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ABSTRACT

The amount of data in today’s world is increasing exponentially. Effectively analyzing big data is a 
very complex task. The MapReduce programming model created by Google in 2004 revolutionized 
the big-data computing market. Nowadays, the model is being used by many for scientific and research 
analysis as well as for commercial purposes. The MapReduce model however is quite a low-level 
programming model and has many limitations. Active research is being undertaken to make models 
that overcome/remove these limitations. This paper has studied some popular data analytic models 
that redress some of the limitations of MapReduce, namely ASTERIX, Pregel (Giraph), DraydLINQ, 
Dremel, and Graph twiddling. The author discusses these models briefly and through the discussion 
highlights how these models are able to overcome MapReduce’s limitations.
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INTRODUCTION

Today, a huge amount of data is present all around us; social media, scientific experiments and various 
organizations generate large quantities of data. Cleaning, analysis and subsequent result generation 
from this Big Data (IBM, 1911) poses a serious challenge. In 2003, Sanjay Ghemawat et. al. (Chen 
& Steven, 2008) introduced GFS (Google File System) that is scalable DFS (Ghemawat et al., 2003), 
which laid the foundation of MapReduce (GMR) (Dean & Ghemawat, 2008). It is a programming 
model to use in generating and processing large datasets. Both of these were landmark developments 
which revolutionized the entire data analytic industry.

In 2005, Dough Cutting et. al. at Yahoo started building Hadoop (Apache Hadoop, 2006) (named 
after a toy elephant) based on GFS and GMR. Being an open–source implementation that can run 
on commodity systems; Hadoop quickly became immensely popular and was being used by big 
companies like Facebook, Yahoo, Amazon etc.

Other than such fast and parallel processing applications, representation of data in the form of 
graphs also makes data analysis an easier task. Such an analysis can then be extended to a cloud. 
Understanding graph generation and manipulation is the basis for graph processing. The Stanford 
Graphbase (Skiena, 2008; Stanford GraphBase: A Platform for Combinatorial Computing, 1993), by 
Donald E. Knuth in 1993, is a large and portable collection of programs and data which can used as 
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a foundation to study and understand any graph related problems. It is easy to process such graphs 
locally, but their implementation over a cloud came as a challenge.

Jonathan Conhen in year 2009, in his paper “Graph Twiddling in a MapReduce World” (Microsoft, 
2017) makes this idea realistic by decomposing graph operations into a sequence of MapReduce steps, 
thus processing graphs over a cloud.

In 2010, Grzegorz Malewicz et al. at Google introduced Pregel: system to support large scale 
graph mining and processing. Giraph,released by the Apache Software Foundation in 2011, which 
is an open source work of Google’s Pregel model for complex graph computation.

In the same year, another distributed system called Dremel, which was orginally in production 
since 2006, was improved by Sergey Melnik et al. at Google. With the invent and improvement of this 
interactive query processing system, trillion-row tables can be processed and analyzed within seconds.

In 2011, Alexander Bahm et al. at the University of California discussed about a platform called 
ASTERIX. This system addresses the problem of limiting and low level programming model of 
MapReduce and provides a high level storage and analysis of real world data.

Before GMR and Hadoop (Lee et al., 2011), relational DBMS and supercomputers were used to 
handle storage and computation for such processes. The use of Distributed Systems has increased the 
performance, scalability, cost-efficiency and fault tolerance of various applications . A distributed 
system is simply a cluster of systems connected by a network. There is no special hardware requirement 
for a system to be a part of this network and the computation is distributed among the various 
components to be done in parallel.

In this paper, we discuss the related underlying technologies and Map Reduce model and the 
limitations of Map Reduce in Section IV. We then descibe various models that came as an extension, 
improvement or substitution of the MapReduce framework. ASTERIX in dicussed in section V,Pregel 
in section VI and Giraph in section VII and respectively.

UNDERLYING TECHNOLOGIES

In this section we include some of the basic technologies/developments that have played a vital role 
in develop-ment of various models discussed in this paper. These are:

•	 Google File System
•	 BigTable

Both Google File System and BigTable were very important for the development of MapReduce. 
They also form the basis of various other data analytic models.

The Google File System (GFS)
Google file system(GFS) (Ghemawat et al., 2003) is a DFS(distributed file system) created by Google. 
It aims at providing reliable, fault tolerant and scalable data storage over commodity hardware. In 
GFS, files larger than 64 Mb are divided into chunks and stored on different computers. Most of 
the stored files on GFS are either read or modified by appending some new information. GFS setup 
contains a large number of commodity machines; one of them is known as the Master node and 
others are Chunkservers. Chunkservers store file chunks (of 64 MB each) whereas the master node 
is responsible for storing meta-data of the file i.e. creation time, names (64 bit names generated by 
the master) and location mapping. Master node does not store any file chunks. Chunkservers send 
small updates to the Master periodically informing it about any changes. Each node in the GFS is 
usually replicated 3 times.This step is necessary to handle the problem of node failure which is quite 
a common phenomenon.
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Master provides permission for reading and modification in the form of “timed leases”. After 
modification changes are propagated to other replicas by the “Primary Chunkserver”. Changes are 
not made permanent unless all other replicas send an acknowledgement to the Primary Chunkserver.

A newer version of GFS is called Colossus.

BigTable - Distributed Storage System
BigTable, is another data storage system developed by Google (Chang et. al., 2006 (Chang et al., 
2008)) built upon some Google technologies like Chubby, The Google File System and SSTable. It 
is currently being used by Google in various Google products like Google Earth, Google Finance, 
YouTube etc. It was designed to scale huge amount of data spread over a large cluster of computers.

Building Blocks

•	 GFS: BigTable storage system is based upon The GFS. Google File System has been discussed 
in section 2.1.

•	 Google SSTable: It is used to store the BigTable data. It provides us with a map to values from 
the given keys. (Chang et. al., 2006). Each SSTable contains blocks which helps in mapping/
looking up data. SSTable is vital for data lookup in the BigTable system.

•	 Chubby Lock (Burrows, 2006): It is a lock service designed for distributed systems. It plays a 
key part in various Google technologies like GFS, BigTable and MapReduce. Chubby consists 
of 5 replicas in which 1 is elected to be the master. Chubby uses the Paxos algorithm to ensure 
consistency among its replicas working on the lease-expiration model. BigTable uses Chubby 
to lock one master that stores the BigTable data, schema information and access control lists. 
A similar technology to Chubby is ZooKeeper. ZooKeeper (Hunt et al., 2010), a subproject of 
Hadoop, coordinates different processes in a distributed application. It exploits wait-free data 
objects to achieve its goals. ZooKeeper provides two features:
◦◦ Linearizable writes: all requests for data objects are serialized.
◦◦ FIFO client order: All requests from a single client are executed in same order in which 

they were sent.

Zoopkeeper (Twister, 2021) is similar to Chubby but does not use lock primitives i.e open or close. 
It is based on wait free data objects. ZooKeeper uses a “watch mechanism” where a client can watch 
for an update to get notifications when any changes are made to a given data object. Chubby manages 
the client cache directly by invalidating the caches if some changes occurs.

Data Model and Implementation
The table is indexed by three keys that are row key and column key and timestamp key. Each table 
in the system is multidimentional in nature and can be split into different tablets (Table segments 
accross rows of about 200 MBs). Information about these tablets is stored in the Master node (elected 
and locked by Chubby) which provides lookup services (using SSTable) to locate the data saved on 
multiple computers managed by The Google File System.

Similar Technologies
There are many alternatives to the BigTable distributed storage system available today. The Boxwood 
Project (Chang et al., 2008) can be considered as a substitute. Similar services are available with 
projects like Tapestry, Chord, CAN etc (Chang et al., 2008).

MAPREDUCE
The MapReduce programming model (Dean & Ghemawat, 2008) is based on distributed system. It 
is well known programming paradigms. An application in this model is implemented as a series of 
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Map and Reduce operations. Each of them having a Map and a Reduce phase, processing huge no. 
of data items. And this system supports task management, distribution of computations, automatic 
parallelization and fault tolerance without burdening the programmer.

Execution Overflow
The Map Reduce model consists of mainly two functions: first Map function and second Reduce 
function (Dean & Ghemawat, 2008). Map functions take the input data and produce intermediate 
key-value pairs. These pairs are passed on to Reduce functions. Each Reduce function for every key, 
processes all the values for that key and generates the output value.

When the user initiates a MapReduce job, the following series of steps take place (Dean & 
Ghemawat, 2008) (Figure 1).

The input data is partitioned and then distributed across multiple machines or nodes. Different 
copies of the same program are then started on these nodes.

One of these nodes is called as the master. And rest are called workers. The master node allocates 
work to workers and manages them.

A worker assigned the map function reads the input. It then generates intermediate key pairs and 
passes each pair to the Map function.

These intermediate pairs are buffered in the local disk of the machine. The location of these 
intermediate pairs on the local disk is notified to the Master.

Example
The word count problem (Data mining 2.0: Mine your data like Facebook, Twitter and Yahoo) is 
considered one of the easiest to implement and understand using the MapReduce model. Here, given 
a random list of words, the aim is to count the number of each word occurances. The initial list of 
words is the input data.

Firstly, the initial data is partitioned so that it can be distributed to different map workers.
The master assigns work to different worker nodes. In this example, 3 map worker nodes work 

as the data is split into 3 parts.
Of the input data (simple words), the Map worker generates intermediate key value pairs. For 

occurrence of any word the Map function puts the count as 1. The intermediate key value pairs are 
(Deer-1; Bear-1; River-1, etc.).

Figure 1. MapReduce Execution Overflow (Dean & Ghemawat, 2008)
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These intermediate key-value pairs are stored into the workers local disk. The location of these 
intermediate key-value pairs is communicated to the Master.

Once all the Map workers have completed their work, the Master distributes work to Reduce 
workers. It starts this by sending the location of the intermediate.

The Reduce workers read this data through remote procedure calls. As shown in Figure 2 the 
Reduce workers first sort/shuffle the data by keys so that all similar occurrences of keys (words) are 
grouped together.

Once sorted, the reduce worker iterates over the key-value pairs and upon discovering a unique 
word, it runs the Reduce function for that set of intermediate values. The key - value pairs are Bear-2; 
Car-3; Deer-2; River-2 are thus obtained.

Finally, the output of the different reduce functions is compiled in a single global file. With this, 
the work of Reduce workers end and the master node notifies the user.

Features

•	 Fault Tolerance: A fault in the MapReduce system can occur mainly in two cases - a worker 
node fails, or if the master node fails (Dean & Ghemawat, 2008).

•	 Worker Node Failure: The master pings the workers periodically. If a node doesnt respond in 
a stipulated time, the node is considered to be lost and is set to its initial idle state. The work is 
then scheduled to some other node. In case of worker failure after completed Map tasks, all the 
data is lost as the intermediate data is stored in the map worker’s local disk and is inaccessible 
to the master node. For completed Reduce tasks, the output generated is written/appended in a 
global file. So no data is lost for completed Reduce tasks.

•	 Master Node Failure: Since there is a single master, there is nothing much that can be done 
if the master node fails. In case of master failure, the program stops running and the user is 
notified. A better way to handle this is to have periodic checkpoints for the master node. Master 
node logs are backed up periodically, so if the master node fails, some other node (usually the 
most powerful) is selected as the master node and the work resumes from the last checkpoint.

Easy Coding Writing programs for Distributed Systems is difficult (Dean & Ghemawat, 2008). 
A programmer has to keep in mind various parameters like concurrency, parallelisation, performance, 
data distribution, load balancing, fault tolerance, etc. The original simple computation is obscured 
by large amounts of complex code. The MapReduce model can be considered as an abstraction, 
which hides the messy details of parallelisation and other complex issues and allows the user to ex-
press the problem as a set of simple computations. The code needed for the complex tasks is kept 
in various libraries.

Figure 2. Example of a MapReduce execution (Data mining 2.0: Mine your data like Facebook, Twitter and Yahoo) data to the 
Reduce workers
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Flexibility
The MapReduce model is applicable to a vast variety of problems as it is highly flexible (Melnik et 
al., 2010). This model can also be easily tweaked to suit the needs of the problem. The power to do 
optimization is limited by knowledge of system and about a particular computation task. (Chen & 
Steven, 2008)

Optimisations (Dean & Ghemawat, 2008) are operations done on the input/intermediate data to 
ensure quick execution. Some example are:

•	 Sampling: The system can take a random sample (Apache Hadoop, 2006) from the dataset and 
run it to take note of the skew characteristics of the dataset. Such skews can then be taken care 
of in the full-scale run.

•	 Statistics Collection: One initial run at the beginning would provide us with the characteristics 
and statistics of the dataset (Apache Hadoop, 2006) or the computations on the dataset. If, 
then, the computations or the dataset change slightly, we can use the statistics to improve the 
performance of the subsequent runs.

•	 Stragglers: Stragglers avoidance (Data mining 2.0: Mine your data like Facebook, Twitter and 
Yahoo) is one of the optimizations proposed to the MapReduce model to ensure timely execution. 
Stragglers are the machines that take up an unusually long time to complete one of the last few 
map or reduce tasks in the computation. As mentioned, Reduce function is executed only after all 
the Map workers have finished. So if a few Map workers are working and are taking considerable 
time to generate results, the whole of the Reduce function is delayed. To optimize this, the master 
node duplicates the tasks given to the stragglers to other worker nodes and accepts the result of 
whichever node that finishes first.

Use and Variants
Scientific analysis involves analysis of big volume of data collected from the various sources. State 
of the art research in fields like cryptography, image analysis, machine learning, data-Mining etc. 
requires analysis of huge collections of data. Furthermore, scientific or industry processes like 
distributed sorting, distributed pattern-based searching, web link-graph reversal, web access log stats, 
user recommendations, clustering, etc. (Dean & Ghemawat, 2008) require tools like Map Reduce for 
data analysis. The most common approach to solve this problem is to use Map Reduce and its variants 
(Lee et al., 2011). Map Reduce model is a potent tool making analysis easier. MapReduce technique 
benefits analysis by providing features like better speed, fault tolerance, load balancing and scalability.

Variants of the MapReduce model to address specific problems can be easily created by 
modifying/adding/deleting various stages of the original MapReduce model proposed by Google 
(Dean & Ghemawat, 2008).

Many variants are being used in the industry. Some popular variants are DisCo, CGL-Mapreduce, 
Pig, Hive, SCOPE, Twister, PREGEL, Clustera, Dryad. Three have been discussed here.

Apache Hadoop Hadoop (Apache Hadoop, 2006) is the plain vanilla, opensource implementation 
of the MapReduce model. Hadoop was derived from Google’s MapReduce(Dean & Ghemawat, 2008) 
and Google File System (GFS) papers (Vinayak et al., 2010) (Figure 3).

CGL-MapReduce CGL-MapReduce (Lee et al., 2011) is an opensource implementation of 
MapReduce in which its creators have added a feature called Iterative MapReduce Stage. Iterative 
MapReduce stage is different from a normal Map-Reduce model as it allows the programmer to call 
the Map function again after the completion of the Reduce function. This facility is not present in 
other popular MapReduce implementations like Hadoop, Disco etc.

As a result of this Iterative MapReduce stage, CGL-MapReduce is good for clustering (specially 
K-Means cluster-ing), and is also better and faster than Hadoop.
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Twister Twister Data Framework (DISCO, 2005), released in 2010, is designed to improve the 
overall user experience with the existing Hadoop framework. Twister‘s major task is to transform, 
extract, load, and manage massive Hadoop clusters. Twister manages the execution of Map and 
Reduce operations. It also alleviates the burden of writing custom code for data input and output 
from the Hadoop cluster.

Thus it becomes easy to use and manage Hadoop by utilizing by the abstraction provided by 
Twister.

Clustera Clustera, is a data management system. It is designed for a wide variety of computationally 
intensive jobs, which have low I/O and require complex queries on massive tables. Experimental 
results show that Clustera is highly scalable for SQL processing, it is comparable to Hadoop in 
performance (Figure 4).

Disco Disco (Pei, 2020) is an open-source platform that is used to analyse large scale data. 
Disco framework supports parallel computa-tions over large amount of data sets that are running on 
unreliable cluster of computers.An implementation of MapReduce is also available in the framework.

The Disco core is written in Erlang that is a functional language, designed for building robust, 
fault-tolerant and distributed applications. Disco users typically write jobs in Python, that makes it 
possible to express complex algorithms only in tens of lines of code. This implies that its easy and 
fast to write programs in Disco.

Pig Apache Pig (Apache Software Foundation, 2007) is a platform for analyzing massive data 
sets, consisting a high-level language that express data analysis programs .Pig can handle very large 
data sets since it allows substantial parallelization.

Figure 3. Stages of CGL- MapReduce (Chen & Steven, 2008)

Figure 4. Clustera Architecture
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Pig is a research project at Yahoo! Inc. and then it became an independent subproject of Apache 
Software Foundation’s Hadoop project.

Currently, Pig’s infrastructure layer consists of a compiler, produces sequences of Map-Reduce 
programs, for which large-scale parallel implementations already exist (e.g., the Hadoop subproject). 
Thus the platform overcomes various limitations of Hadoop by providing high level programming 
language framework.

Hive
Hive (Thusoo et al., 2010) is also an open source data warehouse solution developed on the top 
of Hadoop(Apache Hadoop, 2006). Hadoop, a MapReduce implementation provides a low level 
programming model. In order to overcome this limitation, Hive was developed to facilitate querying and 
manage large datasets over a distributed storage. Hive has its own SQL like programming (Figure 5).

Model and a declarative language called as HiveQL, which can be compiled into Map Reduce 
job and then executed using Hadoop. It also provides a mechanism to plug in the custom MapReduce 
jobs into these queries. In addition to this, variety of data formats, primitive types and collections (like 
maps, arrays etc) are also supported. Designed to work the best with batch jobs over large datasets, 
Hive helps in improving scalability, extensibility, fault-tolerance and loose-coupling.

SCOPE
In order to improve the performance of a Map Reduce system, it is important to analyze the log 
files generated during Hadoop execution. Visualization and analysis of these log files can help us 
understand as to how a Hadoop process behaves. Structured Computations Optimized for Parallel 
Execution (SCOPE) is a real time MapReduce tracing tool used to keep a track on MapReduce jobs 
by capturing the details of progress of all the ongoing tasks. It helps to understand the health of 
Hadoop cluster nodes, displays the distribution of file system blocks, and also views the content of 
these blocks. It also has a SQL like declarative scripting language and uses an optimizer to convert 
scripts into an efficient execution plan. SCOPE is therefore a very important performance tracking 
tool for MapReduce.

Dryad
Dryad (Isard et al., 2009) is a system similar to MapReduce with low level programming support. A 
Dryad job is a directed acyclic graph where each vertex is an operation performed on the data and 
a channel represents the graph edges. At run time, vertices are processes communicating with each 
other through these channels, and each channel is used to pass data.

Figure 5. Hive System architecture (Huang et al., 2010)
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Figure 6 shows Dryad system architecture. Here, NS is name of server which maintain the cluster 
membership. And the job manager is responsible for spawning of vertices (V) on available computer 
with help of remote execution and a monitoring daemon (PD). Vertices exchange data through les, 
TCP pipes, shared-memory channels. The grey shape indicates vertices in job that are currently 
running and correspondence with the job execution graph.

LIMITATIONS OF MAPREDUCE

Low-Level Programming Model
MapReduce is quite low level for the programming tasks.The programmers have to divide a 
complicated algorithms into Maps and Reductions manually. They also have to write complex scripts 
to sequentially execute a series of MapReduce jobs. Hence, many high level systems like ASTERIX 
(Vinayak et al., 2010), Giraph, Dremel (Apache, 2010) etc. were created to make programming easier.

Many high-level wrappers on MapReduce were also created, like HIVE(Franco et al., 2014), 
Pig(Apache Software Foundation, 2007) etc. these help users by providing them with many features.

Similarly, in the Dryad project DAGs need to be created as they serve as input to the model. 
DAG creation is quite a tedious task. Hence one can say that the process is too low-level. This in turn 
paved the way for DryadLINQ which is a high-level programming model.

Non Recursive Approach
MapReduce cannot be applied to recursive problems. For example, In Fibonacci series previous values 
are required to compute the subsequent values i.e., f(k+2) = f(k+1) + f(k) in such a case MapReduce 
can’t be applied. It is impossible to break complex computations into smaller counterparts. For such 
computations MapReduce will require the user to re-initiate the system with previous values. Also, 
if the data is small in size, it will be better to process it as a single operation on one machine, than 
running an entire MapReduce process which will require many overheads like synchronization, data 
communication etc.

Large Scale Graph Processing
MapReduce doesn’t work well when we have a large set of graphs to process. Although graph algorithm 
can be implemented as series of Map Reduce invocations but it requires passing of the graph from one 
stage to another. MapReduce may lead to a suboptimal performance as passing the state of a graph 
from one phase to another generates too much of I/O. Moreover it also has some usability issues as 
it doesn’t provide support to do any per-vertex calculations. Then Google came up with Pregel which 
provides scalability, fault-tolerance, and flexibility to express arbitrary algorithms and handle around 
billions of graphs together.

Figure 6. Dryad System architecture (Isard et al., 2009)



International Journal of Web-Based Learning and Teaching Technologies
Volume 16 • Issue 6 • November-December 2021

10

Another challenge is to be able to represent data in the form of graphs such that the power of 
cloud can be analyzed by understanding the problems of very large graphs. For this, it is required 
to decompose the useful operations asso-ciated with graphs into a series of MapReduce jobs which 
MapReduce alone does not provide . Graph Twiddling in a MapReduce World (Graph Twiddling in 
a MapReduce World, 2009) addresses these missing features and shows that the representation of 
graphs in the form of MapReduce processes can lead to an efficient implementation of such graphs 
over cloud.

Static vs. Dynamic Data
MapReduce is a batch operation, not an online one. Morever the information is having diverse and 
rich structures which demand handling a blend of, semistructured, structured and even unstructured 
information.Also both the data and its structure can keep changing constantly.So the MapReduce 
cannot handle very large size of evolving world information. So the ASTERIX (Vinayak et al., 2010) 
came in with the motive to provide high level language support to the semi-structured information 
over the evolving world models.

Interactive Query Processing
In order to analyze a very large data quickly, large processing power is also required. Many sequences 
of MapReduce processes are involved while processing such large tables. MapReduce works well on 
such data, but when there are about trillion of records in a table, it does not provide results immediately. 
Such kind of data processing requires high degree of parallelism and extremely fast search operations. 
Dremel(Apache, 2010), an interative ad-hoc query system was then introduced by Google which is 
capable of querying and processing trillion row tables in seconds and thus complements MapReduce.

Automatic Optimizations
No automatic optimizations take place across the MapReduce boundaries because the underlying 
MapReduce execution platform is much less fleflxible.Automatic optimizations both static and 
dynamic optimization for sorting,hierarchial ag-gregation, distribution, analyzing run time statistics 
etc are required in order to achieve better performance. DryadLINQ(Yu et al., 2011) handles this 
limitation of MapReduce by providing automatic optimizations and query processing.

ASTERIX
The open source ASTERIX (Vinayak et al., 2010) platform aims to design and develop a highly scalable 
platform for parallel information storage and a sytem for data-intensive information analysis. ASTERIX 
is an effort to store, index, query, analyze, enor-mous quantities of semistructured information in 
parallel. Semistructured data can be defined as the data which is not following formal structure of 
relational databases and data models and is frequently updated.

ASTERIX has been built to support high level data languages in itself. It is quite different from 
wrappers like Hive (Franco et al., 2014), Pig which produce the end result by running a MapReduce 
job beneath their implimentation.

The author (Vinayak et al., 2010) in their implimentation of ASTERIX are using a selective 
fault-tolerance mechanism, which takes into account intermediate results of task into consideration 
rather than the brute force solution used by Hadoop.

ASTERIX Architecture
The authors of the paper(Vinayak et al., 2010) have divided the architecture into two major parts 
(see Figure 7):
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•	 ASTERIX Data Model (ADM): It is used to store semistructured data. Author of (Vinayak et 
al., 2010) stress that, “Each individual ADM data instance is typed and self-describing. Datasets 
may have associated schema information that describes the core content of their instances.” ADM 
is based on various semi-structured formats like JSON and Avro but not XML; as it may have 
lots of document-oriented query language.

•	 ASTERIX Query Language (AQL): To process, store and modify data, authors designed AQL. 
In accordance with the structure and the constructs of ADM. AQL has been based on XQuery, 
but again avoids many XML document related features.

Updates in ASTERIX are done by newer version of data rather than modifying the existing data 
instances. This results in improved multiuser performance. The storage and indexing in ASTERIX 
is done using primary and secondary B+ tree indices.

Instead of MapReduce, ASTERIX uses Hyracks, a platform which runs data-intensive jobs in 
parallel on a cluster of distributed machines. In order to perform AQL queries execution and run time 
scheduling and coordination, ASTERIX converts AQL requests into Hyracks jobs, Hyracks controls 
parallelism and resource management on the cluster. Hyrack can also be used to execute MapReduce 
and Dryad (Isard et al., 2009) tasks. Existing Hadoop(Apache Hadoop, 2006) and Dryad applications 
can be migrated to a Hyrack cluster which can coexist with an ASTERIX installation.

PREGEL
Graphs are of great concern in many computing problems. For example, designing transportation 
routes, analysing documents on the web, identification of disease outbreak patterns etc. Solving/
Analysing these graph problems require huge processing of graphs. In order to accomplish this 
Google created a scalable infrastructure, named Pregel (Malewicz et al., 2011), to support mining/
analysis of large scale graphs.

Pregel Architecture
In pregel, the input is a directed graph with its vertices and edges. In each iteration called supersteps 
each vertex executes a user defined function which defines the logic of the algorithm. This is executed 
in parallel. Vertices are able to read messages which were sent to them in previous iteration. They 
(nodes) send messages to be read in next iteration and are also able to modify state of outgoing edges 
(Figure 8).

Algorithm will terminate when all vertices “vote to halt”. In the initial step, all vertices are in 
the active state. Each active vertex participates in the computation. A vertex can deactivate itself 

Figure 7. ASTERIX System Architecture (Vinayak et al., 2010)
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by “voting to halt” when it has no fur-ther work to do. The algorithm terminates when there is no 
message in transit and a vertex does not have any other work.

The output of a Pregel program is a “set of values” associated with different vertices. For example, 
if a program is running a graph mining algorithm the output may be some statistics associated with 
the data.

The authors of the paper (Malewicz et al., 2011) have given an example illustrating how Pregel 
works. A strongly connected graph is taken as the input where each vertex having a value, propagates 
its largest value to every other vertex. In each iteration, the vertex with the largest value (received 
from various messages), forwards the value to all its neighbors. The algorithm terminates when no 
vertex is left with any new information.

The authors have also discussed how a Pregel user can use it to solve many problems like Page 
Rank, Bipartite Matching, Shortest Path computation, and a Semi-Clustering algorithm. We have 
discussed PageRank computation on Pregel in the subsequent section.

Application on PageRank
The performance, fault tolerance and scalability of Pregel workwell for graphs with millions of 
vertices. Morever the authors are investigating techniques for scaling Pregel to even larger graphs. 
Pregel also has an interactive application programming interface. For example, its developers have 
claimed that implementation of the PageRank computation algorithm (Hunt et al., 2010) in Pregel 
requires just 15 lines of code.

GIRAPH
Giraph is an open-source implimentation of Google’s Pregel model. It is rapidly being developed by 
the Apache foundation.

In Figure 9, Dotted lines are messages and Shaded vertices have voted to halt (Malewicz et al., 
2011).

Nested Columnar Storage
It provides a lossless columnar format representation by defining Repetition levels and Definition 
levels. (Apache, 2010) defines these repetition levels as at those repeated field in field’s path in 
the value has repeated. This repetition level is assigned to each value in order to disambiguate 
the occurrences of various fields in a nested storage. Each value in the field with path p has a 
definition level that specify the number of fields in p that can be undefined, i.e. either optional 
or repeated, are actually present in the record. To encode the record structure in columnar 
format: each column has been stored as set of blocks. Where each block contains repetition and 
definition levels. Null is not stored explicitly as they are determined by the definition levels. 
Definition levels are not stored for values which are always defined. Similarly repetition levels 
are stored only if required.

Figure 8. Vertex State Machine (Malewicz et al., 2011)
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CONCLUSION

MapReduce limitations were being highlighted and a huge demand existed for a more versatile/
powerful MapReduce or creation of an alternative. To improve on the limitations, many substitutes 
and extensions have been suggested. ASTERIX is one such substitution proposed, which provides 
a data intensive storage and computing platform for the analysis of large datasets. To compete with 
Hadoop and other systems, Microsoft created Dryad. To further improve Dryad, DryadLINQ was 
built which was augmented by combining Dryad with LINQ. In order to address and query very 
large datasets, another system called DREMEL was developed. DREMEL is designed such that it 
complements the MapReduce paradigm. Though MapReduce provides some existing graph based 
algorithms, such algorithms could not have been scaled to very large and complex graphs. Graph 
Twiddling, an idea proposed by Jonathan Cohen, focused on decomposing the graph operations into 
a sequence of MapReduce steps. With this idea of large scale graph processing, Google also came up 
with a model called Pregel. Pregel can be seen to have the combined features of Dremel and Graph 
twiddling. Looking at all these ideas and models which derive their interest from MapReduce, it can 
be seen that a lot of work has been done to either improve MapReduce or to replace it altogether. 
ASTERIX incorporates all the features of MapReduce along with many extensions to it and can be 
clearly seen as a replacement to MapReduce. Even after so many advancements, what is required is 
another complete system (ASTERIX does come close) that could address all the issues discussed. 
This can solve the problem of relying on different systems for different needs, thereby providing a 
single system to do it all.

Figure 9. Maximum Value Example
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