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ABSTRACT

Supply chain network in the automotive industry has complex, interconnected, multiple-depth 
relationships. Recently, the volume of supply chain data increases significantly with Industry 4.0. The 
complex relationships and massive volume of supply chain data can cause visibility and scalability 
issues in big data analysis and result in less responsive and fragile inventory management. The authors 
develop a graph data modeling framework to address the computational problem of big supply chain 
data analysis. In addition, this paper introduces time-to-stockout analysis for supply chain resilience 
and shows how to compute it through a labeled property graph model. The computational result 
shows that the proposed graph data model is efficient for recursive and variable-length data in supply 
chain, and relationship-centric graph query language is capable of handling a wide range of business 
questions with impressive query time.
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INTRODUCTION

Globalization have stimulated automotive industry to develop globally interconnected and complex 
supply chain networks with greater physical distances. Henry Ford’s supply chain was integrated 
and conceptually simple at the beginning of the twentieth century (The Economist, 2009). However, 
by the modern globalized economy, Ford accepted that they could not be the best in every field and 
began to develop interconnected and complex structures like supply web than supply chain (CSCMP’s 
Supply Chain Quarterly, 2010). Thus, supply chain distribution risks increase with number of involved 
organizations in the network (Raghunath K. M., 2018). Supply chain data relationships become 
interconnected, and multi-tier rather than hierarchical or one-to-one. As the volume and complexity 
of data grow, supply chain managers require greater data transparency to analyze complex network 
behaviors to understand and support strategic decision makings. To achieve this, automotive industry 
companies need to digitize their supply chains to visualize better and understand how they work. 
However, due to its rapidly growing size and complexity of data, few companies have been able to apply 
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big analytics techniques to manage their supply chains. We developed a graph database framework 
to integrate multiple complex levels within an automotive supply chain network to enhance supply 
chain transparency.

One of the significant challenges for supply chain management is to mitigate risk by creating 
resilient supply chains. The literature has produced many definitions of supply chain resilience by 
several disciplines. Resilient supply chains require strong traceability systems for effective and 
timely decision making for external and internal changes. However, a recent survey shows that most 
supply chain companies still rely on spreadsheets to plan their supply chain process, making them 
less responsive and fragile (Supply Chain 247, 2018; Reuters Events, 2018). Recent advances in big 
analytics and AI support fast and effective decisions in many areas. In this paper, we evaluate one 
of the advanced databases in big data for supply chain management by testing its computational 
performance for big data analysis. Especially, we design a supply chain data model for graph database 
which tracks all the flow of raw materials from tier suppliers to finished products and their holistic 
interrelationships. Also, we introduce Time-to-Stockout analysis for supply chain resilience. The 
proposed Time-to-Stockout (TTS) performance metric could simplify the dynamic nature of the supply 
chain environment with respect to both market-side demand and supply-side inventory. It will offer 
a deeper knowledge of resilience and provide tools for managers to track and monitor the inventory 
risk, which can be propagated through supply chains. Several previous papers have evaluated graph 
databases and developed benchmarks. However, most of them used synthetic data or social network 
data. A few recent papers start to use real data to evaluate graph databases. As far as we know, this 
is the first paper to use a graph database for supply chain data. Especially, we evaluate it based on 
real data of Ford supply chain.

The remainder of the paper consists of five other sections. First, we introduce literature papers 
for the supply chain and graph database. Second, we present a way to model interconnected, multiple-
depth supply chain data with a graph database. Third, we suggest the Time-to-Stockout performance 
metric and introduce the concept of Time-to-Stockout analysis. Fourth, we show the computational 
results obtained by applying a graph database to Ford supply chain data, and how do we support 
decisions for supply chain managers. Finally, we present conclusions and discussion.

LITERATURE REVIEW

Supply Chain Resilience
As globalization developed, supply chain resilience is currently an increasing concern since the supply 
chain is subject to diverse types of disruptions (Liao, Bayazit, & Wang, 2014; Ribeiro & Barbosa-
Povoa, 2018). Today there are many definitions of supply chain resilience proposed by different authors 
in the operational management area (Pereira & Da Silva, 2015). Saenz et al. (2015) listed several 
definitions from 67 peer-reviewed articles from 2003 to 2013 on an emerging area of supply chain 
research. Even recent studies (Abidi, Bandyopadhayay, & Gupta, 2017; Lotfi, Mehrjerdi, Pishvaee, 
Sadeghieh, & Weber, 2019; Zare Mehrjerdi & Lotfi, 2019; Guoyi, Caiquan, Yubin, & Yunhui, 2020) 
suggest a sustainable and resilient closed-loop supply chain network. Briefly, resilient supply chains 
incorporate event readiness, are capable of providing an efficient response, and often are capable of 
recovering to their original state or even better post the disruptive event (Ponomarov & Holcomb, 
2009). Therefore, a resilient supply chain needs to balance risk and costs to prevent or recover quickly 
from a multitude of dynamic and simultaneous risk-related disruptions (Deloitte, 2014).

One of key resilience factors is supply chain visibility (Ribeiro & Barbosa-Povoa, 2018). Supply 
chain visibility in multi-tier supply chains is characterized by traceability, mapping, and transparency. 
First, supply chain traceability is the ability to identify, trace and track the history, application 
or location of parts and products at any stage in the supply chain, as described by International 
Organization for Standardization (ISO) (2015). Second, supply chain mapping is a tool to show holistic 
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picture of relationships within the supply chain. It enables graphic representation of all the potential 
dependency of parts and products within each step of the supply chain as it moves along the supply 
chain from supplier’s parts to finished products. Carvalho et al. (2012) listed several types of supply 
chain mapping obtained from the literature. Finally, Supply chain transparency refers to the strategy 
to disclose information complying with internal governance and external regulations (Kraft, Valdés, 
& Zheng, 2018). The standardized management system turns out to be helpful in supply chain risk 
management (Zimon & Madzík, 2019).

To manage risk in multi-tier supply chains, it requires the ability to track and monitor supply 
chain events and the flow of materials from tier suppliers to end-users with the help of information 
technology. A lack of upstream visibility makes it difficult to take proactive, effective, and timely 
actions for external and internal changes. Unfortunately, a recent survey shows 65% of companies 
are still using spreadsheets in planning their supply chain process since spreadsheets are familiar, 
inexpensive, and convenient (Supply Chain 247, 2018; Reuters Events, 2018). A significant downside 
to spreadsheets is high maintenance cost and lack of transparency in multi-tier mapping, tracking, 
and reporting (Worldfavor, 2020). For reliable and transparent data in the supply chain, it needs to 
move towards an advanced analytics database.

Big Data Analytics in Supply Chain
The term ‘Industry 4.0’ is a new industrial revolution paradigm enabled by the introduction 
of the Internet of Things (IoT) into the production and manufacturing environment (Tjahjono, 
Esplugues, Ares, & Pelaez, 2017). Industry 4.0 involves digitization, connectivity, and intelligence 
in manufacturing environments and a variety of data analytics that enables flexible automation 
and rapid manufacturing for mass customization. Especially, by the negative impact of COVID-19 
outbreak on the global supply chains, it accelerates to use several useful technologies of Industry 4.0 
and the internet of things (IoT) (Javaid, et al., 2020). With the world moving towards Industry 4.0, the 
number of machines, processes, and services generating and collecting large quantities of data will 
increase significantly. It will give rise to Big Data, which is enormous amounts of data that cannot be 
processed with conventional computation techniques (Awwad, Kulkarni, Bapna, & Marathe, 2018).

According to Gartner (2020), Big Data is defined as “high-volume, high-velocity and/or high-
variety information assets that demand cost-effective, innovative forms of information processing 
that enable enhanced insight, decision making, and process automation”. Recently, the big data 
concept is expanded by adding two more features – veracity and value (Oncioiu, et al., 2019). Hence, 
big data is characterized by 5V s, which are volume, velocity, variety, veracity, and value. The 5V
s can be explained as follows: (1) volume refers to the magnitude of data that requires increased 
storage devices (Chen & Zhang, 2014); (2) variety is reflected by generating data from heterogeneous 
sources Internet of Things (IoT), online social networks, and structured, semi-structured, and 
unstructured formats (Tan, Zhan, Ji, Ye, & Chang, 2015); (3) velocity is given by the time to access, 
process, and use data in real-time (Assunção, Calheiros, Bianchi, Netto, & Buyya, 2015); (4) veracity 
reflects the importance of data quality and reliability (White, 2012; Gandomi & Haider, 2015); and 
(5) value is reflected by revealing unused data in big data and can support decision-making (Dijcks, 
2013; Lee, Kang, Ye, & Wu, 2018). It is essential to understand the 5V s of supply chain data to 
leverage the full potential of Industry 4.0 in manufacturing.

Graph Database
Relational Databases have been dominating the computer industry since the 1980s, mainly for 
storing and retrieving data in tabular format (Batra & Tyagi, 2012). However, as the complexity of 
interconnected data increases with Big Data, the trends are driving change toward new database 
technologies called the NoSQL movement (Angles, 2012). Traditional databases are not efficient 
anymore to extract information from the graph-like data. Instead, Graph databases are quickly gaining 
popularity in the database community for relationship-rich data (ShefaliPatil & Bhatia, 2014).
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A graph database is a NoSQL database model based on graph theory that stores data on 
relationship-rich data as a collection of nodes and edges (Coronel & Morris, 2016). Recently, most 
social networking sites and the hyperlink networks on the internet are highly complex and almost 
impossible to model efficiently in a relational database. Graph databases are optimized for these 
types of networks, as a graph is a natural way of storing connections between users (Batra & Tyagi, 
2012). Other common use cases for graph databases are recommender systems, business relationships, 
network impact analysis, geospatial applications such as maps and route planning for rail or logistics, 
telecommunication or energy distribution networks, fraud detection, and many more (ShefaliPatil & 
Bhatia, 2014; Ferro & Sinico, 2018).

Graph Databases provide a natural data modeling technique, powerful relationship-centric 
query languages, structures, and algorithms for the graph-like data. Practically, there are a set of 
use cases and data patterns whose performance improves by one or more orders of magnitude when 
implemented in a graph, and whose latency is much lower than batch processing of aggregates. 
On top of this performance benefit, graph databases offer an extremely flexible data model, and 
a mode of delivery aligned with today’s agile software delivery practices (Robinson, Webber, 
& Eifrem, 2013). Also, Vukotic et al. (2014) evaluate the performance of a particular query 
that finds friends-of-friends in a social network with a maximum depth of five. Robinson et al. 
(2013) test the query in both RDBMS and Neo4j with a database of 1,000,000 users, each with 
approximately 50 friends. The results strongly suggest that graph databases outperform RDBMS 
on connected data, as we see in Table 1.

In recent years, several papers have evaluated graph databases and developed benchmarks. 
Most of the papers used synthetic data to evaluate graph databases (Vicknair, et al., 2010; Ciglan, 
Averbuch, & Hluchy, 2012; Jouili & Vansteenberghe, 2013; McColl, Ediger, Poovey, Campbell, & 
Bader, 2014; Pacaci, Zhou, Lin, & Özsu, 2017). Abul-Basher et al. (2016) used two real datasets 
from the SNAP repository (Leskovec & Krevl, 2014), namely Wiki-Talk and Slashdot, to evaluate 
Neo4J, OrientDB and other systems. Ferro and Sinico (2018) developed a benchmark for graph 
database systems based on real data of Italian Business Register in October 2016, consisting 
of about 10.5 million companies and physical persons and about 5 million relationships among 
them. Kolomičenko et al. (2013) used both synthetic data and real data in the SNAP repository 
collected from Amazon’s co-purchasing network to evaluate several systems (Leskovec & Krevl, 
2014). Finally, the performance difference between a graph database and a traditional relational 
database is evaluated by Vicknair et al. (2010), ShefaliPatil and Bhatia (2014), Ferro and Sinico 
(2018). Table 2 and Table 3 summarize previous researches according to benchmark data and 
databases respectively.

In this paper, we evaluate the computational performance of a graph database with a traditional 
database by using the real data of the Ford supply chain consisting of about 12 million nodes and 4.5 
million relationships instead of synthetic data as many of the papers above used. As far as we know, 
this is the first paper to compare a graph database with an established relational database using real 
supply chain data, which is not covered by previous works.

Table 1. Finding extended friends in a relational database versus Neo4j (Robinson, Webber, & Eifrem, 2013)
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TIME-TO-STOCKOUT ANALYSIS

Modern globalized supply chains are increasingly susceptible to various events, including natural and 
man-made disasters (e.g., earthquake, labor disputes, terrorist attacks, and political changes). Local 
events in one area of the world can cause supply disruptions and shortages. Various supply chain 
resilience definitions, measurements, frameworks, and quantitative models are presented to enhance 
the resilience against the supply chain risk in the literature (Ribeiro & Barbosa-Povoa, 2018). There 
are various metrics defined. Each supply chain performance metric gives a slightly different view of 
a piece of the supply chain.

In this paper, we suggest Time-to-Stockout (TTS) performance metric for monitoring stock 
levels of inventory relative to demands by tracking all inventory in the supply chain pipeline 
between a supplier and a final product. This method quantifies inventories across the entire supply 
chain between a supplier and a final product by a single numerical metric. Also, inherently and 
implicitly, it considers the holistic structure of the supply chain network. This metric offers a 
new way to measure “supply chain fitness” and provides critical insights for decision making 
by monitoring the inventory levels.

To be a good performance metric for effective supply chain management, it should be quantitively 
easy to understand so as to make the user take the correct action. Especially, useful performance 
metrics should be easy to calculate and collect from the system. Our TTS performance metric is a 
single numerical metric that has a very clear definition to understand intuitively. Especially, we will 
show how much it is easy and fast to compute the TTS through graph database based on the property 
graph model.

Table 2. Literature review summary table: benchmark data (R: real-world, S: synthetic)

Table 3. Literature review summary table: performance test between databases
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Supply Chain Data Modeling With Graph Database
A Supply chain in the automotive industry is an integrated process in which a set of several suppliers, 
warehouses, intermediate component plants (i.e., stamping, transmission, and engine plants), and 
final vehicle assembly plants work together. It purchases raw materials, converts raw materials to 
finished products, and sells them to customers (Carvalho, Silveira, & Ramos, 2010). Consequently, 
the automotive supply chain network has complex, interconnected, multiple-depth relationships. On 
the other hand, the relationship between upstream suppliers and downstream customers is essential 
to increase customer satisfaction and firm performance. Therefore, understanding supply chain 
relationships is a crucial driver of firm performance (Kannan & Tan, 2005). Also, effective supply 
chain management is vital to build and sustain a competitive advantage in the product and services 
of the firms (Gunasekaran & Ngai, 2004).

This paper suggests a new approach to model interconnected, multiple-depth supply chain 
data with the property graph model. A property graph is a directed graph where both nodes and 
Relationships can contain any number of properties. Nodes store properties in the form of arbitrary 
key-value pairs. Relationships connect and structure nodes. Like nodes, relationships can also have 
properties (Robinson, Webber, & Eifrem, 2013). The ability to add properties to relationships in the 
network is the main distinction to Resource Description Framework (RDF) Graphs (Miller, 1998). 
Since the supply chain needs to consider inventory in transit, we use the property graph model rather 
than RDF triple stores model. Also, it is known that Property Graph databases tend to be optimized 
for graph traversals (Alocci, et al., 2015). With RDF triple stores, the cost of traversing an edge tends 
to be logarithmic (Angles, Prat-Pérez, Dominguez-Sal, & Larriba-Pey, 2013).

When Transforming supply chain data into a property graph, each part in a plant is represented 
as a “node”, and transactions between nodes are represented as “relationships”. In automotive 
supply chains, there are two major transactions: “IS_SHIPPED_TO” and “IS_ASSEMBLED_TO”. 
“IS_SHIPPED_TO”, where transit volume, time, and mode are main properties for inventory control, 
represent shipping parts physically from one plant to another plant. “IS_ASSEMBLED_TO” represents 
a parent-component relationship in the bill of materials (BOM) to build a parent product and its 
quantity per assembly (QPA) for the relationship. For each part in a plant, it has inventory properties 
such as quantity in process, quantity on hand, and safety stock. The benefits of this supply chain data 
modeling are described in the following way.

Performance
One compelling reason for choosing a graph database is the performance benefit when dealing with 
connected data. While join-intensive query performance in relational databases will often deteriorate 
over time as the dataset grows both in size and connectedness, a graph database tends to offer relatively 
consistent performance regardless of the size and density of connections. It is because queries are 

Figure 1. Supply Chain Data Modeling for Property Graph Database
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localized to a portion of the graph. As a result, the execution time for each query is proportional only 
to the size of the part of the graph traversed to satisfy that query, rather than the size of the overall 
graph (Robinson, Webber, & Eifrem, 2013).

Relationship-CENTRIC Analytics
Traditional Relational Database Management Systems (RDBMS) are not designed for 
relationships among individual data points. By contrast, Graph Databases focus on the graph-
like relationships between data points rather than the individual data themselves. It reveals 
valuable insights from data relationships by relationship-centric Graph Query Language (GQL). 
While graph traversals in RDBMS are much more complicated and can involve looping or 
recursing through the graph, possibly executing multiple expensive joins along the way, graph 
traversals are fairly simple in Graph Databases (Vicknair, et al., 2010). Furthermore, their 
inherent relationship-centric approach enables it to present data graphically in such a way as 
to make it understandable and intuitive to users.

Flexibility
Although relational databases are more mature and secure than graph databases, they depend 
on a rigid schema, which makes it difficult to add new relationships between objects (Angles 
& Gutierrez, 2008) and less suitable when the data model evolves over time (Batra & Tyagi, 
2012). Graphs are naturally additive, meaning we can add new kinds of relationships, new 
nodes, new labels, and new subgraphs to an existing structure without disturbing existing 
queries and application functionality. Because of the flexibility, it does not need to model a 
domain in exhaustive detail ahead of time. It enables us to add new subgraphs to an existing 
graph structure without disturbing existing functionality. The additive nature of graphs also 
means we tend to perform fewer migrations, thereby reducing maintenance overhead and risk 
(Robinson, Webber, & Eifrem, 2013).

Agility
By today’s agile trends, it is required to evolve our data model in step with incremental and iterative 
software development and any changing business requirements. Since modern graph databases are 
equipped for frictionless development and graceful systems maintenance, developing with graph 
databases aligns perfectly with today’s agile, test-driven development practices. In particular, the 
schema-free nature of the graph data model empowers us to evolve an application in a controlled 
manner (Robinson, Webber, & Eifrem, 2013).

Performance Benchmarks
In traditional RDBMS databases, the data is stored in a tabular format, where each table has a fixed 
number of columns, and each column has its own data type. However, given the table structure, graph 
traversal queries become quite slow as the size and depth of relationships increase. In contrast, graph 
databases connect nodes physically point to each other in the database (Robinson, Webber, & Eifrem, 
2013). Thus, its performance stays constant even as data grows.

Time-to-Stockout
In this subsection, we introduce a metric called Time-to-Stockout (TTS) to measure the inventory 
fitness of the supply chain when the supply disruption happens. Inventory is a fundamental measure 
of the overall health of supply chain and logistics activities (Waller, Esper, & others, 2014). Thus, 
inventory-related costs and metrics are critical for supply chain resilience. In the real world, inventory 
for a specific product is stored across multiple facilities or sites in the supply chain network. We 
decompose the supply chain inventory into the following concepts:



International Journal of Information Systems and Supply Chain Management
Volume 15 • Issue 1

8

•	 Quantity in Process (QIP): Unfinished items in the manufacturing or assembly process that 
have been partially completed through the production process.

•	 Quantity in Transit (QIT): Items that have been sent, but it has not been received at the other 
plant yet. They are still in transit status for the next manufacturing step.

•	 Quantity on hand (QOH): The total number of items above a safety stock level, which are 
physically available in a plant (including warehouse and consignment inventory), minus any 
items that have already been canceled or rejected.

•	 Safety Stock (SS): Reserved quantity of an item held in inventory to reduce the operational risk.
•	 Bulk on Hand (BOH): The total number of available component items they have for building 

future parent products, which is the sum of four concepts above (i.e., quantity-in-process, quantity-
in-transit, quantity-on-hand, and safety stock).

It is often difficult to predict demand patterns with precision or accuracy. Also, a steady supply 
of raw materials and components is critical for manufacturing. The mismatch between supply and 
demand in the supply chain is one of the essential factors to assess supply chain risk. Thus, the 
inventory plays an important role in the supply chain to balance demand and supply. We define the 
TTS metric to consider both supply-side and demand-side changes together.

TTS is a metric that measures survival days that we can continue to make a final product under 
a specific production plan or demands even after some specific supplier part has in trouble to supply. 
Implicitly, it is defined between a tier supplier part and a finished product (i.e., vehicle and so on) 
in the assembly plant. To compute it, it first needs to know the entire connections between a tier 
part and a final product through the supply chain network. For each step in the supply, we need to 
collect respectively BOH and total demand for each intermediate part. However, total demand for an 
intermediate part is not trivial since it depends on the structure of the connected network, quantity 
per assembly for each parent-component relationship along the chain, and demands or a production 
plan for finished products that requires the intermediate part. Graph Database plays an important 
role in simplifying and accelerating this numerical computation based on the graph data model we 
suggest above. The Graph Database is queried through Graph Query Language (GQL), which is a 
declarative and efficient query language for the graph traversals. Then, we can quantify the following 
concepts under a specific production plan or demands:

•	 Demand per Unit Time (DPU): The number of items we need to produce a planned volume of 
finished productions per unit time.

•	 Days on Hand (DOH): the number of calendar days the BOH quantity of a part will last relative 

to the demand for final productions. DOH
BOH

DPUi
i

i

= , where i  is a part in the supply chain data.

•	 Time to Stockout (TTS): the number of survival days that we can continue to make a final 
product using only pipeline inventory in the supply chain. TTS DOH

uv i i
=∑ , where i  is a 

part in the connection chain between a supplier part u  and a final production v .

Time-to-Stockout analysis with the graph data model provides a deeper understanding of the 
underlying network structure and a comprehensive framework to measure and analyze supply chain 
resilience.

Resource Reallocation
The resource allocation problem seeks to find an optimal allocation of a fixed amount of 
resources to activities so as to minimize the cost incurred by the allocation (Katoh & Ibaraki, 
1998). There are various optimization methods that have been proven successfully in solving 
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resource allocation problems in industrial production planning (Lombardi & Milano, 2012). 
In this subsection, we demonstrate how to reallocate the limited resources identified by TTS 
analysis to maximize profit using mathematical programming. We consider net profit for each 
vehicle line, production capacity per day, and bill of materials described in Figure 2. Then, we 
get a daily production schedule for vehicles that need to be produced in an assembly plant by 
solving the following resource allocation problem.

Table 4 shows the list of sets and parameters for a manufacturing plant. Here, we have a set of 
limited parts and vehicles which use the parts. Then, given the planning period, it reallocates limited 
inventory I

p
 for part p  based on the usage ratio between part p  and vehicle v  on the bill of materials 

(BOM). Finally, we use the production capacity limit for each vehicle to consider assembly line and 
labor constraints in the manufacturing plant.

Given the sets and parameters in Table 4, the resource reallocation problem for TTS analysis can 
be formulated as the following mathematical formulation in Table 5. Objective (1) maximizes the 
total profits over vehicles. Constraint set (2) ensures that each limited part can be used no more than 
the current available inventory. Constraint set (3) provides daily production capacity constraints for 
a plant. Finally, Constraint set (4) specifies that decision variables must be non-negative.

xv
d  is the decision variable representing the amount of vehicle v  that will be produced on day 

d , � � � �v V d D, .

Figure 2. Resource Reallocation for TTS Analysis

Table 4. Sets and Parameters
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COMPUTATIONAL RESULTS

The proposed graph database modeling in the previous section was implemented in Neo4j 3.5.5 and 
ran on Intel i7-8850H CPU 2.6 GHz laptop with 64.0 GB of RAM memory. To access supply chain 
data from Ford Hive data warehouse, we implemented ETL (extract, transform, load) tool in Java and 
Python with the help of H2 in-memory Java SQL database and PySpark to accelerate ETL process. 
We performed Time-to-Stockout analysis of all pairs of active suppliers and vehicle lines in the Ford 
supply chain, and its computational time was within a day. Figure 2 shows that TTS distribution over 
parts for a vehicle transmission in Ford. We observed that most of the parts for the transmission have 
less than 10 TTS days. However, we have found that a set of some parts clustered around 50 TTS 
days. Also, we can identify a few overstock parts that have more than 100 TTS days.

We also compare computational performance between traditional SQL and graph databases by 
using time-dependent supply chain data based on Figure 1. Part changes over time by evolving its 
function, color, design, material, and so on. For example, in Figure 3, tier-one part A  evolves to part 
A '  and part A ''  by minor changes, and it changes to part B  from part A  family due to major 
changes. The change of tier-one parts impacts the assembly relationships of the whole downstream 
parts up to finished products. It causes the compatibility and safety issue with a final product when 
it switches from an obsolete part to a new replacement part. Therefore, tracking this kind of part 
replacement information over time is essential as a vehicle model evolves over the years.

Table 5. Formulation

Figure 3. Time-to-Stockout (TTS) Analysis of Transmission Parts
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In this paper, we could not show complete details about all supply chain data because of Ford data 
security. Instead, we demonstrate Ford part replacement supply chain data related to some commodities 
(i.e., engine, seat, transmission, and so on) to compare computational performance between traditional 
SQL and graph database. We highlight the key data characteristics, which can make it possible to 
reproduce a similar result, in Table 2 and Table 3. The supply chain test data contains two columns 
named ‘Up’ and ‘Down’ respectively. Each record represents a child-parent relationship between two 
different parts. To reduce the computational complexity, we calculated in advance all the possible 
root nodes and leaf nodes from the raw data by counting the number of child-parent relationships 
(e.g., a root part has no parents, or a leaf part has no children).

As the complexity of the relationship, Table 3 shows the histogram of the depth of each tree. Most 
of the child-parent relationships have a shallow tree. Only a few trees have more than 100 depths. 
The deepest tree of the test data has 162 levels.

Finally, this kind of data profiling to make Table 2 and Table 3 by discovering statistics or patterns 
in graph data is fairly simple in GQL. In contrast, SQL does not support concise traversal syntax 
like GQL. It even might not easy to find out the depth of the deepest tree since it needs to check 
the depth of all trees by traversing to find the deepest node in each tree, which is computationally 
expensive in RDBMS.

Common Table Expression
A recursive common table expression (CTE) is an SQL query that handles hierarchical model data. 
It can be used to traverse relations in a tree or graph. This recursive CTE consists of two main parts:

Figure 4. Time-dependent Part Replacement Supply Chain Network

Table 6. Number of Records and Data Size for Ford Supply Chain Test Data
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•	 Anchor Member: This query is initially executed once to return the base result of the CTE.
•	 Recursive Member: This query is repeatedly executed until the termination condition is met 

or no rows are returned. 

By switching the role of ‘Up’ and ‘Down’ columns in the recursive execution, the CTE repeatedly 
executes, returns subgraphs, until it returns the complete graph. The following Figure 4 is an example 
of CTE in SQL for supply chain data.

Graph Database: Neo4j
Graph databases are focused on efficient storing and querying highly connected data (Pokornỳ, 2018). 
For relationship-centric data definition, query, and manipulation, graph database provides pattern 
matching query language that focuses on the relationships between entities. The most and first known 
GQL to target the property graph data model is Cypher of Neo4j Graph Database (Robinson, Webber, 
& Eifrem, 2013). Cypher query language is very expressive and efficient to handle connected data 
without explicitly writing traversal algorithms in the code. On the other hand, graph patterns are not 
easily expressible in SQL, and the complexity and cost of the recursive SQL query grow quickly as 
it calls additional joins. The following Figure 5 is an example of Cypher query to retrieve graph-
structured information with variable-length relationships.

Compared to CTE query in the previous section, Cypher query language has rich and expressive 
syntax for graph traversals. It can easily match the pattern with variable-length relationships. Unlike 
SQL syntax that focuses on tables and columns, Cypher is a more human-readable description of 
relationships.

Computational Time
We performed a query to traverse data to retrieve a set of nodes for the deepest tree from a given 
root part a few times against a small data set of supply chain data described in the earlier section. At 
each test, we ran the query 5000 times – this was simply to warm up any caches that could help with 
performance. Total execution time was recorded, and we calculated the average execution time for 
each run. No additional database performance tuning was performed except for the composite index 
used in the second case in Table 4. Since it is not always possible to have an index on columns by 
the company’s data governance policy and other data transaction constraints, we also tested it with 
no index in the third case in Table 4.

Table 7. Frequency Table of Part Tree Depth
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The results of the experiment strongly suggest that a graph database is much faster than RDBMS 
for graph-structured data, as we see in Table 4. Neo4j is six times faster than RDBMS with indexing, 
and it is even 60,000 times faster than RDBMS if we are not able to use an index on relationship 
columns in RDBMS.

Finally, we test a computational time for the mathematical formulation described 
in Table 5 using various data sizes. We used plant data where four types of vehicles are 
produced by using approximately less than 40,000 parts per vehicle. We extrapolated total 
inventory volume for various planning horizons linearly from inventory data of five days. 
Computational time in Table 9 shows that the resource reallocation model for TTS analysis 
works with real-world scale data.

Figure 5. SQL Code for Common Table Expression (CTE)

Figure 6. Cypher Code for Neo4j Graph Database

Table 8. Query Time of GDB and RDBMS with Ford Supply Chain Test Data
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CONCLUSION

Modern supply chains are vulnerable to wide various events (Blos, Quaddus, Wee, & Watanabe, 
2009; Gaudenzi & Qazi, 2020), including natural and man-made disruptions. Local events in one 
area of the world can cause a ripple effect that lead to supply disruptions and shortages. To improve 
supply chain resilience and support supply chain management in the right direction, it is necessary to 
have a thorough and complete understanding of every element and relationship in the supply chain. 
End-to-end visibility over the entire supply chain will help a decision-maker respond properly when 
any unexpected event occurs. Furthermore, the volume and complexity of supply chain data have 
increased significantly and continue to trend up during the Industry 4.0 movement. In addition, the 
relationships between supply chain data can be more important than the individual data themselves to 
create insights and business values. Thus, supply chain management requires a database technology 
that can handle data relationships effectively. Unfortunately, traditional SQL-based RDBMS are poor 
at handling data relationships because their rigid schemas make it difficult to add new or different 
kinds of relationships or adapt to change in a fast-changing business environment.

We used the real data of Ford supply chain consisting of about 12 million nodes and 4.5 million 
relationships. To the best of our knowledge, this is the first paper to benchmark a graph database using 
real supply chain data. First, this research provides a new understanding of the supply chain graph 
database to obtain deeper insights from big data. Second, we introduce the TTS metric to improve 
supply chain resilience with respect to visibility, responsiveness, and readiness. Time-to-Stockout 
analysis can help manage and monitor inventory fitness with a deeper and complete understanding of 
the supply chain network. The computational results show that a graph database for supply chain data 
enhances computational performance significantly. Also, it allows calculating the relative inventory 
status of each part in real large-scale data through Time-to-Stockout analysis. It helps us to identify 
limited parts that have the relative inventory shortage given the demand forecast. Finally, given 
the list of limited parts identified by the Time-to-Stockout analysis, we propose the mathematical 
programming to reallocate the limited resources to maximize profit and test its scalability based on 
various supply chain data sizes.

This paper is not limited to academic research in supply chain management. The proposed 
approaches are tested as a supply chain industry platform, including graph database, visualization, 
performance metrics for bottleneck detection, and resource reallocation optimization to support 
operational decisions. Especially, this paper has successfully demonstrated that a graph database 
can help process complex, interconnected, multiple-depth supply chain data quicker than traditional 
SQL databases. 

Unlike academic research, people in the industry field need crisp and clear key performance 
indicators (KPIs) to gain business insights from complex data and communicate with non-technical 

Table 9. CPU Time for Resource Reallocation Optimization Model with Various Data Sizes
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background decision-makers and stakeholders. Therefore, it is beneficial in the industry field if the 
performance metric is simple to understand without training instead of complicated black-boxed 
performance metrics suggested by academic papers. The need for intuitive KPI motivates us to 
propose the Time-to-Stockout metric to keep track of inventory in the supply chain network. Also, 
there is always a time limit for business decisions. In many cases, it needs to be almost real-time or 
a few days. Therefore, it requires operations analytical tools to have scalability for massive supply 
chain data set to gain insights quickly and test various decision scenarios. They may not have days 
to investigate and verify the KPI’s assumptions. The proposed supply chain data modeling with a 
graph database and resource reallocation formulation satisfied the time and simplicity requirements.
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