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ABSTRACT

Artificial intelligence is becoming more attractive to resolve nontrivial problems including the well-
known real-time scheduling (RTS) problem for embedded systems (ES). The latter is considered as 
a hard multi-objective optimization problem because it must optimize at the same time three key 
conflictual objectives that are tasks deadlines guarantee, energy consumption reduction, and reliability 
enhancement. In this paper, the authors firstly present the necessary background to understand the 
problematic of RTS in the context of ES. Then they present enriched taxonomies for real-time, energy, 
and fault-tolerance-aware scheduling algorithms for ES. After that, they survey the most pertinent 
existing works of literature targeting the application of AI methods to resolve the RTS problem for 
ES, notably constraint programming, game theory, machine learning, fuzzy logic, artificial immune 
systems, cellular automata, evolutionary algorithms, multi-agent systems, and swarm intelligence. They 
end this survey with a discussion putting the light on the main challenges and the future directions.
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1. INTRodUCTIoN

Embedded systems (ES) have penetrated our life to a point where we cannot ensure our daily business, 
assignments and chores in their absence. These systems have undergone a dramatic increase in 
functionality and omnipresence in such a way no one can negate their remarkable influence on our 
behaviors, habits and even our convictions.

Whatever their architectures type (i.e. centralized Vs. distributed), the used technologies (i.e. 
wired, wireless, optical) and the application fields (i.e. automotive, avionics, space, robotics, health 
care, military, entertainment and so on), ES have some common decisive requirements among others 
the real time constraints, the reduced energy consumption and the reliability assurance.

First, ES are qualified as Real Time (RT) systems. A RT system is any system where its correction 
depends not only on the results of computations, but also on the time instants at which these results 
become available. In other term, a real-time system is responsible for delivering logically correct 
computations within the predefined deadlines.
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Depending on the severity of the timing constraint (i.e. deadline), RT systems can be hard (i.e. 
critical), soft, firm or any combination of them. RT systems typically incorporate a RTOS (Real 
Time Operating System) kernel. The latter is responsible of many vital activities for ES such as tasks 
scheduling, Input/output management, memory management, security and so on. Since ES are often 
battery-dependent, their design have to minimize their power dissipation and energy consumption 
accordingly. Energy-aware design methodologies of ES are becoming popular in the ES terminology. 
The other important characteristic is the reliability.

In its large sense, reliability means the capacity of the system to continue its functioning even in 
the absence of faults. Reliability includes many aspects or attributes such as availability, safety (i.e. 
functional correction), data integrity, etc. Each attribute has a set of means to realize it. For example, 
availability can be achieved through faults tolerance. The latter has many mechanisms among them the 
spatial redundancy (i.e. hardware redundancy) and the temporal redundancy (i.e. the re-execution of 
the same task or code). Faults tolerant or reliability-aware methodologies are also being an inherent 
part of the ES jargon.

Contrary to traditional ES, nowadays, ES are becoming more complex, more open and networked 
and integrate intelligent parts that can function in hostile, dynamic environments (probably with 
uncertain or partial knowledge) autonomously, simulating a bit of some human intellectual activities 
such as reasoning, learning, memorization, perception, decision-making, self-adaptation, and self-
optimization. On the other hand, the exponential progress in the hardware technology conducting to 
the appearance of multi-core and parallel computing on chip, very high performance processing and 
reconfigurable hardware render embedding AI in ES possible. Of course, this coupling between AI 
and ES is not trivial at all, since the two fields have different philosophies. While AI deals with more 
complex cognitive, theoretically with unlimited resources tasks, ES are by nature reactive and have 
limited resources. The integration of AI into ES leads to the emergence of what we call ‘intelligent 
embedded systems’ (IES).

IES design is a hot research topic investigating the application of the most famous AI models and 
methods as Artificial Neural Networks (ANN), Reinforcement learning, multi agent systems (MAS), 
swarm intelligence, Genetic Algorithms, fuzzy logic, constraint programming, game theory, cellular 
automata, and Artificial Immune Systems (AIS) to ES design while meeting the temporal, the energetic 
and the reliability requirements in addition to the cost constraint and end-users goals satisfaction.

This paper is interested in the application of AI to resolve the well-known problem of RT 
scheduling for embedded systems. The possibility of coupling AI with RT systems was discussed 
earlier (Musliner et al., 1994) and a few existing works had yet been interested in the application 
of expert systems to resolve the traditional jobs scheduling problem (MacCarthy & Jou, 1995). In 
turn, (Laalaoui & Bouguila, 2014) presented a non-exhaustive survey on the application of some AI 
methods to the static RT scheduling.

With regard to the application of AI methods to resolve the RT scheduling problem for ES, it is 
stated that existing surveys on this topic are not exhaustive enough, hence the need to produce a new 
exhaustive survey with additive knowledge and some novel insights on the use of AI methods to resolve 
and optimize RT scheduling for embedded systems taking into account the energy consumption and 
the reliability. The survey paper is organized as follows: first, ES are introduced while showing their 
features and classification, the definition of intelligent embedded systems and the RT scheduling 
problem rationalization and possible taxonomies. A more exhaustive taxonomy of RT scheduling 
algorithms for ES is also presented enriching previous taxonomies by adding some important criteria. 
After that, the application of AI methods to resolve the RT scheduling problem for ES is studied 
based on previous research articles, conferences papers and surveys. Last sections are devoted to a 
discussion putting the light on some main challenges and future directions.
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2. EMBEddEd SySTEMS

Traditionally defined, an embedded system (ES) is merely a limited-resources computing system, 
which is integrated into a larger system as a software part, a hardware part or a conjoint software/
hardware part and which interacts with the physical world or the external environment continually via 
sensors/actuators to accomplish a certain task. Sometimes we refer to ESs as a special case of cyber 
physical systems (CPS). ES should meet a set of conflictual objectives notably timing deadlines, 
reduced energy consumption, small memory footprint, small weight, low cost, and reliability.

Conventional ES are centralized, simple and closed systems that interact with a fully specified 
environment via sensors/actuators and assumed to achieve some well-defined tasks under the 
supervision of a micro-controller functioning as a simple feedback loop. With the ever increasing 
in Integrated Circuit density integration and ICT (Information and Communication technologies), 
ES are being evolved in order to respond to the new increasing requirements in terms of multi-
applications execution support, high performance computing, large scaling, scalability, autonomy, 
self-adaptation, security and at the same time to support the next-future technologies as wireless/optical 
communication, sustainable energy, IoT (internet of things), big data, and cloud computing. Hence, 
the necessity to develop new design methodologies or to tune and boost conventional methodologies 
in order to cope with these emerging issues.

Typically, an ES includes a RTOS kernel. The latter plays the role of an intermediate between 
the hardware layer and the application layer. The RTOS assures the most vital activities of an ES 
especially the RT scheduling, inputs/outputs and memory management and protection.

Figure 1 shows a possible classification of embedded systems (Classification-of-embedded-
systems, n.d). In this classification, two main criteria are used: the system performance and functional 
requirements, and the performance of the microcontroller. Based on the first criterion, ES are classified 
into four categories that are Standalone ES, Real time ES, Networked ES, and Mobile ES. Based on 
the second criterion, ES can be classified into three main categories: Small scale ES, Medium scale 
ES, and Sophisticated ES. Standalone ES refer to ES working by themselves (i.e. do not require a host 
system). Examples for the standalone-embedded systems are digital cameras and video game consoles. 
Networked ES are the distributed version of the traditional centralized ES. The connected network can 
be LAN, WAN or the IoT (Internet of Things). The connection can be wired or wireless. Mobile ES 
are ES, which are used in portable embedded devices like cell phones. Small Scale ES are ES with 
a microcontroller of 8 or 16 bits. Medium Scale ES are ES with a microcontroller of 16 or 32 bits, 
RISCs or DSPs. Sophisticated ES are ES with more sophisticated hardware/software components as 
ASIPs, IPs, or configurable processors. They are used to implement complex applications following 
a Hw/Sw Codesign approach. Sophisticated ES are implemented as complex SOC (System On Chip), 
NOC (Network on Chip) or WiNOC (wireless NOC). The latter paradigm is a promising solution 
to mitigate the large delay and high power dissipation issues offered by the conventional NOC. Of 
course, there exist other classifications of ES considering other criteria as the application domain, 
the target SOC and NOC architectures. In principle, most ES are RT and require an RT scheduler to 
assure that all or a certain percentage of system tasks meet their deadlines while minimizing the energy 
consumption and maximizing the system reliability. The classification in figure 1 can in its turn be 
refined. For example, RT ES can be further subdivided into three main sub-classes: Hard (critical), 
Soft, and firm. In hard RT systems, the consequences of missing a deadline can be catastrophic. In 
soft and firm RT systems, the results are relatively tolerable but for firm systems a degradation in 
quality of services is very potential. Networked ES can be also divided into two sub-classes: wired ES 
and wireless ES. Each one can be further partitioned into many categories with regard to the scope 
of the network. For more details, one can refer to (Boutekkouk, 2019a).
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3. INTEllIgENT EMBEddEd SySTEMS

(Elmenreich, 2003) identified some potential reasons for using an intelligent solution for ES among 
them dependability, efficiency, autonomy, easy modelling, maintenance costs and insufficient 
alternatives. Intelligent embedded systems (IES) are ESs having the capacity of reasoning about 
their external environments even in the presence of uncertainty and adapt their behavior accordingly. 
IES have some main characteristics such as self-learning, self-optimizing and self-repairing. We can 
say that IES are the fruit of coupling between embedded computing and Artificial Intelligence (AI). 
Therefore, IES can include knowledge-based technology. Recently, the use of AI techniques in ES 
has proliferated. In terms of ES, this gives rise to the possibility of developing systems that can learn 
from their environment and that can change their own control programs to adapt to new situations. 
Intelligent WSN (wireless sensors networks), intelligent vehicles, and robots are becoming very 
popular. IES applications are growing more and more covering a large spectrum of domains such as 
farming, smart buildings, education and transport.

4. REAl TIME SCHEdUlINg

Real time Scheduling (RTS) is a decisive activity in ES design. It can be defined as the process of 
assigning dates of execution start to system computational and communicational tasks such that 
deadlines are met totally or partially. This definition is sound when scheduling is performed on a 
system with only one computational (i.e. one processor) or communicational resource (i.e. one bus). 
For a system with multiple resources, the RTS has to take into consideration the allocation or mapping 
of tasks to system resources (spatial mapping) in addition to scheduling (temporal mapping). The RT 
scheduler is generally based on the so called the canonical model of real time tasks (Lee et al., 2007). 
As it is shown in figure 2, each task in this model is defined by a set of primary timing parameters. 
These parameters include:

- r, task release time referring to the triggering time of the task execution request.
- C, task worst-case computation time, when the processor is fully allocated to it.
- D, task relative deadline, referring to the maximum acceptable delay for its processing.

Figure 1. Classification of ES
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- T, task period (valid only for periodic tasks).

When the task has hard real-time constraints, the relative deadline allows computation of the 
absolute deadline d = r +D.

The successive release times are request release times at rk = r0 + kT, where r0 is the first release 
and rk the k + 1th release; the successive absolute deadlines are dk = rk + D

Periodic tasks request times are known at priori and repeated at regular time intervals (i.e. periods). 
In order to simplify schedulability analysis, the LCM (Least common multiple) of all tasks periods is 
often considered. Sporadic task request times are not known at priori, but it is assumed that a minimum 
interval exists between two successive requests. Aperiodic tasks have no such constraint on their request 
times. Usually, the request times follow some probabilistic laws. Tasks can be independent or have 
precedence, synchronization, and mutual exclusion constraints between them. Tasks can be mapped 
to processors in a preemptive or non-preemptive manner. Preemptive means that the running task 
can be interrupted at any time to assign the processor to another ready task, whereas non-preemptive 
means that, a task once started executes to completion before relinquishing the processor.

The problem of scheduling tasks with precedence and synchronization constraints on a set of 
processors is NP-complete and heuristics are typically used to obtain a feasible schedule.

A dynamic or on-line scheduler makes its scheduling decisions at run time whereas, a static or 
off-line scheduler generate a feasible schedule that is guaranteed to meet the timing constraints of all 
tasks at design time. Static scheduling is more suited to critical systems with periodic tasks.

RT scheduler can execute on only one processor or over a set of homogeneous or heterogeneous 
processors. Multiprocessor scheduling has to solve the allocation problem that consists in deciding 
on which processor a task should execute, and the priority problem, that is, when a task should 
execute. In global scheduling, there is only one tasks queue and tasks migration is allowed, whereas, 
in partitioned scheduling, each processor has its own tasks queue and no migration is allowed. By 
separated RT scheduling, we mean multiprocessor RT scheduling that treats the allocation and 
scheduling sub-problems separately (i.e. sequential manner). Simultaneous RT scheduling treats the 
two sub-problems concurrently.

Separating the two sub-problems render the problem more simpler but at the prize of sub-
optimality. The simultaneous treatment makes the problem more complex but leads to optimal results. 
With the appearance of networked ES, RT scheduling becomes distributed. Consequently, each node 
of the distributed system has its own local scheduler.

Figure 2. Canonical model for real time tasks
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A significant number of RT scheduling algorithms have been developed over last decades and 
classified following a set of criteria. The latter include mainly: tasks periodicity (periodic vs aperiodic), 
dependency (dependent vs. independent), the number of processors (mono vs. multiprocessor), tasks 
priority calculation (fixed vs dynamic) and online vs. offline scheduling.

RT scheduling is probabilistic, if it applies some laws of probability to select tasks or to compute 
some timing parameters (Tidwell, 2011). Some probabilistic RT scheduling algorithms model the 
problem as queues theory. RT scheduling is imprecise, if its decisions regarding tasks selection or 
priorities calculation is based on a partial, vague or imprecise data. In some cases, intermediate or 
partial results from task computations can be used instead of more precise results when a real-time 
system suffers failures or transient overloads.

RT scheduling is adaptive if it can adjust its parameters dynamically to respond to some events 
(i.e. faults) or to meet deadlines. For instance, in some situations, the RT scheduler has to adjust the 
period of a task (Zhou et al., 2017).

Traditional RT scheduling is concerned merely with the timing issue; however, with the emerging 
of battery-dependent systems, the RT scheduling should minimize the energy consumption too. 
Moreover, the RT scheduling has to enhance the reliability of the system especially for critical systems.

Energy-aware RT scheduling algorithms tend to minimize the energy consumption in embedded 
systems (processors, buses, memories) while meeting all tasks deadlines or a subset of the set of 
deadlines (Niu & Quan, 2006).

The problem of reducing energy consumption while meeting tasks deadlines is not trivial since 
time and energy decreasing are conflictual objectives. For this reason and in order to find a good 
tradeoff, energy-aware algorithms have been developed. Figure 4 shows a possible classification of 
energy-aware RT scheduling algorithms. Previous taxonomies are enriched by adding the class of 
algorithms applying the technology of energy harvesting.

As shown in figure 4, energy-Aware RT Scheduling algorithms are traditionally classified 
regarding whether they minimize the dynamic power, the static power or both two, whether they use 
nonrenewable or renewable energy technology and whether they run a single core or multi-cores 
CPUs (Bambagini et al., 2016).

Most energy-aware algorithms minimize dynamic power that is related to the amount of the 
switching activity in the hardware resource (i.e. the processor), its supply voltage and clock frequency. 
With the continuing reduction of the transistor dimension, static power becomes more significant and 
cannot be neglected anymore. Static power is mainly related to the current leakage. Recent algorithms 
take into account both power types. Nevertheless, for static power minimization, the algorithms resort 
to low levels energy models and simulators. Other algorithms make some abstractions in order to 
simplify the power estimation but at the prize of estimation impreciseness. Energy-aware algorithms 
can minimize temperature. In order to do so, they generally resort to some thermal models to estimate 
the generated temperature at hardware components. In the case of multicores processor architectures, 
the objective of temperature-aware algorithms is rather to balance the distribution of temperature 
between the different cores so the hotspot of the processor is avoided (Ahmeda et al., 2011).

Single core algorithms are first classified along the DVFS (Dynamic Voltage Frequency Scaling) 
and DPM (Dynamic Power Management) dimensions. DVFS-based algorithms are based on the 
principle of scaling the supply voltage and the clock frequency of the processor dynamically to 
minimize the processor energy. Each processor has different speed (voltage) levels at which it can 
execute (interval of discrete or continuous values).

DPM-based energy management techniques selectively place system components into low-
power states when they are idle at runtime. A power managed system can be modeled as a power 
state machine, where each state is characterized by the power consumption and the performance. In 
addition, state transitions have power and delay cost. DVFS algorithms are classified according to the 
type of slack (the unused CPU time) that they reclaim for scaling speed to save energy. Specifically, 
the algorithms that exploit only the static slack consider the residual processor utilization in the worst-
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case execution, whereas those that reclaim the dynamic slack take advantage of the difference between 
the worst-case and the actual execution time of the jobs. Various real-time DVFS techniques have 
been studied, among them the presented static, cycle-conserving (CC), Look Ahead (LA), dynamic 
reclaiming algorithm (DRA), dynamic reclaiming-one task extension (DR-OTE), and aggressive 
speed adjustment (AGR) algorithms are the most important.

DPM algorithms are classified as offline and online approaches. The algorithms that use both 
DVFS and DPM techniques are designated as integrated algorithms. These algorithms are further 
divided according to when the task speed assignment decisions are made, that is, either offline or 
online. Multicore algorithms are classified according to the flexibility in the DVFS support provided by 
the platform. If the hardware allows setting a different frequency for each core, the DVFS algorithms 
are classified as Independent Frequencies, whereas if a single frequency is shared among a subset of 
cores, the algorithms are classified as Voltage Islands

The DVFS multiprocessor algorithms for independent frequencies can be further distinguished 
between approaches that assign frequencies to cores independently of the running tasks (Per-CPU 
algorithms) and those that compute a frequency for each task and use it for the core executing that 
task (Per-Task algorithms). ES which are powered by a renewable energy source are qualified as 
energy harvesting systems. Uncertainty of energy availability in energy harvesting systems makes the 
problem of task scheduling mores challenging. In general, energy-harvesting algorithms can broadly 
divided into energy-greedy and computation-greedy classes depending on the actions they take when 
the energy level is low. Under that condition, energy-greedy algorithms exploit the available slack 
in the system by procrastinating tasks and charging the battery as much as possible. In contrast, the 
computation-greedy algorithms give priority to execute the pending workload, and charge the battery 

Figure 3. Classification of RT scheduling algorithms for ES
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only for the shortest time, which guarantees the execution of the next computational unit (Moser et 
al., 2006; Bambagini, 2014; Chandarli, 2014; Housseyni et al., 2016).

Faults tolerant-aware RT scheduling has to guarantee the functional and timing correctness even in 
the presence of hardware and software faults. Faults are generally classified into three main categories: 
permanent, transient, and intermittent. Permanent faults do not die away with time. They are caused 
by total failure of the computational unit and remain until they are repaired as the affected unit is 
replaced (hardware redundancy). Transient faults are temporary malfunctioning of the computational 
unit. They die away after some time. Intermittent faults are repeated occurrences of transient faults. 
Many Faults tolerant-aware algorithms have been proposed to deal with the different kinds of faults. 
Most of these algorithms deal with transient faults that occur at the processor and bus levels.

In order to achieve fault tolerance, the first requirement is that faults have to be detected. In 
general, there exists two main techniques for faults detection: watchdog and redundancy.

Watchdog timer monitors periodically the execution time of programs or transmitted data, 
whether it exceeds a certain limit. Redundancies can be classified into two categories hardware-
based redundancy and time-based redundancy. Hardware-based redundancy methods attempt to 
tolerate transient faults by copy-executions of each original task on another separated hardware. 
These methods can be classified into three main categories: TMR (Triple Modular Redundancy), 
PB (Primary/Backup), and PE (Primary/Exception). In TMR, the critical components are replicated 
three times and error checking is achieved by comparing results after completion. In this scheme, 
the overhead is always on the order of the number of copies running simultaneously. In PB, the tasks 
are assumed to be periodic and two instances of each task (a primary and a backup) are scheduled 
on a uni-processor system. The main idea behind this technique is that the backup of a task need not 
execute if its primary executes successfully and that no resource conflicts occur between the two 
versions of any task. One of the restrictions of this approach is that the period of any task should be 

Figure 4. Classification of energy-aware algorithms
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a multiple of the period of its preceding tasks. It also assumes that the execution time of the backup 
is shorter than that of the primary. PE is the same as PB method except that exception handlers are 
executed instead of backup programs. In general, hardware redundancy is avoided as far as possible, 
due to limited resources. Software (or Temporal) redundancy is more cost-efficient to handle transient 
faults. One possible approach is to schedule critical tasks multiple times and perform voting of the 
results (re-execution).

Another common technique is to insert checkpoints into the software and rollback the execution 
from a safe state in case faults are detected. For real-time applications, temporal redundancy must 
be used with utmost care, since the overhead in time may lead to deadline violations. Faults-tolerant 
algorithms can be either reactive in the sense they handle the faults only when they occur. Whereas, 
cognitive algorithms can predict and plan in priori the handling of faults (Kandasamy et al., 2000; 
Mottaghia & Zarandi, 2014; Han, 2015; Fan & al., 2017; Barkahoum & Hamoudi, 2019).

Figure 5. Classification of faults tolerant-aware algorithms
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Some typical examples of intelligent RT embedded systems scheduling applications include 
outpatient clinics (OPCs), smart transport and spacecraft.

In the context of OPCs, intelligent RT scheduler that schedules patients and resources based on 
the actual status of departments is crucial particularly when the patient demand is high and patient 
arrivals are random. Generally, OPCs systems are push systems where scheduling is based on average 
demand prediction and is considered for long term (monthly or bimonthly). Often, planning and actual 
scenario vary due to uncertainty and variability in demand and this mismatch results in prolonged 
waiting times and under-utilization of resources (Munavalli et al., 2020).

In the field of smart transport, the focus of the smart transportation industry has been shifting 
towards the research and development of smart cars with autonomous control while promoting 
safe driving which is one of the crucial concerns in autonomous smart cars. The major issue for 
the better provision of safe driving is real time tasks scheduling and an efficient inference system 
for autonomous control. In such systems, on optimal control system consists of an intelligent part 
which can be implemented as ANN or an expert system with a knowledge base and a control unit; 
where the knowledge base contains the data and thresholds for rules and the control unit contains 
the functionality for smart vehicle autonomous control. The intelligent RT scheduler provides an 
efficient way of controlling smart cars in different scenarios such as heavy rainfall, obstacle detection, 
driver’s focus diversion etc., while ensuring the practices of safe driving, timing constraints respect 
and energy consumption (Sehrish et al., 2019).

Spacecraft operations have been a major area of application for intelligent RT scheduling.
the use of an automated intelligent scheduler will assist to create observations of both targeted 

geographical regions of interest and general mapping observations while respecting spacecraft 
constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. 
Numerous space missions have used automated planning and scheduling on the ground to enable 
significant operational efficiencies. For instance, Europa Clipper has been a mission concept under 
study by NASA for a spacecraft to fly to the Jovian planet-moon system in order to study the icy moon 
Europa. The Europa Clipper concept considers a number of possible science instruments, including 
a radar to study the ice shell and subsurface properties, and infrared instrument to study surface 
composition, a topographic imager to gather high resolution images of surface features, and an ion and 
neutral mass spectrometer to investigate Europa’s trace atmosphere during flybys. In order to achieve 
these goals, an automated intelligent RT scheduler is implemented. The intelligent scheduler functions 
on three steps namely instrument definition, campaign generation, and target selection. In the first 
step, the spacecraft and instruments must be defined along with the constraints that may impact how 
and when data can be collected. To generate valid schedules, the interactions between the instruments 
and the spacecraft should be modeled as well as how the instruments interact with each other. In 
the second step, campaigns are generated to represent the constrained and prioritized requests of the 
scientists. In order to collect relevant data for a particular scientific campaign, constraints are made 
on both internal and external conditions. Then, a priority is assigned to each campaign to enable the 
scheduler to make the best choice when different observation types are feasible. Finally, the last step 
is to select the best tradeoff between feasible observations (Rabideau & al., 2015).

4. RESolvINg THE RT SCHEdUlINg pRoBlEM 
foR EMBEddEd SySTEMS USINg AI.

The RT scheduling problem for ES can be defined as a Multi-Objective Optimization (MOO) 
problem under constraints. It is qualified to be NP-hard, makes it difficult to devise conventional 
approaches. As an alternative, AI-based approaches seem to be promising solutions. RT scheduling 
optimization for ES has to take into account three conflictual objectives that are deadlines respect, 
energy consumption minimization and reliability.
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This poses a big challenge because lowering the voltage to reduce energy consumption reduces the 
processor clock frequency that means increasing task execution time, which can lead to no guarantee 
of task deadlines. Furthermore, lowering the voltage to reduce energy consumption has been shown to 
increase the number of transient faults. Even the redundancy mechanism (i.e. hardware redundancy) 
to tolerate faults will increase the energy consumption although it decreases the overall execution 
time. For a nontrivial MOO problem, no single solution exists, that simultaneously optimizes each 
objective and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called 
no dominated or Pareto optimal if none of the objective functions can be improved in value without 
degrading some of the other objective values. In the literature, there are several theoretical options 
to solve a MOO problem. Many methods convert the original problem with multiple objectives into 
a single-objective. This is called a scalarized problem. MOO methods can be generally partitioned 
into four classes (Multi-Objective Optimization, n.d):

- The “no preference” methods in which decision maker (DM) is expected to be available, but an 
unbiased tradeoff solution is identified without preference information.

- The “a priori” methods in which preference information is first asked from the DM and then a 
solution best satisfying these preferences is found.

- The “a posteriori” methods in which a representative set of Pareto optimal solutions is first found 
and then the DM must choose one of them.

- The interactive methods in which the DM is allowed to iteratively search for the most preferred 
solution. In each iteration, the DM is shown Pareto optimal solution(s) and describes how the 
solution(s) could be improved. The information given by the DM is then taken into account while 
generating new Pareto optimal solution(s) to study in the next iteration.

AI includes a set of methods and models to address complex problems of the real world application 
including the RT scheduling problem.

By intelligent RT scheduling, it is meant any conventional RT scheduling which incorporates 
an AI method or model. Figure 6 shows a classification of AI methods which have largely been used 
to resolve RT scheduling. These models comprise mainly: Constraint Programming (CP), Game 
Theory (GT), Artificial Immune Systems (AIS), Cellular Automata (CA), Machine learning including 
Artificial Neural Networks (ANN) and Reinforcement learning, Fuzzy logic, Multi-Agent Systems 
(MAS), Evolutionary Algorithms (EA), and Swarm intelligence including ants colony, bees colony 
and PSO.

4.1. Constraint programming
Due to the large variety of constraints that must be fulfilled by a RT scheduler, the constraint 
programming (CP) paradigm seems to be justifiable. In this context, the RT scheduling problem can 
be formulated as a constrained satisfaction problem (CSP).

CP is so popular, because it helps to specify in a declarative and generic fashion relevant 
constraints. Furthermore, CP offers a powerful search space reduction using constraint propagation 
that can detect infeasible branches in the search tree earlier and this is triggered every time a new 
constraint is added to the model. One big advantage of CP is the possibility to create and integrate 
new heuristics using the available meta-heuristics (Szymanek et al., 2000). CP can be applied also 
in solving combinatorial optimization problems by expressing the objective function as a constraint 
variable and then iteratively, solve the same problem with an increasing tighter bound on this variable. 
Basically, CP encompasses two steps that are:

1.  Formulate the problem in terms of variables and constraints.
2.  Find a feasible or an optimal assignment of the variables such that the constraints are satisfied.



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

12

In CP, it is well known that the time to seek for feasible solutions represents the major performance 
bottleneck. The search must be guided by a search strategy that aims at quickly directing the search 
towards good solutions without losing the completeness of CP. A search strategy is related to the 
order of choice of variables with their values.

Standard CP optimization method is based on branch and bound (B&B) algorithm. The latter can 
be successfully applied to small and middle size problems, but for large and complex problems with 
heterogeneous constraints, more sophisticated optimization methods are required. Dynamic Constraint 
Programming (DCP) is a version of CP where dynamic (i.e. at execution time) addition/retraction of 
constraints are possible. Two main classes of methods can be distinguished in DCP: proactive and 
reactive methods. Proactive methods propose to build robust solutions that remain solutions even 
if changes occur. On the other hand, reactive methods try to reuse as much as possible previous 
reasoning and solutions found in the past. They avoid restarting from scratch and can be seen as a 
form of learning. One of the main methods currently used to perform such learning is a justification 
technique that keeps trace of inferences made by the solver during the search. Such an extension of 
constraint programming is called explanation-based constraint programming.

In her PhD thesis, (Eklin, 2004) coped with periodic and dependent tasks RT scheduling problem 
taking into account the energy consumption minimization for ES on heterogeneous multiprocessor 
architecture with a shared bus using CP.

Firstly, she proposed a taxonomy of typical constraints that appear in RT embedded systems 
design. A set of heuristics to reduce the search time of the optimization algorithm had also proposed. 
These heuristics use some design space reduction techniques such as symmetries exclusion. In addition, 

Figure 6. Classification of AI methods used to resolve RT scheduling



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

13

the author integrated a power model in order to minimize the energy consumption while meeting the 
deadlines. She applied the DVFS technique.

The constraint model uses many variables:
For a task: The start time, the execution time, the blocking time, the execution node (processor), 

the speed level and the consumed energy. For a message: the start time, the transmission delay.

Some additional assumptions are made:
- A task invocation is not allowed to migrate to another node during preemption,
- A task invocation will run at a single speed level during its entire execution.

For a schedule of length lcp, each task invocation is treated as a separate task.
A possible CP-based formulation of the RT scheduling problem is illustrated in figure 7.
Where:

start
k

i
( )τ  is the start time of the task

node
k

i
( )τ is the execution node

level
k

i
( )τ  is the speed level

start message
k

i

l

j
_ ( , )τ τ is the start time of the message transmission

The work of (Hladik et al., 2005) applied dynamic constraint programming (DCP) to solve the 
problem of distributed preemptive RT scheduling taking into account fault-tolerance including periodic 
tasks with fixed priorities and hard constraints. The processors are considered homogeneous. (i.e. they 
have the same speed) and are fully connected to a network using a token ring protocol. The presented 
method follows logic Benders-based decomposition. The latter can be seen as a form of learning 
from mistakes. It is a solving strategy that uses a partition of the problem among its variables: x, y. 
The strategy can be applied to a problem of this general form:

P M x cy
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+
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The master problem considers only a subset of variables x and the sub-problem (SP) tries to 
complete the assignment on y and produces a Benders cut added to the master problem.

The author separated the allocation problem (master problem) from the schedulability (sub-
problem) one. The allocation and resource constraints is solved by means of DCP tools, whereas 
schedulability and timing constraints is checked with specific real-time scheduling analyses. In other 
term, the master problem is solved with CP yields a valid allocation and the subproblem checks the 
schedulability of this allocation finding out why it is unschedulable and designing a set of constraints, 
named nogoods which rules out all the assignments which are unschedulable for the same reason. 
The main idea is to learn from the schedulability analysis how to re-model the allocation problem 
and reduce the search space.

Two classes of constraints are defined:

- Resources constraints including memory capacity, processor utilization factor and network use.
- Allocation constraints that are imposed by the system architecture. These constraints include 

residence (a task needs some specific resource which is only available on specific processors), 
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co-residence (several tasks should be assigned to the same processor), and exclusion (tasks that 
be replicated for fault-tolerance cannot be assigned to the same processor).

To solve the allocation problem, different basic search strategies based on some criteria have 
been defined and compared. These criteria are:

mindomain (the search strategy chooses the variable with the smallest domain size),
maxmemory (the search strategy chooses the variable with the biggest memory need),
maxutilization (the search strategy chooses the variable with the biggest processor utilization), and 

learning (the search strategy uses the nogoods learned during the resolution).

Figure 7. RT scheduling problem formulation using CP
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4.2. game Theory
Game theory (GT) is a multi-player decision theory and any game must specify the players of the 
game, the information and actions available to each player at each decision point, and the payoffs 
for each outcome. The players participate in a Game in order to get maximum benefit by selecting 
a reasonable action. Equilibrium is a key concept in game theory. As optimization problems seek to 
optimal solutions, a game looks for equilibrium. The latter defines a stable state in which either one 
outcome occurs or a set of outcomes occur with known probability.

Game theory includes two main branches that are non-cooperative and cooperative (Game 
Theory, n.d).

A game is cooperative if the players are able to form binding commitments externally enforced 
through contract law. A game is non-cooperative if players either cannot form agreements or if all 
agreements need to be self-enforcing. Cooperative games are often analyzed through the framework 
of cooperative game theory, which focuses on predicting which coalitions will form, the joint actions 
that groups take, and the resulting collective payoffs.

In the context of RT scheduling problem, GT can be applied by considering each task as a selfish 
agent free to select its own processor. Every processor declares its scheduling policy in advance, 
and this induces a simultaneous-move game between the tasks. The strategy of a task consists of 
choosing the processor on which it will be executed. Each task wants to optimize its cost function 
and the game reaches an equilibrium where no task can optimize its cost function by migrating to 
another processor. The goal of a system designer is to design a scheduling policy on each processor 
such that ineffectiveness resulting from the selfish behavior is as minor as possible (Kulkarni, 2015).

(Ahmad & Ranka, 2008) formulated the RT scheduling problem on heterogeneous multi-cores 
architecture as a cooperative game theory problem to minimize the energy consumption and the 
makespan (the time required to execute all the tasks) simultaneously, while maintaining deadline 
constraints. The RT scheduling is based on a scenario where it is assumed that the schedule of the 
parallel application that minimizes the execution time (makespan) on the multi-cores architecture 
is known and the objective is to find a new schedule (with allowable reduction in schedule length) 
that tries to minimize the energy consumption of the entire architecture using the DVS technique. 
Hence, the objective is to optimize the cumulative performance rather than to satisfy individual 
cores. The paper showed that for such RT scheduling problem, a simple cooperation for joint resource 
allocation was significantly better than no cooperation. So the cores of the architecture acting as 
players can benefit only if the overall cores can benefit from the execution of tasks. This collective 
benefit can be achieved very efficiently via the concept of NBS (Nash Bargaining Solution). NBS is 
a solution to a game in which players use bargaining interactions to demand a portion of some entity. 
The interactions continue until a resolution is met and all the players achieve their demands. The 
remarkable property of the NBS is that it guarantees pareto-optimality and fairness. By converting 
the energy-aware RT scheduling problem into a cooperative game theory solution, the authors proved 
to guarantee pareto-optimal solutions in mere O(nmlog(m)) time (where n is the number of tasks 
and m is the number of cores).

(Wu, 2012) addressed the question of how to reduce the temperature difference between 
embedded processor multicores against real-time guarantee. For this end, they proposed a generalized 
tit-for-tat based corporative energy-aware scheduling game for multicore systems namely GTFTES 
(Generalized Tit-For-Tat Energy-aware Scheduling). In the proposed game, game players are the 
cores competing for different tasks whose number is always lower than the number of the processor 
cores. In the proposed scheduling scenario, each core submits a price that a task should pay for the 
executing service (in terms of temperature amount, which is estimated based on the ATMI thermal 
model, and deadlines guarantee). Naturally, the core biding the lowest bids will win the auction. The 
auctioneer (the scheduler) firstly decides the winning cores, and then assigns the tasks to the cores. 
The auctioneer charges each core the harm they cause to other cores, and ensures that the optimal 
strategy for a task is to bid the value of the cores. Each player (core) decides to cooperate or retaliate 
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according to the hardness factor h. Specifically, after each round of the game, each player will 
calculate the proportion that the players who cooperate (this proportion is specified as hardness h). 
If his over a predefined value, the player will decide to cooperate in the next game round. Otherwise, 
he will choose to retaliate without considering the power status of the processor. Simulations results 
showed that the proposed game could reduce the temperature difference between different groups of 
cores, which effectively avoids the local hotspot of a processor. (Abdeyazdan et al., 2013) applied 
the idea of Nash equilibrium in game theory for static tasks graph pre-scheduling on homogeneous 
multiprocessor architecture. Given a game with strategy sets for players, a pure Nash equilibrium 
is a strategy profile in which each player deterministically plays her chosen strategy and no one has 
an incentive to unilaterally change her strategy. The proposed algorithm tries to establish a trade-off 
between time and energy. In order to minimize the energy consumption, the number of processors 
should be minimized but while minimizing the makespan, the number of available processors may 
be increased. To determine the optimal number of processors, the algorithm consider each level of a 
task graph as a selfish player attempting to get suitable number of processors to execute its tasks in 
parallel. The overall benefit of applying the processors is maximized when the Nash equilibrium is 
reached among the levels. Afterward, considering the determined number of processors, the algorithm 
again applies the Nash equilibrium concept to determine the appropriate merging of tasks with their 
parents. In this case, each task is considered as a player and the best merging is the one it minimizes 
tasks earliest start time.

4.3. Artificial Immune Systems
Artificial immune systems (AIS) are a class of computationally intelligent, rule-based machine learning 
systems derived from the principles inspired by the human immune system. The till-known function 
of AIS is to protect the host organism against attack by invading pathogens, and that the immune 
system is comprised of several interacting subsystems which are closely linked with the endocrine 
and the central nervous systems. Some views that are more radical suggest that the immune system 
is part of a larger cognitive system that has a fundamental role in the maintenance of the body and 
the preservation of homeostasis (Artificial Immune Systems, n.d).

Traditionally, the immune system is thought to comprise a series of layers, each providing 
protection against a specific type of pathogenic attack (Lay, 2009).

Several AIS algorithms for combinatorial optimization have been designed and most of them 
are based on the clonal selection and immune network principles.

One of the most known AIS algorithms for optimization is the DCA (Dendritic Cell Algorithm), 
an algorithm derived from the operation of dendritic cells (DC).

DCs collect antigens, which are then presented to T‐cells in a lymph node, along with information 
about the concentrations of cytokine signals associated with cell death, either necrotic or apoptotic. 
The information provided by DCs is used to determine whether the initiation of an immune response 
against those antigens is necessary.

The general function of the DCA is to provide an indication of danger levels associated with 
different parts of the system. Based on the idea of a DC detecting chemical signals, the DCA makes 
use of virtual DCs and virtual signals derived from various aspects of the system being monitored. 
As shown in figure 8, each DC takes the form of a data structure, consisting of a matrix of input 
signals, a matrix of output signals, an antigen store and a migration threshold.

DCA functioning is based around a regular cell update cycle. During each update cycle, each 
DC belonging to the population updates its input signal matrix and antigen store by evaluating the 
values passed to it from the environment and then use some or all of the input signals, weights them 
according to a set of weighting values and combines them to produce the appropriate output value 
for its required output signals. Thus, the algorithm can be adjusted to favor some specific signals or 
categories of signals.
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For example, a signal can be assigned a high weighting value if it always indicates the presence 
of danger in the system. This high weight will enable the presence of this signal to render the DC 
mature. Each new DC is considered immature and has a maximum lifespan defined as a number of cell 
update cycles. At the end of this lifecycle, if this DC could not reach maturity, it will be transformed 
into the semi‐mature state.

Nevertheless, if at any point in its lifecycle the value of a DC’s output signal exceeds a specific 
migration threshold, it will be transformed into the mature state, after which it presents its antigen 
and signal values to a lymph node structure to derive a measure of danger for that antigen. In the 
framework of a PhD thesis, (Lay, 2009) suggested some modification on the conventional DCA, 
so it will be possible to apply it to reduce tasks deadlines overrun problem and hence improve the 
reliability in a non-preemptive and fixed-priorities tasks RT scheduling The DCA should be executed 
in parallel with the system, which it is monitoring, such that it is able to predict or detect overruns as 
the system operates. The proposed algorithm is shown in figure 9. In each cycle, the DCA monitoring 
component chooses a random pool of DCs from the overall pool, which are to be evaluated in that 
cycle. It then invokes the task scheduler, and for each task currently in the run queue, it determines 
the values for the DC input signals based on the state of the task at that point in the simulation, and 
updates the signal and antigen matrices of each selected DC. Once the input signals have been processed 
for all the tasks in the run queue, the output signals for all the selected DCs are then evaluated, and 
the lifecycle counter for each selected DC is incremented. For each DC, the output signal value is 
compared against the DC’s maturation threshold, and if the output signal value is greater than the 
maturation threshold, the DC becomes mature. The DC becomes semi‐mature if the lifecycle counter 
is greater than the lifecycle threshold. Once a DC has reached maturity or semi‐maturity, its antigen 
is evaluated, and the DC is reset and returned to the population.

Figure 8. Data structure of single DC
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The random selection of a subset of DCs in each cycle and the non‐deterministic characteristics 
of the task execution, guarantees a continuous evaluation of the status of the run queue throughout 
the simulation.

In the context of the deadline-overrun problem, the DCA is applied with three signal categories:

- PAMP (Pathogen Associated Molecular Patterns) which corresponds to the actual overrun occurring 
when the task completion time is greater than the task deadline.

- Danger which corresponds to a potential overrun occurring when at any point from the task release 
to completion, the worst-case response time is greater than the time to deadline.

- Safe, when at all points from the task release to completion, the worst-case response time is less 
than the time to deadline.

The behavior of the DCA depends strongly on its input parameters especially the weights and 
the threshold values.

Figure 9. DCA pseudocode, amended for application to the deadline overrun problem
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4.4. Cellular Automata
Cellular Automaton (CA) is a computation model used to model and simulate behaviors of complex 
dynamic and parallel systems. CA can be seen as a grid of cells together form a neighborhood. Each 
cell has a state and can change its state according to its neighborhood state. This is called a local 
transition rule. By applying local rules on cells synchronously or asynchronously, the CA changes 
its global state and some complex emerging behaviors can be produced. This is a primary inherent 
characteristic of CA. In its simplest form, a cellular automaton is defined as CA = (D, S, N, £, F) 
where: D is the grid dimension, S is the set of cells states, £ is the local transition function and F is 
the global transition function (Cellular automaton, n.d).

Many authors have been interested in applying CA to solve the traditional multiprocessor 
scheduling problem. But only few works targeting the application of CA to solve RT scheduling 
problem for ES. Existing literature works differ according to how the neighboring, the cell states and 
the local transition rules are defined and how they are evolved.

It is well known that one of the difficulties in using CA is the exponentially increasing number of 
rules with increasing number of processor and neighborhood radius. For this reason, it is not wonder 
if we find many authors have been combine optimization metaheuristics such as genetic algorithms 
and their variants notably quantum inspired genetic algorithms or other swarm based techniques to 
solve the combinatorial explosion of rules in CA.

The first application of CA to solve the problem of scheduling is due to (Seredynski, 1998).
The author proposed to use cellular automaton (CA) as a tool for designing distributed scheduling 

algorithms for allocating parallel program tasks in multiprocessor systems. To do so, a program graph 
is considered as a CA containing elementary automata interacting locally according to some rules. 
The proposed algorithm has two phases: in the first phase, it tries to discover effective rules for the 
CA by a genetic algorithm. In the second phase, for any initial allocation of tasks in a multiprocessor 
system, the CA-based scheduler attempts to find an allocation minimizing the total execution time 
of the program in a given system topology. The proposed approach was validated for a number of 
program graphs scheduled in a two-processor system. (Swiecicka et al., 2006) presented a CA-
based multiprocessor scheduler working in three modes that are learning, normal operating, and 
reusing. In the learning mode, knowledge about solving a given instance of the scheduling problem 
is extracted and coded into CA rules. A genetic algorithm is used to discover the most suitable CA 
rules. Discovered rules in the learning mode are used in the normal operating mode by CA-based 
scheduler for automatic scheduling without a calculation of a cost function, an optimal or suboptimal 
solution of the scheduling problem for any initial allocation of program tasks in the multiprocessor 
system. In the third mode, previously discovered rules are reused with support of an artificial immune 
system (AIS) to solve new instances of the problem.

(Ghafarian et al., 2009) proposed a scheduler that uses a two dimensional evolving CA based on 
ant colony optimization method to find optimal response time for some of well-known precedence 
task graph in the multiprocessor scheduling area.

(Agrawal & Rao, 2012) presented an irregular CA to find an energy-aware schedule. The rules 
for cellular automata are learned using a genetic algorithm. To solve the scheduling problem using 
CA, the tasks graph with precedence constraints and the architecture graph have to be mapped to the 
CA domain. An elementary task of the program is mapped to a cell in the CA space. The CA uses a 
neighborhood of size 5, which includes two parents and two children of the task, and the task itself. 
The state of the cell specifies the component to which the task is assigned. Initially, tasks are assigned 
randomly to the components. Then according to the rules and the neighborhood, CA evolve sequentially 
to reach a state, which gives a near-optimum schedule. In a more recent work (Boutekkouk, 2015), a 
CA-based solution is proposed to solve multi-cores energy-aware RT scheduling problem with periodic 
and independent tasks using the DVS (Dynamic Voltage Scaling) technique. The proposed CA is a 
two dimensional grid where each cell represents the information of the task allocation on a processor 
with a certain frequency mode. Thus, a cell state is a triplet (task, processor, frequency mode). The 



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

20

user has the choice to choose between two scheduling policies that are DM (Deadline Monotonic) 
and EDF (Earliest Deadline First) when more than one task is allocated to the same processor. The 
author defined a set of local transition rules in order to simulate the CA. Such transition rules can 
for instance change the allocation, the priority or the frequency mode of a task. These rules try to 
optimize power consumption, balancing usage ratios of processors and minimize the number of tasks 
missing their deadlines. By applying these rules continually, some emerging behaviors or some good 
configurations with minimal power consumption are observed.

In the example of figure 10, there are five processors (p0... p4) and twenty tasks (T0… T19).
Each processor is characterized by a color and three frequency modes that are High frequency 

mode (H), Middle frequency mode (M), and Low frequency mode (L).

4.5. Reinforcement learning
Reinforcement Learning (RL) is a branch of machine learning concerned with how software agents 
have to take actions in an uncertain, potentially complex environment in order to maximize the notion 
of cumulative reward. RL does not need labelled input/output pairs be presented and sub-optimal 
actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration and 
exploitation of the current knowledge (Reinforcement learning, n.d).

Among efficient application of RL is to solve MDP (Markov Decision Process) without explicit 
specification of the transition probabilities (i.e. probabilities are not known in priori), in this case, the 
values of the transition probabilities are needed in value and policy iteration. Reinforcement learning 
can also be combined with function approximation to address problems with a very large number of 
states. Informally, a MDP is a discrete time stochastic control process, used for probabilistic modeling 
of decision making. More formally, an MDP (Markov decision process, n.d) is a quadruplet (S, A, 
Pa, Ra) where

{\displaystyle S}S is a finite or infinite set of states, 
{\displaystyle A}A is a finite or infinite set of actions, 

Pa (s, s’) is the probability that action a{\displaystyle a} in state s{\displaystyle s} at time t{\
displaystyle t} will lead to state s’{\displaystyle s’} at time {\displaystyle t+1}t+1, 
P s s s s s s a a
a t t t
( , ') Pr( ' | , )= = = =+1  

{\displaystyle R_{a}(s,s’)}Ra (s, s’) is the immediate reward (or expected immediate reward) 
received after transitioning from state s {\displaystyle s} to state s’ {\displaystyle s’}due to action a. 
The core problem of MDPs is to find a policy for the decision maker: a function π that specifies the 

Figure 10. Example of a CA state in the first period using EDF
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action π(s) that the decision maker will choose when in state s. Once a Markov decision process is 
combined with a policy in this way, this fixes the action for each state and the resulting combination 
behaves like a Markov chain.

{\displaystyle a}The goal is to choose a policy π that will maximize some cumulative function 
of the random rewards, typically the expected discounted sum over a potentially infinite horizon:
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Where we choose at = π(st) (i.e. actions given by the policy) and the expectation is given over
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Where {\displaystyle \ \gamma \ } is the discount factor satisfying 
(Glaubius et al., 2010) considered the problem of learning near optimal RT scheduling when the 

system model is not known using MDP. In contrast to classical real-time scheduling approaches that 
are based on worst-case execution time (WCET) analysis, this work assumes that each task’s duration 
obeys some underlying but unknown stationary distribution. Thus, RL suits well this situation. The 
tasks model consists of N tasks that require mutually exclusive use of a single common resource. 
Each task consists of an infinite sequence of jobs. Furthermore, many assumptions are made:

- inter-task job durations are independently distributed,
- intra-task job durations are independently and identically distributed,
- The scheduling is supposed not preemptive and each duration distribution must have bounded 

support on the positive integers.

The goal is to schedule jobs in order to preserve temporal isolation.
More formally, the RT scheduling problem is modeled as an MDP over a set of utilization states 

X. each state x is an n-vector (x1… xn) where each xi is the total number of quanta during which task 
Ti occupied the shared resource since system initialization.
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τ x( )  denotes the total elapsed time in state x.
Each action I in this MDP corresponds to the decision to run task Ti. Transitions are determined 

according to task duration distributions, so that:
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Where Δi is the zero vector except that component i is equal to one. The cost of a state is its L1-
distance from target utilization within the hyperplane of states with equal elapsed time τ(x)
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The target utilization denes a target utilization ray {λu: λ 3 0}. When the components of u are 
rational, this ray regularly passes through many utilization states. In Figure 11, for example, the 
utilization ray passes through integer multiples of (1, 2). Every state on this ray has zero cost, and 
states with the same displacement from the target utilization ray have equal cost.

T1 (grey, open arrowheads) stochastically transitions to the right, while T2 (black, closed 
arrowheads) deterministically transitions upward. The dashed ray indicates the utilization target. This 
task scheduling MDP has an infinite state space and unbounded costs. However, an optimal policy 
can be estimated accurately using a finite state approximation. RL is used to integrate the model and 

Figure 11. Illustrates the utilization state model for a problem with two tasks and a target utilization u = (1, 2) = 3 (that is, task T1 
should receive 1/3 of the processor, and task T2 should receive the rest).
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the policy estimation. In order to know how much experience is necessary before learned policies 
can be trusted. The authors address this issue by deriving a PAC (Probably Approximately Correct) 
bound on the sample complexity of obtaining a near-optimal policy.

In the context of a PhD thesis, (Tidwell, 2011) defined a Markov Decision Process (MDP) model 
that enables to derive value-optimal schedulers, and also provides a formal framework for comparing 
the performance of different scheduling policies. He equally showed how the problem structure allows 
to bound the number of states in the MDP by wrapping states into a finite number of exemplar states.

Q-learning
Q-learning is a reinforcement learning algorithm which does not require a model of the environment. It 
treats problems with stochastic transitions and rewards, without requiring adaptations. “Q” designates 
the function that returns the reward used to provide the reinforcement and can be understood as the 
“quality” of an action taken in a given state.

In Q-learning, the system consists of a finite state space S and a set of actions A. Selecting an 
action a Î A at state s Î S conducts the system to a new state with a reward or penalty.

A policy π is a mapping π: S®A. For each state–action pair (s, a), it maintains a value function 
Qπ(s, a) that represents the penalty or reward. Based on the function value, the agent decides which 
action should be taken in current state to achieve the maximum rewards. The Q-value for each state–
action pair is updated iteratively in the Q-table each time an action is issued and a penalty is received 
based on the following expression:
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Where pt(st,at) is the penalty received in state st with action at taken. αt is the learning rate that 
determines what degree the newly acquired information will override the old information.

δ is the discount rate that determines the importance of future rewards and plays an important 
role when the environment is sequential. Q(st+1,at+1) is determined based on the action, which costs 
minimum Q-value. The next time when state st is visited again, the action with the minimum Q-value 
is chosen (Q-learning, n.d).

(ul Islam & Lin, 2015) proposed to use Q-learning algorithm to reduce the energy consumption 
in RT scheduling of periodic and preemptive tasks using a set of DVFS techniques on mono-core 
processor. The impetus behind applying Q-learning is because existing DVFS techniques work with 
different strategies and perform well under different conditions. However, a single DVFS technique 
is not always optimal under different workloads, dynamic slacks, and power settings. Furthermore, 
the variation in device configuration also affects the suitability of a given DVFS algorithm. Thus, 
the aim of the Q-learning algorithm is to take the advantage of different strategies used by each of 
the existing DVFS techniques by training the scheduler what and when selecting the more suitable 
DVFS policy in order to minimize the energy consumption while meeting tasks deadlines. In their 
experiments, the authors selected three hard real-time DVFS techniques that are CC, LA, and DRA. 
Results show that the proposed approach under some assumptions can save more energy than any 
single policy executing individually.

4.6. Artificial Neural Networks
Artificial Neural Networks (ANN) have proved their efficiency in classification and optimization 
problems with constraints. To solve optimization problems using ANN, one must first select an 
appropriate neural network model, and then map the cost functions and the constraints of a the 
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target problem into an energy function which represents a state function of the selected model. The 
mapping must be accomplished in such a way that while the energy function has reached a stable 
state (i.e. local minimum or as a global minimum), the corresponding cost functions and violations 
of the constraints are minimized.

However, for ES where resources are limited, the application of ANN is still questionable.
Because of the particularity of ES, any ANN-based solution should attentively select the 

appropriate number of neurons, layers and connections between them, and conceive the learning 
algorithm as simple as possible (Feng & al., 2005). Traditionally, the online scheduling problem can 
be modeled through ANN as follows:

- In the case of mono-processor architecture, Neurons nij are organized in a matrix form, with the 
size NT x NC, where line i is the task Ti and the column j corresponds to schedule time unit j. 
The number of time units NC is the least common multiple of all the task periods and NT is the 
number of tasks.

- A neuron nij is considered active when the task Ti is being executed, during the corresponding time 
unit j.

- One line of neurons is added to model the possible inactivity of the processor during the schedule 
times. These neurons are called slack neurons.

- In the case of a homogeneous Multiprocessor architecture, several matrices arranged in layers are 
required to model the different execution resources.

- New slack neurons are then necessary to manage the exclusive execution of each task on resources. 
So for each couple (task Ti, resource j), Ci,j new slack neurons must be added.

Slack neurons are added to ensure the network convergence when applying a k-out-of-N rule 
on each vertical line of neurons. k-out-of-N rule allows the construction of N neurons for which the 
evolution leads to a stable state with exactly k active neurons among N.

An example of network with p resource layers is shown in Figure 12. Grey circles represent slack 
neurons (Chillet et al., 2007).

However, this technique has two major drawbacks. The first is the important number of necessary 
slack neurons needed to model the problem. The second problem is the presence of several local 
minima when several rules are applied to the same set of neurons. These local minima are particular 
points of the energy function, which represent invalid solutions. To ensure convergence towards 
valid solutions, these minima must be detected and the network needs to be re-initialized. In order 

Figure 12. Classical structure used to model the ANN. Grey circles represent slack neurons
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to reduce the number of required neurons and avoid re-initializations of the network, many authors 
have proposed some modifications.

(Chillet et al., 2007) presented a model of ANN used for RT online scheduling on heterogeneous 
on chip multiprocessors. The proposed model is an adaptation of the Hopfield model and the main 
objective concerns the minimization of the neurons number to facilitate its hardware implementation. 
To do so, the authors proposed new constructing rules to design smaller neural network so the number 
of slack neurons is considerably reduced and independent of the period. Moreover, no re-initialization 
is necessary because there is no local minimum in the energy function. The authors proposed two 
modifications of the neural network structure. Firstly, a specific neuron is placed for each task and each 
type of execution resource, this neuron is called inhibitor neuron. The main idea consists in creating a 
mutual exclusion between the possible task instantiations on execution resources. Secondly, in order 
to remove the slack neurons which model the possible inactivity of the processor (idle cycles). The 
authors proposed the application of a kl-out-of-N1 classical rule on the horizontal sets of neurons and 
an at-most-k2-among-N2 rule on the vertical sets of neurons.

(Rehaiem et al., 2016) presented an ANN model which is a Hopfield model for energy-aware 
online RT non-preemptive scheduling with hard constraints based on the combination of DVS and 
Neural Feedback Scheduling (NFS) with the priority-energy earliest-deadline-first (PEDF) algorithm. 
A flexible BP (Back Propagation) learning algorithm is adopted in which only the symbol of gradient 
to the error function is needed rather than the increase amplitude of gradient.

The basic idea of the NFS is to allocate available resources dynamically among multiple real-
time tasks based on feedback information about actual resource usage. The addressed optimization 
problem is to minimize the total energy consumed by the set of n tasks by optimally determining their 
start times, their voltages and corresponding execution speeds when scheduling them. PEDF is an 
extension of the well-known earliest deadline first (EDF) algorithm. It maintains a list of all released 
tasks and when tasks are released, the task with the nearest deadline is selected to be executed. A 
check is performed to see if the task deadline can be met by executing it at the lower voltage (speed). 
If the deadline can be met, PEDF assigns the lower voltage and the task begins execution.

4.7. fuzzy logic
Fuzzy logic is a superset of classical Boolean logic and extends it to deal with new issues such as the 
partial truth and uncertainty. The basic elements of fuzzy logic are linguistic variables, fuzzy sets 
and fuzzy rules. A fuzzy set is a set of pairs of elements generalizing the concept of a traditional set, 
allowing its components to have a partial membership defined as a membership function. The latter 
can be expressed as a curve that defines how each point in the input space is mapped to a membership 
value or a degree of truth between zero and one. The most common form of a membership function 
is triangular, trapezoidal and bell curves (Fuzzy logic, n.d).

Using fuzzy logic to solve any problem follows generally three steps that are fuzzification, 
computing fuzzy output functions by executing all applicable inference rules in the rule base and 
defuzzification. Fuzzification is the transformation of the digital inputs or the crisp set into a set 
of membership values in the interval [0, 1] to corresponding fuzzy sets. The fuzzy inference rules 
describe the relationships between linguistic, inaccurate and qualitative expressions of system input 
and output and finally, defuzzification, which is the process that convert a fuzzy set to a crisp set.

Literature on fuzzy logic application to solve the RT scheduling problem is relatively new. (Saini, 
2005; Vijayakumar & Aparna, 2010; Blej & Azizi, 2016).

For RT systems with hard constraints, the objective was primary to guarantee timing constraints 
(deadline) respect however, for soft real time systems the objective is to minimize the mean response 
time of the system. The idea of applying fuzzy logic in RT scheduling problem seems very important. 
This is justified by the fact that ES are dealing with inaccurate and uncertain data. The latter include 
for example, the arrival times of tasks, the actual execution times of tasks which are generally very 
far from their execution times at the worst case, the best clock frequency of the processor which 
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leads to the minimal energy consumption, the right time to migrate a task to another processor, etc. 
Intrinsic uncertainty in real-time systems and in particular dynamic systems increases the difficulties 
of conventional scheduling algorithms to optimize performance and/or energy consumption. By 
integrating fuzzy logic into the real-time scheduling problem, the scheduler’s decisions regarding 
choice of the best processor clock rate, priorities, and task migration dates can be improved 
considerably.

(Mehalaine & Boutekkouk, 2016) presented an energy aware fuzzy RT scheduling model for 
periodic independent tasks targeting mono-processor embedded architecture. The proposed algorithm 
functions on two steps. The first step uses fuzzy system to generate fuzzy priorities and the second 
step uses the outputs of the first one to schedule tasks with minimum energy consumption basing on 
the EDF* algorithm. Energy consumption is reduced by processor use with minimum speed without 
tasks deadlines missing.

In the proposed model, the input stage comprises three variables that are Texei: the actual execution 
time of the task, which is expressed in processor cycles; Ri: the arrival date of the task and Di: the 
relative deadline of the task as shown in Figure 13. The three input parameters decide the highest 
priority of the task from the tasks queue.

The arrival date of the task Ti: V=Ri, X = [0, 1], TV= {already arrived, near, far}.
The actual execution time of task Ti: V = Texe, X = [0, 1], TV= {large, medium, small} (relative 

to worst execution time). The relative deadline of the task Ti:
V=Di, X= [0,1], TV = {very close, close, medium, far} (relative to the moment t)
The output (fuzzy priorities): V = Prio, X = [0, 1], TV = {high, medium, low}
Twenty (20) fuzzy inference rules were defined. As examples of these rules are:

R1: if (Di = very close) then the fuzzy scheduling priority is high;
R2: if (Ri = already arrived) and (Texe = large) and (Di = close) then the fuzzy scheduling priority 

is high;
R3: if (Ri = close) and (Texe = large) and (Di = close) then the fuzzy scheduling priority is high;
R4: if (Ri = close) and (Texe = medium) and (Di = close) then the fuzzy scheduling priority is average;

Figure 13. Linguistics variables and corresponding output variable
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4.8. Multi Agent Systems
Multi Agents Systems (MAS) are becoming mainstream for complex large scale and distributed 
systems modeling and simulation. One major benefit of using MAS is their ability to model complex 
interactions, and many aspects such as reactivity, proactivity, autonomy and decision making explicitly. 
Furthermore, MAS offer a pool of design methodologies and associated tools and platforms helping 
designers to efficiently develop MAS-based systems. MAS have been extended to cover a large class 
of systems including RT and cyber physical systems.

(Jin et al., 2009) developed a software RT scheduler agent. Tasks should firstly register in the 
agent. Then, after the agent agrees for a reasonable execution sequence, it synchronizes all tasks 
and schedules them. The schedule module is implemented with a soft Rate Monotonic Scheduling 
(RMA) algorithm. The latter can lead client task to miss its deadline when the new request cannot 
be satisfied with current schedule group. However, it at least can avoid the case that new task contest 
with scare resources, thus guarantee not to deteriorate the whole system performance. When multi-
access requests happened in designate intervals, the agent can figure out whether or not the current 
tasks could be merged. If they can meet their time constraints, then it computes their priorities and 
schedules them sequentially. Else, the tasks should be scheduled in a new group.

(Chniter et al., 2018) proposed a multi-agent adaptive architecture to handle dynamic 
reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under 
energy constraints. Tasks are assumed periodic, independent and non-preemptive.

The proposed architecture is supposed to optimally allocate tasks to processors while determining 
for each task the execution speed, the start time, the finish time and the effective execution duration 
on the target processor. A token ring topology is used to minimize the exchanges of messages among 
all entities. The hardware platform is composed of identical processors where each one has a fixed 
number of available scaling factors. The proposed architecture integrates a centralized scheduler 
agent (ScA) and a Reconfiguration Agent (RAp).

Figure 14. The set of decisions for the proposed fuzzy model
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The ScA is considered as the common decision making element for the scheduler. In this agent, the 
computation is centralized to avoid any error. ScA is responsible for the management of the consumed 
energy in the system, ensuring the calculation of the solution, sending statistics on the current state, 
updating a non-feasible solution, and communicating the solution to each RAp.

Once a request is received from RAp, the scheduler triggers proactively the coordination module 
and the solver, which is based on constraint programming and simulated annealing research techniques. 
The role of the RAp consists in locally applying the addition removal-update of real-time tasks to 
adapt the related device and the whole system to its environment.

However, these functional reconfiguration scenarios may not respond to the time and power 
requirements and can push the system to an infeasible state. In this case, the RAp coordinates and 
requests a help from the scheduler agent, which proposes the required solutions.

(Cavaresi et al., 2018) studied the deadline-missing rate occurring in general-purpose setups, 
evaluated on an agent-based simulator developed on OMNET++, named MAXIM-GPRT.

The obtained results strengthen the motivations for adopting and adapting real-time scheduling 
mechanisms as the local scheduler within agents.

Figure 15. Defuzzification
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4.9. Evolutionary Algorithms
Evolutionary Algorithms (EA) usually begin with a population of organisms (initial solutions) and 
then allow them to mutate and recombine, selecting only the fittest to survive each generation. The 
well-known evolutionary algorithms are genetic algorithms (GA), genetic programming, evolution 
strategies (ES), evolution programming and differential evolution (DE). Genetic algorithms (GA) 
are evolutionary algorithms which generate near optimal solution of a problem by a guided random 
search method where elements (i.e. individuals) in a given set of solutions (i.e. population) are 
randomly combined and modified until some termination condition is achieved. The population evolves 
iteratively in order to improve a given fitness function of its individuals. GA reflect the “survival of 
the fittest” competition mechanism. In fact, many studies have showed the efficiency of GA-based 
scheduling compared to other ones. (Monnier et al., 1998 ; Zomaya et al., 1999 ; Boutekkouk & 
Bounabi, 2014 ; Samal et al., 2014 ; Pradhan et al., 2015 ; Zhiyu & Li, 2016 ; Kaur & Singh, 2019).

However, the efficiency of GA for RT scenarios has been questionable since the search time for 
good solutions using GA is relatively long and this can lead to tasks deadlines missing. In addition, it 
is well known that GA are very sensitive to many input parameters and if these parameters are not well 
chosen and controlled, GA can itself diverge from optimal or near optimal solutions. In their former 
applications, GA were used to minimize the total execution time (makespan) in the multiprocessor 
scheduling problem under strict hypothesis. In the real time context, several works have tried to apply 
GA to primarily minimize the response time mean and the number of tasks missing their deadlines. 
Other works have applied GA to optimize multiple objectives (multi-objective optimization) including 
time, energy consumption and reliability. Existing works differ in solution or chromosome coding (i.e. 
binary versus real coding), the population size, the method of selection, the crossover (one point, two 
points, etc.…), the mutation, the reparation mechanism, the halt criterion, the adopted multi-objective 
optimization technique (weighted sum versus based-Pareto, etc.).

(Dahal et al., 2008) proposed to use GA incorporating traditional scheduling heuristics to generate 
a feasible schedule. The scheduling algorithm considered, aims in meeting deadlines and achieving 
high utilization of processors. The architecture is assumed consisting of identical processors connected 
through a shared medium and the tasks are aperiodic, independent and non-preemptive. Each task is 
characterized by its arrival time, ready time, worst-case computation time and its relative deadline. 
The algorithm considers a set of tasks from the sorted list to generate an initial population. In the 
initial population, each chromosome is generated by assigning each task in the task set to a randomly 
selected processor and the pair (task, processor) is inserted in a randomly selected unoccupied 
locus of the chromosome. GA operators are then applied to the population of chromosomes until a 
maximum number of iterations have been completed. When applying GA operators to the population, 
reproduction is applied first followed by crossover, partial-gene mutation, sublist-based mutation and 
then order-based mutation. In each iteration, the algorithm sorts the tasks in the chromosomes based 
on their deadlines, evaluates and sorts the chromosomes based on their fitness value. The tasks that 
are found infeasible (exceed their deadline) are removed from the chromosomes so that they are not 
reconsidered for scheduling.

(Huang et al., 2011) tackled the problem of analysis and optimization of fault-tolerant task 
scheduling for multiprocessor embedded systems. A Binary Tree Analysis (BTA) is proposed to 
compute the system-level reliability in the presence of software/hardware redundancy. The BTA is 
then integrated into a multi-objective evolutionary algorithm (MOEA) via a two-step encoding to 
perform reliability-aware design optimization. The optimization results contain the mapping of tasks 
to processing elements, the exact task and message schedule and the fault-tolerance policy assignment. 
In addition, the authors proposed a virtual mapping technique to take both permanent and transient 
faults into account. The EA is performed in two main steps: production of new solutions by varying 
existing solutions and selection of good solutions based on their fitness (figure 16). Using MOEA, 
the schedule is encoded as a chromosome. Nevertheless, a direct encoding of a schedule requires a 
very large chromosome, which affects the optimization efficiency. Therefore, instead of encoding the 
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entire schedule, the algorithm place only partial information, namely the mapping and fault-tolerance 
policy, into the chromosome. A scheduler is embedded to transform the chromosome to an optimized 
schedule and the resulting schedule is then utilized for fitness evaluation (i.e. reliability analysis).

(Boutekkouk & Bounabi, 2014) presented a multi-objective genetic algorithm to optimize the 
performance of a time-driven real-time distributed embedded system with mixed constraints and a 
shared bus based on the DVS technique. The three objectives to minimize are the energy consumption, 
the average response time and the number of tasks missing their deadlines.

4.10. Swarm Intelligence
Swarm Intelligence (SI) can be defined as the collective behavior of decentralized and self-organized 
swarms. Bird flocks, fish schools and the colony of social insects such as ants and bees are some 
well-known examples of SI. The more attractive feature of SI is the fact that each individual agent 
has a simple cognitive capacity but the cooperation of all agents lead to some complex emerging 
behavior as self-organization. The individual agents of these swarms behave without supervision and 
each of these agents has a stochastic behavior. The intelligence of the swarm lies in the networks of 
interactions among these simple agents and between agents and the environment. In the context of 

Figure 16. Work flow of EA-based Optimization
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RT scheduling for ES, numerous works have been investigated the idea of adopting SI for scheduling 
performances optimization especially ant colony, PSO and bees colony optimization meta-heuristics.

4.10.1 Ant Colony Optimization
Ant Colony Optimization (ACO) is relatively a recent technique, based on a probabilistic decision 
process, originally introduced to solve the Traveling Salesman Problem. ACO is inspired from the 
cooperative behavior of real ants for nourishment foraging by which ants start from their nest going 
in random directions, depositing pheromones. As time goes by, the shortest path to the food will 
be concentrated by pheromones, encouraging the other ants to follow this path instead of longer 
tracks. The ACO heuristic seems appropriate for problems in which the solution can be found via 
subsequent decisions. In fact, the amount of pheromone models the probability, for each decision 
point or admissible choice. All the decisions are initialized with this probability. Then, the process 
is iteratively re-started to construct different solutions (each ant constructs a solution). Typically, the 
probability is generated according to the following formula (Ant colony optimization algorithms, n.d):
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Where x is the current point (state) in the decision process, and y is the candidate destination, ηx,y 
models the desirability of state transition from x to y (typically equals to the inverse of the distance 
between x and y). τx,y is the amount of pheromone deposited for transition from x {\displaystyle x} 
to {\displaystyle y}y.

α is a parameter to control the influence of τx,y while β is a parameter to control the influence of 
ηx,y. τx,l and ηx,l represent attractiveness and the track level for the other possible state transitions. Ωx 
contains all the choices in the current point. At the end of each iteration, the results are ranked and the 
pheromones updated through different policies. In general, the pheromones are updated as follows:
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Where ρ is is the pheromone evaporation coefficient. є is a term usually proportional to the 
quality of the solution to maintain consistency among different iterations. In this way, only the best 
choices are reinforced and the others are penalized through evaporation.

Regarding the application of ACO to optimize RT scheduling, many authors have believed that 
ACO seem very appropriate to optimize scheduling of tasks in soft real-time systems since these 
algorithms provide inherent parallelism and robustness. In addition, ACO are adaptive and can easily 
be tuned to any domain-specific problem.

(Ferrandi et al., 2010) proposed an ACO heuristic that, given a heterogeneous multiprocessors 
architecture and an application modeled as an acyclic tasks graph, executes both scheduling and 
mapping to optimize the overall execution time of the application (makespan). The heuristic is 
compared with several other heuristics like simulated annealing, taboo search and genetic algorithms, 
on the performance to reach the optimum value and on the potential to explore the design space. The 
authors stated that the approach obtains better results than other heuristics by at least 16% in average, 
despite an overhead in execution time.

(Umrani et al., 2013) presented an ACO based approach for generating a feasible RT schedule 
that ensure load balancing across the processors and deadlines respect for all tasks. The processors 
are assumed heterogeneous. The algorithm pseudo-code is shown in figure 17.

The obtained results of simulation showed that the proposed ACO algorithm performs better 
than the FCFS (First Come First Served) algorithm with respect to the wait time.
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4.10.2 Bee Colony Optimization
Bee Colony Optimization (BCO) (Bolaji et al., 2013) is a combinatorial optimization metaheuristic 
inspired by the behavior of honeybees in the nature. In a honeybee colony, forager bees examine the 
environment for flower paths and if they find a good source of food, they share it with other bees. 
As soon as, the forager bees come back to the hive, they share the discovered information about food 
sources by a special movement named waggle dance. The latter brings meaningful information like 
direction, distance, quantity and quality of the food source and are shared with respect to other bees. 
The general Artificial BCO algorithm is presented as follows (Karaboga et al., 2012):

Initialization Phase
Repeat
Employed Bees Phase
Onlooker Bees Phase
Scout Bees Phase
Memorize the best solution achieved so far
Until (Cycle=Maximum Cycle Number or a Maximum CPU time)
In the initialization phase, the population of food sources is initialized by artificial scout bees 

and control parameters are set. Typically, ABC consists of three control parameters that are the 
population size (i.e. the number of food sources), the maximum cycle number (the maximum number 
of generations) and limit which is used to determine the number of allowable generations for which 
each non improved food source is to be abandoned. In the employed bees phase, each employee bee 
is assigned to its food source and in turn, seeks for new food sources having more nectar within the 
neighborhood of the food source in its memory. After producing the new food source, its fitness is 
evaluated and a greedy selection is applied between it and its parent. After that, employed bees share 
their food source information with onlooker bees waiting in the hive by dancing on the dancing area. In 
the onlooker bees phase, artificial onlooker bees probabilistically choose their food sources depending 
on the information provided by the employed bees. For this purpose, a fitness based selection technique 
can be used, such as the roulette wheel selection method. After a food source for an onlooker bee is 
probabilistically chosen, a neighborhood source is determined, and its fitness value is evaluated. As in 

Figure 17 . Pseudo-code for ACO algorithm for Multiprocessor RT scheduling problem
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the employed bees phase, a greedy selection is applied between two sources. In the scout bees phase, 
employed bees whose solutions cannot be upgraded through the limit parameter become scouts and 
their solutions are abandoned. Then, the scouts start to search for new solutions, randomly. Hence, 
those poor sources (i.e. initially poor or have been made poor by exploitation) are abandoned and 
negative feedback behavior arises to balance the positive feedback. These three steps are repeated 
until a termination criterion is satisfied (i.e. a maximum cycle number or a maximum CPU time).

According to literature, only few works have been interested in applying BCO to optimize RT 
scheduling. In fact, the BCO was used as a local search method in a global search meta-heuristic or 
combined with another optimization heuristic.

(Kazemi et al., 2016) proposed to hybrid between BCO and simulated annealing to optimize RT 
scheduling of non-preemptive tasks with soft constraints on heterogeneous multiprocessor platform. 
The proposed algorithm tries to minimize five parameters that are the total tardiness of tasks, the 
total number of utilized processors, the total completion time, the total waiting time of tasks, and the 
total waiting time of processors. The impetus behind the combination between ABC and simulated 
annealing is to avoid trapping in local minima points and improve the convergence speed of both 
BCO and SA. The proposed multi-objective optimization uses the weighted sum method. Simulation 
results demonstrated the efficiency of the proposed methodology as compared with the existing 
scheduling algorithms.

4.10.3 PSO
PSO algorithm is inspired by a social behavior of a group of migrant birds. It imitates the communication 
of the real birds when they are flying together. Each bird moves towards a certain direction; when in 
communication, it determine the best position. Therefore, each bird depends on the current position 

Figure 18. Pseudo-code for PSO algorithm
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at a particular speed towards the best birds. Then, each bird forms its new position and repeats the 
process until the bird reaches the desired destination (Particle swarm optimization, n.d).

In the PSO algorithm, each solution is a group of birds and each bird is said to be a particle. All 
particles have a fitness value which is determined by the function to be optimized and each particle 
has a speed which determines its flight direction and distance and then the particle searches the 
optimal solution in the solutions space with the current optimal particle.

The PSO algorithm involves the interaction and intelligence in the swarm to learn from their own 
experience (local search) and from the surrounding particles experience (global search).

The typical procedure of PSO is as follows:
(Zhang et al., 2014) proposed a PSO-based algorithm to solve energy-aware RT scheduling 

problem on heterogeneous multiprocessors using the DVFS technique. RT tasks are assumed periodic, 
independent and non-preemptive. Experimental results showed that the PSO-based energy-aware 
metaheuristic uses 40%–50% less energy than the GA-based and SFLA (Shuffled Frog-Leaping 
Algorithm)-based algorithms and spends 10% less time than the SFLA-based algorithm in finding 
the solutions. Besides, it can also find 19% more feasible solutions than the SFLA-based algorithm.

(Awadallah, 2016) addressed the optimization problem of energy-aware RT scheduling on 
heterogeneous multiprocessor platforms using the DVFS technique. Tasks are supposed periodic, 
dependent and preemptive. A hybrid approach of PSO variant and Min-Min algorithm is proposed 
to minimize the overall energy consumption, while respecting tasks deadlines. The hybrid approach 
proposed in this paper modifies the initialization step in the PSO procedure by assigning priorities 
for each task and then incorporating a Min-Min solution in the randomly generated population. This 
approach gives the PSO algorithm a push to start from a good solution and then goes on trying to 
optimize the solution resulting in the Min-Min solution. Authors stated that the proposed algorithm 
significantly outperforms related approaches in terms of the number of executed iterations and energy 
saving.

dISCUSSIoN

Applying AI to resolve the problem of RT scheduling for ES has gained more attention from 
researchers. The impetus behind this is because the RT scheduling problem for modern ES is a hard 
multi-objective problem under a variety of constraints and conventional methods have proved to be 
relatively unsuccessful to find high quality solutions in a reasonable search time.

It is noted that modern ES are working in a dynamic environment with only a partial or imprecise 
knowledge. In addition, modern ES are becoming very complex in terms of functionality, data and 
communication. For these reasons, researchers over the past decade have investigated the applicability 
of AI methods to the RT scheduling problem for ES.

Some important remarks can be appointed out:

1.  Most of existing works target only one class of RT scheduling algorithms (i.e. periodic tasks, 
hard timing constraints, non-preemptive, etc.)

2.  Most of existing works target only one or two objectives (i.e. minimizing the response time and/
or energy consumption).

3.  Most of existing works make very restricted, sometimes unrealistic assumptions. For instance, a 
task is subject to, at most, one fault occurrence, the processor can adjust its speed in a continuous 
range; the number of cores is always greater than the number of tasks, etc.

4.  Most of energy-aware RT scheduling works reduce dynamic energy but either neglect static 
energy or use very abstract and simple static energy models.

5.  Most of existing works targeting reliability enhancement consider only transient faults for 
processors and underestimate some other important faults such as communication and memory 
faults.
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6.  Lack of a unified framework for validation and approving of the proposed approaches and 
algorithms on standard benchmarks.

Undoubtedly, each surveyed AI method has a set of advantages and a set of drawbacks.
The big challenge remains in choosing the most appropriate AI method (s). In practice, authors 

favor the combination of two or more methods in order to improve the quality of results.
CP seems a powerful mathematical tool sine it can model constraints explicitly and enables 

the integration of sophisticated search techniques in order to improve the search time. However, CP 
cannot specify explicitly all things related to RT scheduling for modern ES and weaker for continuous 
variables (for example in the case of continuous voltages values for a processor). Furthermore, most 
CP tools can fail to find good solutions when constraints contain a big number of variables and lack 
of user-feedback and interactivity.

The application of Game theory to resolve the RT scheduling problem for ES is relatively a 
recent tendency and needs more studies especially when the number of players increases but the most 
important question is related to considering GT as an optimization technique: GT provides a general 
rule of logic for wining, but not for the optimization strategy.

The primary use of CA is to simulate complex systems and to conclude some emerging behaviors 
for non-linear systems. Furthermore, with CA it seems very hard to define in some local rules all the 
necessary constraints for RT, energy and reliability aspects.

In the context of RT scheduling, MAS can bring a big benefit in particular to model complex 
interactions in large scale distributed embedded systems including cooperation, negotiation, etc. MAS 
offer also a good opportunity to model high-level aspects as autonomy, self-organization, planning, 
etc. however, and despite the academic maturity of MAS, their adoption in the ES industry is still 
unpopular.

AIS are still a nonstandard method and its application to RT scheduling has not well established 
yet. Machine learning and notably reinforcement learning and ANN are so important.

However, the major issue with ANN is the fact there is no perfect theory as a guide in the aspect 
of network structure development and design, so network parameters are adjusted just only on the 
basis of former researchers designing experience and experiment analysis.

Furthermore, we think that the big issue with machine learning is the huge amount of required 
resources in terms of memory in order to implement it in embedded devices.

EA and swarm intelligence meta-heuristics are attracting more attention from researchers to 
solve the multiprocessor scheduling optimization problem, but their validation in the context of RT 
scheduling for ES is still debatable. Table 1 recapitulates the key strengths and pitfalls of the above 
presented methods.

In order to alleviate some of the drawbacks of the above-mentioned AI methods with regard to 
the RT scheduling problem for ES, researchers have resorted to some well-known solutions inspired 
from other disciplines. Among these solutions, we can mention:

1.  Enhance the search time for good solutions by parallelization of GA and other meta-heuristics 
and apply some relatively new styles of computing such as quantum computing.

Quantum computing (Quantum computing, n.d) is a newly emerging interdisciplinary science of 
information science and quantum science. In quantum computing, the smallest unit of information 
storage is the quantum bit (qubit). A qubit can be in the state 1, in the state 0 or in a superposition of 
both. The state of a qubit can be represented as: /ψ> = α|0 > + β|1 > where |0 > and |1 > represent the 
values of classical bits 0 and 1 respectively, α and β are complex numbers satisfying |α|2+|β|2 =1. |α|2 is 
the probability where a qubit is in state 0 and |β|2 represents the probability where a qubit is in state 1. 
A quantum register of m qubits can represent 2m values simultaneously. However, when the ‘measure’ 
is taken, the superposition is destroyed and only one of the values becomes available for use. QIGAs 
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(Quantum Inspired Genetic Algorithms) are a combination of GA and quantum computing. They 
are mainly based on qubits and states superposition of quantum mechanics. A quantum chromosome 
is simply a string of m qubits that forms a quantum register. Two main operations characterizing 
QIGA: interference and qubit rotation gates strategy. Interference allows modifying the amplitudes 
of individuals in order to improve performance. It mainly consists of moving the state of each qubit 
in the sense of the value of the best solution. This is useful for intensifying the search around the 
best solution. The rotation of individual’s amplitudes is performed by quantum gates. Quantum gates 

Table 1. Key strengths and pitfalls of AI-based methods used in RT scheduling problem for embedded systems

Method Key strengths Key pitfalls

Constraint 
Programming

-constraints are modeled explicitly. 
-enables the integration of sophisticated 
search techniques.

-weak for continuous variables. 
-can fail to find good solutions when constraints 
contain a big number of variables. 
-lack of user-feedback and interactivity.

Game theory -provides a systematic quantitative 
approach for deciding the best strategy that 
will result in maximum gain or minimum 
loss in competitive situations.

-questionable when the number of players increases. 
-provides a general rule of logic for wining, but not 
for the optimization strategy.

Cellular Automata -simulate complex systems to conclude 
some emerging behaviors

-it seems very hard to define in some local rules 
all the necessary constraints for RT, energy and 
reliability aspects.

Artificial immune 
systems

-suitable for adaptive RT scheduling 
modeling.

-a nonstandard method and its application to RT 
scheduling has not well established yet. 
-may lead to poor performance.

Artificial Neural 
networks

-more suitable for complex and intelligent 
embedded systems. 
-ability to work with incomplete 
knowledge.

-there is no perfect theory as a guide in the aspect 
of network structure development and design, so 
network parameters are adjusted just only on the 
basis of former researchers designing experience and 
experiment analysis. 
-huge amount of required resources in terms of 
memory in order to implement it in embedded 
devices.

Reinforcement 
learning

-dynamic learning capacity. -huge amount of required resources in terms of 
memory in order to implement it in embedded 
devices.

Multi-Agents 
Systems

-model complex interactions in large scale 
distributed embedded systems 
-offer a good opportunity to model 
high-level aspects as autonomy, self-
organization, planning, etc. 
-Availability of simulation platforms.

-their adoption in the ES industry is still unpopular. 
-lack of agent oriented programming languages 
especially for embedded systems.

Fuzzy logic -suitable to model uncertainty. -can lead to a considerable overhead in performance. 
-requires much experience to select the most 
appropriate membership function and inference 
rules.

Evolutionary 
Algorithms

-Well suitable for nonlinear and multi-
modal embedded systems.

-poor performance if the parameters are not well 
controlled. 
-can diverge from optimums.

Swarm 
intelligence

-Well suitable to model adaptive embedded 
systems. 
-Simplicity and ease of implementation.

-requires many parameters. 
-can lead to premature convergence.
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can also be designed in accordance with the present problem. The population Q(t) is updated with a 
quantum gates rotation of qubits constituting the individuals.

For instance, the work of (Boutekkouk, 2019b) was interested in RT scheduling optimization 
with periodic/aperiodic dependent tasks and hard/soft constraints targeting multicores architecture 
using traditional GA and QIGA. Two strategies called SQIGA (Static Quantum Inspired Genetic 
Algorithm) based on static preemptive scheduling and DQIGA (Dynamic Quantum Inspired Genetic 
Algorithm) based on dynamic preemptive scheduling were developed to minimize tasks response 

Figure 19. Structure of quantum inspired genetic algorithm
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times mean and the number of tasks missing their deadlines under the idea of balancing between 
processors usage ratios.

Note that the genetic diversity in QIGA is mainly caused by qubit representation so it is not 
necessary to use genetic operators. Thus, the big evident advantage of QIGA is the reduction in 
population size and the search time to find optimal solution with comparison to conventional GA 
(Konar et al., 2018).

2.  Deep learning

Deep learning is a subset of machine learning that has networks capable of learning unsupervised 
from data that is unstructured or unlabeled (Deep Learning Definition, n.d). Deep learning mimics 
the multilayered human cognition system. Deep-learning architectures comprise of three major 
layers: the input layer, hidden layers, and the output layer. The number of hidden layers defines 
the depth of the architecture. The input layer takes the input from the environment or the user and 
consequently the result of the input layer becomes the input of the first hidden layer. Each hidden 
layer adds an abstraction to the features and these features then become the input to the next higher 
layer and this process continues. The output of the final hidden layer serves as the input to the last 
layer which is an output layer. This output layer provides the result based upon the calculations in 
the lower layers. Deep learning is generally used where the dataset is very large. (Zhang et al., 2019) 
proposed an energy-efficient scheduling algorithm (QL-HDS) for periodic tasks based on the deep 
Q-learning model. Specially, a deep Q-learning model is designed to learn the Q-values of three 
DVFS technology techniques for different system sates by combining a stacked auto-encoder (SAE) 
which is a typical deep learning model and a Q-learning model. Furthermore, a training strategy is 
devised to learn the parameters of the deep Q-learning model based on the experience replay scheme. 
Finally, the performance of the proposed scheme is evaluated by comparison with QL-HDS on 
different simulation task sets. Results demonstrated that the proposed algorithm could save average 
4:2% energy than QL-HDS.

3.  Using hybrid methods

In order to get best results, the authors have resorted to combine between a diversity of methods 
including for instance ANN with GA, ANN with fuzzy logic; GA combined with a swarm intelligence 
based meta-heuristic or other local search technique, etc.

For instance, (Kashani & Jamei, 2011) used BCO as a local search method in a memetic algorithm 
to optimize the makespan of the traditional tasks scheduling problem in distributed systems. (Elhossini 
et al., 2013) combines between a GA, PSO and ANN to generate and evaluate the performance and 
power consumption of a static scheduler for DSP-based ES. (Mahmood et al., 2017) formulated the 
RT scheduling for DVS-enabled multiprocessor ES as a combinatorial optimization problem using 
genetic algorithm hybridized with the stochastic evolution algorithm to allocate and schedule real-
time tasks with precedence constraints.

The simulation results show that the proposed algorithm outperforms other algorithms such as 
GA, PSO, ACO and cuckoo search in terms of solution quality.

In a real-time context, AI activities is known to be a bottleneck with regard to performance 
so in order to solve this dilemma, we can for instance parallelize them or to implement them as 
high performance hardware components with multicores (e.g. DSPs) or reconfigurable computing 
capabilities (FPGA). For instance, Fraunhofer IMS has developed AIfES (Artificial Intelligence 
for Embedded Systems) which is a platform-independent and constantly growing machine learning 
library in the programming language C, which implies a fully configurable feedforward artificial 
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neural network (ANN) (Artificial-Intelligence-for-Embedded-Systems, n.d). The implementation of 
rule-based AI systems in RT embedded systems is also possible (Bouzayen et al., 2017).

5. CoNClUSIoN ANd fUTURE woRK

In this paper, the most relevant taxonomies and AI methods used in the RT scheduling problem for 
ES were overviewed. RT scheduling is considered as a hard multi-objective optimization problem 
under a variety of constraints where the necessity to advise new methods that can deal with this 
problem efficiently. These new methods are inspired by AI domain and include mainly Constraint 
Programming, Game theory, Machine Learning, fuzzy logic, Artificial Immune Systems, Cellular 
Automata, Evolutionary Algorithms, Multi Agent Systems and Swarm Intelligence. For each method, 
the underlying principle and some of the most pertinent works were presented while explaining 
the idea of each work. However, the validation of such methods is still under research and more 
experimentations are still required. The survey is ended by a discussion putting the light on some 
interesting current and future directions including EA and swarm intelligence parallelization, 
leveraging quantum computing to reduce the search time, use of machine learning and especially 
the deep and reinforcement learning to deal with big, incomplete and complex data interconnections 
and the combination between AI methods to get better results. Noting that the implementation of AI 
notably the EA and deep learning into RT embedded devices is becoming possible with the emerging 
of new embedded hardware technologies such as the multicore, high performance DSP, the FPGA 
and the quantum architectures. AI-based optimization is still an open and fresh topic requiring more 
investigation and an effective collaboration between academy and industry. AI may additionally 
pose unprecedented challenges (i.e. AI security) due to its ever-growing complexity and the Internet 
connection, which make AI more vulnerable to threats. It is speculated that future trends will converge 
towards boosting existing AI methods by adding securing and safety mechanisms while leveraging 
the progress in hardware technology and high performance computing.

As middle-term perspectives, it is planned to study the different mechanisms used to secure AI 
methods and estimate their overhead in terms of time and energy consumption in the context of RT 
scheduling.
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