.9 2 5.4

10 10 1.10 3.2 9.8 10 10 4.6 8 2.4

10 10 1.5 1.6 6.9 10 10 5 73 1.2

10 10 1.5 4.1 7.3 10 10 2.2 30 3.4

10 10 1.5 0.25 5.5 10 10 1.6 32 3.3

10 10 10 0.5 10.7 10 10 1.8 0.2 4.5

10 10 1.4 1.7 7.2 10 10 1.5 0.57 5.7

10 10 1.5 2.1 7.3 10 10 1.5 1.7 5

10 10 2.08 6.6 6.2 10 10 1.4 1.6 7.4

10 10 1.5 3.1 7.4 10 10 3.2 4 3.3

10 10 1.4 1.7 7.6 10 10 3.1 4.1 3.5

10 10 1.5 0.4 5.6 10 10 1.5 2.9 7.1

10 10 1.3 1.1 7.6 10 10 1.5 9.8 5.7

10 10 0.32 8.5 5.6

10 10 1.8 1.6 5.5

10 10 1.4 2.4 8

10 10 1.4 1.4 7.2

10 10 1.4 2.5 7.9

10 10 1.6 9 5.8
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Table 11. computed values length and area of vocal tract

Normal Subjects Parkinson(PD) Subjects

L1=
C
F2 2

 

(cm)

L2 = (cm)

CF
F
2

20 1
2 2π

 

A1 (cm2) A2 (cm2) L1=
C
F2 2

 

(cm)

L2 = 
CF
F
2

20 1
2 2π

 

(cm)

A1 (cm2) A2 (cm2)

1.8 13.8 0.29 0.65 1.6 0.11 0.30 0.59

1.7 0.04 0.31 0.59 1.9 0.08 0.55 0.52

3.3 23.2 0.28 0.52 1.7 0.04 0.44 0.36

2.8 4.1 0.48 0.41 3.1 26.6 0.43 0.69

2.6 4.7 0.54 0.48 2.1 27.2 0.63 0.74

1.6 0.03 1.6 1 3 5.7 1.2 1.05

2.5 15.8 0.36 0.67 1.7 0.05 0.89 0.91

1.7 0.05 0.87 0.87 1.8 0.27 0.60 0.81

3.4 2.5 0.42 0.55 2.7 30.8 0.68 0.60

1.9 0.02 0.56 0.75 3.1 8.7 10.2 2.4

2.8 2.5 0.36 0.31 1.7 0.1 0.46 0.45

1.8 0.03 0.20 0.18 2.5 18.3 0.21 0.40

1.8 0.03 0.20 0.18 1.8 0.6 0.18 0.26

3.9 3.1 0.62 0.69 3 8.3 0.65 0.62

2.4 3.3 0.81 1.03 2.8 17.4 0.37 0.58

1.6 0.05 0.43 0.60

2.0 9.8 0.60 0.86

1.6 0.03 0.63 0.63

1.8 0.23 0.73 0.73

1.8 0.04 0.60 0.67

1.7 0.04 0.47 0.66
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Table 12 shows the variation in component values of equivalent electrical circuit of the vocal 
tract for each normalv. PD subject.

Figure 7. Electrical Equivalent circuit of Vocal Tract

Table 12. Computed values of all componets of equivalent electrical circuit for each subject

Normal Subjects Parkinson’s(PD) Subjects

L1 L2 C1 C2 Lr Rr L1 L2 C1 C2 Lr Rr

45.9 157 28 480 1.3 89 39.4 1.38 26 3.5 14 98

40.5 0.50 28 1.27 1.3 98 25.5 1.13 57 2.2 4.4 111

87.2 330 50 65 1.2 111 29.2 0.82 40 40 4.1 161

43.1 74 72 91 1.0 141 53.3 285 72 994 5.1 84

35.6 72.4 76 122 1.1 120 24.6 272 71 109 5.3 78

7.4 0.22 138 1.6 1.7 58 18.5 40.1 195 324 6.3 55

51.4 174 308 573 1.4 865 14.1 0.40 82 2.4 1.5 63

14.4 0.42 80 2.3 1.6 67 22.2 2.4 58 11 5.5 72

59.9 33.6 77 74 1.3 105 29.3 380 99 1.14 4.8 97

25.1 5.8 77 813 1.5 77 2.2 26.8 171 1131 9.6 24

57.5 0.32 42 42 95 187 27.3 1.64 42 86 4.1 128

66.6 3.3 19 292 72 322 88.1 338 28 14 3.9 145

66.6 3.3 19 292 1.4 322 74 17 17 8.4 3.1 223

46.5 0.49 131 115 1.4 84 34.1 99 105 278 4.8 93

21.9 1.1 105 184 4.7 56 56 222 56 547 4.7 100

27.5 0.01 52 1.6 1.3 97

24.6 99.3 65 456 1.6 67

18.8 0.01 54 1.02 1.4 92

18.2 0.09 70 9.1 1.5 79

22.2 0.01 58 1.4 1.4 86

26.7 0.01 43 1.4 1.4 88
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5. CONCLUSION

Altogether, the current work investigates the detection techniques using the voice signals for PD. 
It has been successfully experimented with an understanding that the acoustic parameters are more 
effective in PD detection to present 97.2% accuracy with pitch/jitter ratio for the detection of Parkinson 
disease. As well, the authors argued for all pole filter model &equivalent electrical model of vocal 
tract design for detecting voices. Synthesized vocal tract filter results shows that in the case of PD 
subjects, the 3-dB frequency response is lower as compared to normal subjects. It is remarkably 
concluded that changing values of the components of equivalent electrical model of vocal tract have 
proved equally effective in the detction of PD.

Notwithstanding, several limitations should be noted. First, although KCL Hospital database 
may be comprehensive in terms of the number of people being recorded; still, the gender imbalance 
in the dataset should be reconciled in future research to yield more reliable and meaningful results. 
Second, the quantity of data needed can be a challenge to this sort of research, requiring excessive 
computational power and simplification. Finally, we did not conduct our experiments separately on 
split subsets of data for the different genders, which may yield other interesting findings.

Future research will involve the collection of more data and improvements on the feature 
selection strategy sothat an objective analysis tool may be designed for clinical practice.As well, the 
detection of PD can be effectively improved with possible combination of emerging methodologies 
and technologies by performing sound analysis.

ACKNOWLEDGMENT

The authors are thankful to the Special Manpower Development Program, Chip-to-System Design 
(SMDP-C2SD), funded by the Ministry of Electronics & Information Technology (MeitY), Govt. 
of India, as well as NIT kurukshetra for providing lab facilities in the School of VLSI Design and 
Embedded Systems.



International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

20

REFERENCES

Aarushi, A., Chandrayan, S., & Sahu, S. S. (2016). Prediction of Parkinson’s disease using speech signal with 
Extreme Learning Machine. International Conference on Electrical, Electronics, and Optimization Techniques 
(ICEEOT), 3776-3779.

Affonso, C., Rossi, A., Vieira, F., & deCarvalho, A. (2017). Deep Learning for Biological Image Classification. 
Expert Systems with Applications, 85, 114–122. doi:10.1016/j.eswa.2017.05.039

Ali, Z., Elamvazuthi, I., Alsulaiman, M., & Muhammad, G. (2016). Automatic Voice Pathology Detection with 
Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole 
Model. Journal of Voice, 30(6), P757.E7-757.E19.

Alku, P. (2011). Glottal Inverse Filtering Analysis of Human Voice production—A Review of Estimation and 
Parameterization Methods of the Glottal Excitation and their Applications. Sadhana, 36(5), 623–650. doi:10.1007/
s12046-011-0041-5

Blumin, J. H., Pcolinsky, D. E., & Atkins, J. P. (2004). Laryngeal Findings in Advanced Parkinson’s Disease. 
The Annals of Otology, Rhinology, and Laryngology, 113(4), 253–258. doi:10.1177/000348940411300401 
PMID:15112966

Chenausky, K., MacAuslan, J., & Goldhor, R. (2011). Acoustic Analysis of PD Speech. Parkinson’s Disease, 
2011, 1–13. doi:10.4061/2011/435232 PMID:21977333

Dejonckere, P. H., & Lebacq, J. (1984). Damping coefficient of oscillating vocal folds in relation with pitch 
perturbations. Speech Communication, 3(1), 89–92. doi:10.1016/0167-6393(84)90010-4

Diogo, B., Madureira, A. M., Luis, G., & Ajith, R. (2019). Automatic deection of Parkinson’s disease based 
on acoustic analysis of speech. Engineering Applications of Artificial Intelligence, 77, 148–158. doi:10.1016/j.
engappai.2018.09.018

Dixit, M. V. & Sharma, Y. (2014). Voice parameter analysis for disease detection. IOSR Journal of Electronics 
and Communication Engineering, 9, 48-55.

Drugman, T., Bozkurt, B., & Dutoit, T. (2012). Comparative study of glottal source estimation techniques. 
Computer Speech & Language, 26(1), 20–34. doi:10.1016/j.csl.2011.03.003

Fant, G., Liljencrants, J. &Lin, Q. (1985). A four parameter model of glottal flow. STL-QPSR, 4, 1–13.

Ficko, M., Brezovnik, S., Klancnik, S., Balic, J., Brezocnik, M., & Pahole, I. (2010). Intelligent Design of an 
Unconstrained Layout for a Flexible Manufacturing System. Neurocomputing, 73(4-6), 639–647. doi:10.1016/j.
neucom.2009.06.019

Finkelhor, B. K., Titze, I. R., & Durham, P. L. (1988). The effect of viscosity change in the vocal folds on the 
range of oscillation. Journal of Voice, 1(4), 320–325. doi:10.1016/S0892-1997(88)80005-5

Forero Mendoza LA, Cataldo E, Vellasco MM, Silva MA, & Apolinário JA Jr. Classification of vocal aging 
using parameters extracted from the glottal signal. Journal of Voice: Official Journal of the Voice Foundation, 
28(5),532-537.

Galaz, Z., Mekyska, J., Mzourek, Z., Smekal, Z., Rektorova, I., Eliasova, I., Kostalova, M., Mrackova, M., 
& Berankova, D. (2016). Prosodic Analysis of Neutral, Stress-Modified and Rhymed Speech in Patients 
with Parkinson’s Disease. Computer Methods and Programs in Biomedicine, 127, 301–317. doi:10.1016/j.
cmpb.2015.12.011 PMID:26826900

Gupta, U., Bansal, H., & Joshi, D. (2020). An improved sex-specific and age-dependent classification model 
for Parkinson’s diagnosis using handwriting measurement. Computer Methods and Programs in Biomedicine. 
Advance online publication. doi:10.1016/j.cmpb.2019.105305

Ho, A. K., Iansek, R., Marigliani, C., Bradshaw, J. L., & Gates, S. (1998). Speech impairment in a large sample 
of patients with Parkinson’s disease. Behavioural Neurology, 11(3), 131–137. doi:10.1155/1999/327643 
PMID:11568413

http://dx.doi.org/10.1016/j.eswa.2017.05.039
http://dx.doi.org/10.1007/s12046-011-0041-5
http://dx.doi.org/10.1007/s12046-011-0041-5
http://dx.doi.org/10.1177/000348940411300401
http://www.ncbi.nlm.nih.gov/pubmed/15112966
http://dx.doi.org/10.4061/2011/435232
http://www.ncbi.nlm.nih.gov/pubmed/21977333
http://dx.doi.org/10.1016/0167-6393(84)90010-4
http://dx.doi.org/10.1016/j.engappai.2018.09.018
http://dx.doi.org/10.1016/j.engappai.2018.09.018
http://dx.doi.org/10.1016/j.csl.2011.03.003
http://dx.doi.org/10.1016/j.neucom.2009.06.019
http://dx.doi.org/10.1016/j.neucom.2009.06.019
http://dx.doi.org/10.1016/S0892-1997(88)80005-5
http://dx.doi.org/10.1016/j.cmpb.2015.12.011
http://dx.doi.org/10.1016/j.cmpb.2015.12.011
http://www.ncbi.nlm.nih.gov/pubmed/26826900
http://dx.doi.org/10.1016/j.cmpb.2019.105305
http://dx.doi.org/10.1155/1999/327643
http://www.ncbi.nlm.nih.gov/pubmed/11568413


International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

21

Ho, A. K., Iansek, R., Marigliani, C., Bradshaw, J. L., & Gates, S. (1999). Speech impairment in a large sample 
of patients with Parkinson’s disease. Behavioural Neurology, 11(3), 131–137. doi:10.1155/1999/327643 
PMID:22387592

Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Balic, J., & Brezocnik, M. (2013). Turning Parameters 
Optimization Using Particle Swarm Optimization. Proceedings of the 24th DAAAM International Symposium 
on Intelligent Manufacturing Automation, 670–677.

Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. 
The Bell System Technical Journal, 51(6), 1233–1268. doi:10.1002/j.1538-7305.1972.tb02651.x

Lang, A. E., & Lozano, A. M. (1998). Parkinson’s disease. The New England Journal of Medicine, 339(15), 
1044–1053. doi:10.1056/NEJM199810083391506 PMID:9761807

Lirani-Silva, C., Mourão, L. F., & Gobbi, L. T. B. (2015). Dysarthria and Quality of Life in Neurologically Healthy 
Elderly and Patients with Parkinson’s Disease. CoDAS, 27(3), 248–254. doi:10.1590/2317-1782/20152014083 
PMID:26222941

Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J., & Ramig, L. O. (2009). Suitability of dysphonia 
measurements for telemonitoring of Parkinson’s disease, IEEE TransactionsBiomedical Engineering, 56, 1015-
1022. Eng., 56, 1015–1022. doi:10.1109/TBME.2008.2005954 PMID:21399744

Liu, C. H., & Xiong, W. (2015). Modelling and Simulation of Quality Risk Forecasting in a Supply Chain. 
International Journal of Simulation Modelling, 14(2), 359–370. doi:10.2507/IJSIMM14(2)CO10

Martens, H., Nuffelen, G., Wouters, K., & Bodt, M. (2016). Reception of Communicative Functions of Prosody in 
Hypokinetic Dysarthria Due to Parkinson’s Disease. Journal of Parkinson’s Disease, 6(1), 219–229. doi:10.3233/
JPD-150678 PMID:26889630

Mittal, V., & Sharma, R. K. (2019). Electrical Modeling of Two Tube Vocal Tract for voice pathology detection. 
Sensor Letters, 17, 943–946.

Mittal, V., & Sharma, R. K. (2020). Voice Signal Analysis with the Application in Biomedicine. Sensor Letters, 
18, 122–127.

Mohammad, S., Danial, F. T., & Eshan, T. (2014). Speech analysis for diagnosis of Parkinson’sdisease using 
genetic algorithm and support vector machine. Journal of Biomedical Science and Engineering, 07, 147–156.

New, A. B., Robin, D. A., Parkinson, A. L., Eickhoff, C. R., Reetz, K., Hoffstaedter, F., Mathys, C., Sudmeyer, 
M., Grefkes, C., Larson, C. R., Ramig, L. O., Fox, P. T., & Eickhoff, S. B. (2015). The intrinsic resting state 
voice network in Parkinson’s disease. Human Brain Mapping, 36(5), 1951–1962.

Pawlukowska, W., Goła˛b-Janowska, M., Safranow, K., Rotter, I., Amernik, K., Honczarenko, K., & Nowacki, 
P. (2015). Articulation Disorders and Duration, Severity and L-Dopa Dosage in Idiopathic Parkinson’s Disease. 
Neurologia i Neurochirurgia Polska, 49, 302–306.

Polat, K., & Nour, M. (2020). Parkinson disease classification using one against all based data sampling with 
the acoustic features from the speech signals. Medical Hypotheses, 140, 1–6. doi:10.1016/j.mehy.2020.109678 
PMID:32197120

Ramaker, C., Marinus, J., Stiggelbout, A. M., & van Hilten, B. J. (2002). Systematic evaluation of rating scales 
for impairment and disability in Parkinson’s disease. Movement Disorders, 17, 867–876.

Rusz, J., Bonnet, C., Klempíř, J., Tykalová, T., Baborová, E., Novotný, M., Rulseh, A., & Růžička, E. (2015). 
Speech disorders reflect differing pathophysiology in Parkinson’s disease, progressive supranuclear palsy and 
multiple system atrophy. Journal of Neurology, 262(4), 992–1001.

Sachin, S., Shukla, G., Goyal, V., Singh, S., Aggarwal, V., & Behari, M. (2008). Clinical Speech Impairment in 
Parkinson’s Disease, Progressive Supranuclear Palsy, and Multiple System Atrophy. Neurology India, 56, 122–126.

Saloni, Sharma, & Gupta. (2016). Human Voice Waveform Analysis for Categorization of Normal and Parkinson 
Subjects. International Journal of Healthcare Information Systems and Informatics, 11, 21–35.

http://dx.doi.org/10.1155/1999/327643
http://www.ncbi.nlm.nih.gov/pubmed/22387592
http://dx.doi.org/10.1002/j.1538-7305.1972.tb02651.x
http://dx.doi.org/10.1056/NEJM199810083391506
http://www.ncbi.nlm.nih.gov/pubmed/9761807
http://dx.doi.org/10.1590/2317-1782/20152014083
http://www.ncbi.nlm.nih.gov/pubmed/26222941
http://dx.doi.org/10.1109/TBME.2008.2005954
http://www.ncbi.nlm.nih.gov/pubmed/21399744
http://dx.doi.org/10.2507/IJSIMM14(2)CO10
http://dx.doi.org/10.3233/JPD-150678
http://dx.doi.org/10.3233/JPD-150678
http://www.ncbi.nlm.nih.gov/pubmed/26889630
http://dx.doi.org/10.1016/j.mehy.2020.109678
http://www.ncbi.nlm.nih.gov/pubmed/32197120


International Journal of Healthcare Information Systems and Informatics
Volume 16 • Issue 4

22

Vikas Mittal received his M.Tech in Electronics and Communication Engineering from Kurukshetra University 
Kurukshetra. Currently, he is pursuing Ph.D. at National Institute of Technology (NIT) in the School of VLSI 
Design and Embedded Systems. His research interests include Biomedical Signal Processing, VLSI Design and 
Embedded System.

R. K. Sharma received his M.Tech in Electronics and Communication Engineering and PhD degree in Electronics 
and Communication Engineering from Kurukshetra University, Kurukshetra (through National Institute of Technology 
Kurukshetra), India in 1993 and 2007, respectively. Currently, he is a Professor with the Department of Electronics 
and Communication Engineering, NIT Kurukshetra, India. His main research interests are in the field of embedded 
applications, low power, digital design, and disease/ stress detections using voice profiling of human beings.

Sapir, S. (2014). Multiple Factors Are Involved in the Dysarthria Associated with Parkinson’s Disease: A Review 
With Implications for Clinical Practice and Research. Journal of Speech, Language, and Hearing Research: 
JSLHR, 57, 1330–1343.

Sarkar, , Isemkul Erdem, , & Sarkar Okan, , Ahmet, Fikret, Sakir, Hulya & Oclay. (2013). Collection and Analysis 
of a Parkinson Speech Dataset With Multiple Types of Sound Recordings. IEEE Journal of Biomedical and 
Health Informatics, 17, 828–834.

Saxena, M., Behari, M., Kumaran, S. S., Goyal, V., & Narang, V. (2014). Assessing Speech Dysfunction Using 
BOLD and Acoustic Analysis in Parkinsonism. Parkinsonism & Related Disorders, 20, 855–861.

Singh, N., Pillay, V., & Choonara, Y. E. (2007). Advances in the treatment of Parkinson’s disease. Progress in 
Neurobiology, 81, 29–44.

Tsanas, A. (2011). Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s. 
Retrieved from https://ieeexplore.ieee.org/iel5/10/4359967/06126094.pdf

Wee, K. H., Turichhia, L., & Sarpeshkar, R. (2008). An Analog Integrated-Circuit Vocal Tract. IEEE Transactions 
on Biomedical Circuits and Systems, 2(4), 316–327.

Wee, K. H., Turichhia, L., & Sarpeshkar, R. (2011). An Articulatory Vocal Tract for speech and hearing prostheses. 
IEEE Transactions on Biomedical Circuits and Systems, 5(4), 339–346.

Wei, Z., Chengzhi, Y., Qinghui, W., Fenglin, L., & Ying, W. (2019). Classification of gait patterns between 
patients with Parkinson’s disease and healthy controls usingphase space reconstruction (PSR), empirical mode 
decomposition (EMD) and neuralnetworks. Neural Networks, 111, 64–76.

Yao, X., & Jissuhiro, T. (2013). Miyajima Chiyomi, Kitaoka Norihide & Takeda,K.(2013). Classification of 
speech under stress based on modeling of the vocal folds and vocal tract. EURASIP Journal on Audio, Speech, 
and Music Processing, 17, 2–17.

https://ieeexplore.ieee.org/iel5/10/4359967/06126094.pdf

