
DOI: 10.4018/IJCINI.290308

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

AI-Based Methods to Resolve Real-Time
Scheduling for Embedded Systems:
A Review
Fateh Boutekkouk, ReLaCS2 Laboratory, University of Oum el Bouaghi, Algeria*

 https://orcid.org/0000-0003-0398-4597

ABSTRACT

Artificial intelligence is becoming more attractive to resolve nontrivial problems including the well-
known real-time scheduling (RTS) problem for embedded systems (ES). The latter is considered as
a hard multi-objective optimization problem because it must optimize at the same time three key
conflictual objectives that are tasks deadlines guarantee, energy consumption reduction, and reliability
enhancement. In this paper, the authors firstly present the necessary background to understand the
problematic of RTS in the context of ES. Then they present enriched taxonomies for real-time, energy,
and fault-tolerance-aware scheduling algorithms for ES. After that, they survey the most pertinent
existing works of literature targeting the application of AI methods to resolve the RTS problem for
ES, notably constraint programming, game theory, machine learning, fuzzy logic, artificial immune
systems, cellular automata, evolutionary algorithms, multi-agent systems, and swarm intelligence. They
end this survey with a discussion putting the light on the main challenges and the future directions.

KEywoRdS
Artificial Intelligence, Embedded Systems, Energy Consumption, Real-Time Scheduling, Reliability

1. INTRodUCTIoN

Embedded systems (ES) have penetrated our life to a point where we cannot ensure our daily business,
assignments and chores in their absence. These systems have undergone a dramatic increase in
functionality and omnipresence in such a way no one can negate their remarkable influence on our
behaviors, habits and even our convictions.

Whatever their architectures type (i.e. centralized Vs. distributed), the used technologies (i.e.
wired, wireless, optical) and the application fields (i.e. automotive, avionics, space, robotics, health
care, military, entertainment and so on), ES have some common decisive requirements among others
the real time constraints, the reduced energy consumption and the reliability assurance.

First, ES are qualified as Real Time (RT) systems. A RT system is any system where its correction
depends not only on the results of computations, but also on the time instants at which these results
become available. In other term, a real-time system is responsible for delivering logically correct
computations within the predefined deadlines.

https://orcid.org/0000-0003-0398-4597

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

2

Depending on the severity of the timing constraint (i.e. deadline), RT systems can be hard (i.e.
critical), soft, firm or any combination of them. RT systems typically incorporate a RTOS (Real
Time Operating System) kernel. The latter is responsible of many vital activities for ES such as tasks
scheduling, Input/output management, memory management, security and so on. Since ES are often
battery-dependent, their design have to minimize their power dissipation and energy consumption
accordingly. Energy-aware design methodologies of ES are becoming popular in the ES terminology.
The other important characteristic is the reliability.

In its large sense, reliability means the capacity of the system to continue its functioning even in
the absence of faults. Reliability includes many aspects or attributes such as availability, safety (i.e.
functional correction), data integrity, etc. Each attribute has a set of means to realize it. For example,
availability can be achieved through faults tolerance. The latter has many mechanisms among them the
spatial redundancy (i.e. hardware redundancy) and the temporal redundancy (i.e. the re-execution of
the same task or code). Faults tolerant or reliability-aware methodologies are also being an inherent
part of the ES jargon.

Contrary to traditional ES, nowadays, ES are becoming more complex, more open and networked
and integrate intelligent parts that can function in hostile, dynamic environments (probably with
uncertain or partial knowledge) autonomously, simulating a bit of some human intellectual activities
such as reasoning, learning, memorization, perception, decision-making, self-adaptation, and self-
optimization. On the other hand, the exponential progress in the hardware technology conducting to
the appearance of multi-core and parallel computing on chip, very high performance processing and
reconfigurable hardware render embedding AI in ES possible. Of course, this coupling between AI
and ES is not trivial at all, since the two fields have different philosophies. While AI deals with more
complex cognitive, theoretically with unlimited resources tasks, ES are by nature reactive and have
limited resources. The integration of AI into ES leads to the emergence of what we call ‘intelligent
embedded systems’ (IES).

IES design is a hot research topic investigating the application of the most famous AI models and
methods as Artificial Neural Networks (ANN), Reinforcement learning, multi agent systems (MAS),
swarm intelligence, Genetic Algorithms, fuzzy logic, constraint programming, game theory, cellular
automata, and Artificial Immune Systems (AIS) to ES design while meeting the temporal, the energetic
and the reliability requirements in addition to the cost constraint and end-users goals satisfaction.

This paper is interested in the application of AI to resolve the well-known problem of RT
scheduling for embedded systems. The possibility of coupling AI with RT systems was discussed
earlier (Musliner et al., 1994) and a few existing works had yet been interested in the application
of expert systems to resolve the traditional jobs scheduling problem (MacCarthy & Jou, 1995). In
turn, (Laalaoui & Bouguila, 2014) presented a non-exhaustive survey on the application of some AI
methods to the static RT scheduling.

With regard to the application of AI methods to resolve the RT scheduling problem for ES, it is
stated that existing surveys on this topic are not exhaustive enough, hence the need to produce a new
exhaustive survey with additive knowledge and some novel insights on the use of AI methods to resolve
and optimize RT scheduling for embedded systems taking into account the energy consumption and
the reliability. The survey paper is organized as follows: first, ES are introduced while showing their
features and classification, the definition of intelligent embedded systems and the RT scheduling
problem rationalization and possible taxonomies. A more exhaustive taxonomy of RT scheduling
algorithms for ES is also presented enriching previous taxonomies by adding some important criteria.
After that, the application of AI methods to resolve the RT scheduling problem for ES is studied
based on previous research articles, conferences papers and surveys. Last sections are devoted to a
discussion putting the light on some main challenges and future directions.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

3

2. EMBEddEd SySTEMS

Traditionally defined, an embedded system (ES) is merely a limited-resources computing system,
which is integrated into a larger system as a software part, a hardware part or a conjoint software/
hardware part and which interacts with the physical world or the external environment continually via
sensors/actuators to accomplish a certain task. Sometimes we refer to ESs as a special case of cyber
physical systems (CPS). ES should meet a set of conflictual objectives notably timing deadlines,
reduced energy consumption, small memory footprint, small weight, low cost, and reliability.

Conventional ES are centralized, simple and closed systems that interact with a fully specified
environment via sensors/actuators and assumed to achieve some well-defined tasks under the
supervision of a micro-controller functioning as a simple feedback loop. With the ever increasing
in Integrated Circuit density integration and ICT (Information and Communication technologies),
ES are being evolved in order to respond to the new increasing requirements in terms of multi-
applications execution support, high performance computing, large scaling, scalability, autonomy,
self-adaptation, security and at the same time to support the next-future technologies as wireless/optical
communication, sustainable energy, IoT (internet of things), big data, and cloud computing. Hence,
the necessity to develop new design methodologies or to tune and boost conventional methodologies
in order to cope with these emerging issues.

Typically, an ES includes a RTOS kernel. The latter plays the role of an intermediate between
the hardware layer and the application layer. The RTOS assures the most vital activities of an ES
especially the RT scheduling, inputs/outputs and memory management and protection.

Figure 1 shows a possible classification of embedded systems (Classification-of-embedded-
systems, n.d). In this classification, two main criteria are used: the system performance and functional
requirements, and the performance of the microcontroller. Based on the first criterion, ES are classified
into four categories that are Standalone ES, Real time ES, Networked ES, and Mobile ES. Based on
the second criterion, ES can be classified into three main categories: Small scale ES, Medium scale
ES, and Sophisticated ES. Standalone ES refer to ES working by themselves (i.e. do not require a host
system). Examples for the standalone-embedded systems are digital cameras and video game consoles.
Networked ES are the distributed version of the traditional centralized ES. The connected network can
be LAN, WAN or the IoT (Internet of Things). The connection can be wired or wireless. Mobile ES
are ES, which are used in portable embedded devices like cell phones. Small Scale ES are ES with
a microcontroller of 8 or 16 bits. Medium Scale ES are ES with a microcontroller of 16 or 32 bits,
RISCs or DSPs. Sophisticated ES are ES with more sophisticated hardware/software components as
ASIPs, IPs, or configurable processors. They are used to implement complex applications following
a Hw/Sw Codesign approach. Sophisticated ES are implemented as complex SOC (System On Chip),
NOC (Network on Chip) or WiNOC (wireless NOC). The latter paradigm is a promising solution
to mitigate the large delay and high power dissipation issues offered by the conventional NOC. Of
course, there exist other classifications of ES considering other criteria as the application domain,
the target SOC and NOC architectures. In principle, most ES are RT and require an RT scheduler to
assure that all or a certain percentage of system tasks meet their deadlines while minimizing the energy
consumption and maximizing the system reliability. The classification in figure 1 can in its turn be
refined. For example, RT ES can be further subdivided into three main sub-classes: Hard (critical),
Soft, and firm. In hard RT systems, the consequences of missing a deadline can be catastrophic. In
soft and firm RT systems, the results are relatively tolerable but for firm systems a degradation in
quality of services is very potential. Networked ES can be also divided into two sub-classes: wired ES
and wireless ES. Each one can be further partitioned into many categories with regard to the scope
of the network. For more details, one can refer to (Boutekkouk, 2019a).

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

4

3. INTEllIgENT EMBEddEd SySTEMS

(Elmenreich, 2003) identified some potential reasons for using an intelligent solution for ES among
them dependability, efficiency, autonomy, easy modelling, maintenance costs and insufficient
alternatives. Intelligent embedded systems (IES) are ESs having the capacity of reasoning about
their external environments even in the presence of uncertainty and adapt their behavior accordingly.
IES have some main characteristics such as self-learning, self-optimizing and self-repairing. We can
say that IES are the fruit of coupling between embedded computing and Artificial Intelligence (AI).
Therefore, IES can include knowledge-based technology. Recently, the use of AI techniques in ES
has proliferated. In terms of ES, this gives rise to the possibility of developing systems that can learn
from their environment and that can change their own control programs to adapt to new situations.
Intelligent WSN (wireless sensors networks), intelligent vehicles, and robots are becoming very
popular. IES applications are growing more and more covering a large spectrum of domains such as
farming, smart buildings, education and transport.

4. REAl TIME SCHEdUlINg

Real time Scheduling (RTS) is a decisive activity in ES design. It can be defined as the process of
assigning dates of execution start to system computational and communicational tasks such that
deadlines are met totally or partially. This definition is sound when scheduling is performed on a
system with only one computational (i.e. one processor) or communicational resource (i.e. one bus).
For a system with multiple resources, the RTS has to take into consideration the allocation or mapping
of tasks to system resources (spatial mapping) in addition to scheduling (temporal mapping). The RT
scheduler is generally based on the so called the canonical model of real time tasks (Lee et al., 2007).
As it is shown in figure 2, each task in this model is defined by a set of primary timing parameters.
These parameters include:

- r, task release time referring to the triggering time of the task execution request.
- C, task worst-case computation time, when the processor is fully allocated to it.
- D, task relative deadline, referring to the maximum acceptable delay for its processing.

Figure 1. Classification of ES

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

5

- T, task period (valid only for periodic tasks).

When the task has hard real-time constraints, the relative deadline allows computation of the
absolute deadline d = r +D.

The successive release times are request release times at rk = r0 + kT, where r0 is the first release
and rk the k + 1th release; the successive absolute deadlines are dk = rk + D

Periodic tasks request times are known at priori and repeated at regular time intervals (i.e. periods).
In order to simplify schedulability analysis, the LCM (Least common multiple) of all tasks periods is
often considered. Sporadic task request times are not known at priori, but it is assumed that a minimum
interval exists between two successive requests. Aperiodic tasks have no such constraint on their request
times. Usually, the request times follow some probabilistic laws. Tasks can be independent or have
precedence, synchronization, and mutual exclusion constraints between them. Tasks can be mapped
to processors in a preemptive or non-preemptive manner. Preemptive means that the running task
can be interrupted at any time to assign the processor to another ready task, whereas non-preemptive
means that, a task once started executes to completion before relinquishing the processor.

The problem of scheduling tasks with precedence and synchronization constraints on a set of
processors is NP-complete and heuristics are typically used to obtain a feasible schedule.

A dynamic or on-line scheduler makes its scheduling decisions at run time whereas, a static or
off-line scheduler generate a feasible schedule that is guaranteed to meet the timing constraints of all
tasks at design time. Static scheduling is more suited to critical systems with periodic tasks.

RT scheduler can execute on only one processor or over a set of homogeneous or heterogeneous
processors. Multiprocessor scheduling has to solve the allocation problem that consists in deciding
on which processor a task should execute, and the priority problem, that is, when a task should
execute. In global scheduling, there is only one tasks queue and tasks migration is allowed, whereas,
in partitioned scheduling, each processor has its own tasks queue and no migration is allowed. By
separated RT scheduling, we mean multiprocessor RT scheduling that treats the allocation and
scheduling sub-problems separately (i.e. sequential manner). Simultaneous RT scheduling treats the
two sub-problems concurrently.

Separating the two sub-problems render the problem more simpler but at the prize of sub-
optimality. The simultaneous treatment makes the problem more complex but leads to optimal results.
With the appearance of networked ES, RT scheduling becomes distributed. Consequently, each node
of the distributed system has its own local scheduler.

Figure 2. Canonical model for real time tasks

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

6

A significant number of RT scheduling algorithms have been developed over last decades and
classified following a set of criteria. The latter include mainly: tasks periodicity (periodic vs aperiodic),
dependency (dependent vs. independent), the number of processors (mono vs. multiprocessor), tasks
priority calculation (fixed vs dynamic) and online vs. offline scheduling.

RT scheduling is probabilistic, if it applies some laws of probability to select tasks or to compute
some timing parameters (Tidwell, 2011). Some probabilistic RT scheduling algorithms model the
problem as queues theory. RT scheduling is imprecise, if its decisions regarding tasks selection or
priorities calculation is based on a partial, vague or imprecise data. In some cases, intermediate or
partial results from task computations can be used instead of more precise results when a real-time
system suffers failures or transient overloads.

RT scheduling is adaptive if it can adjust its parameters dynamically to respond to some events
(i.e. faults) or to meet deadlines. For instance, in some situations, the RT scheduler has to adjust the
period of a task (Zhou et al., 2017).

Traditional RT scheduling is concerned merely with the timing issue; however, with the emerging
of battery-dependent systems, the RT scheduling should minimize the energy consumption too.
Moreover, the RT scheduling has to enhance the reliability of the system especially for critical systems.

Energy-aware RT scheduling algorithms tend to minimize the energy consumption in embedded
systems (processors, buses, memories) while meeting all tasks deadlines or a subset of the set of
deadlines (Niu & Quan, 2006).

The problem of reducing energy consumption while meeting tasks deadlines is not trivial since
time and energy decreasing are conflictual objectives. For this reason and in order to find a good
tradeoff, energy-aware algorithms have been developed. Figure 4 shows a possible classification of
energy-aware RT scheduling algorithms. Previous taxonomies are enriched by adding the class of
algorithms applying the technology of energy harvesting.

As shown in figure 4, energy-Aware RT Scheduling algorithms are traditionally classified
regarding whether they minimize the dynamic power, the static power or both two, whether they use
nonrenewable or renewable energy technology and whether they run a single core or multi-cores
CPUs (Bambagini et al., 2016).

Most energy-aware algorithms minimize dynamic power that is related to the amount of the
switching activity in the hardware resource (i.e. the processor), its supply voltage and clock frequency.
With the continuing reduction of the transistor dimension, static power becomes more significant and
cannot be neglected anymore. Static power is mainly related to the current leakage. Recent algorithms
take into account both power types. Nevertheless, for static power minimization, the algorithms resort
to low levels energy models and simulators. Other algorithms make some abstractions in order to
simplify the power estimation but at the prize of estimation impreciseness. Energy-aware algorithms
can minimize temperature. In order to do so, they generally resort to some thermal models to estimate
the generated temperature at hardware components. In the case of multicores processor architectures,
the objective of temperature-aware algorithms is rather to balance the distribution of temperature
between the different cores so the hotspot of the processor is avoided (Ahmeda et al., 2011).

Single core algorithms are first classified along the DVFS (Dynamic Voltage Frequency Scaling)
and DPM (Dynamic Power Management) dimensions. DVFS-based algorithms are based on the
principle of scaling the supply voltage and the clock frequency of the processor dynamically to
minimize the processor energy. Each processor has different speed (voltage) levels at which it can
execute (interval of discrete or continuous values).

DPM-based energy management techniques selectively place system components into low-
power states when they are idle at runtime. A power managed system can be modeled as a power
state machine, where each state is characterized by the power consumption and the performance. In
addition, state transitions have power and delay cost. DVFS algorithms are classified according to the
type of slack (the unused CPU time) that they reclaim for scaling speed to save energy. Specifically,
the algorithms that exploit only the static slack consider the residual processor utilization in the worst-

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

7

case execution, whereas those that reclaim the dynamic slack take advantage of the difference between
the worst-case and the actual execution time of the jobs. Various real-time DVFS techniques have
been studied, among them the presented static, cycle-conserving (CC), Look Ahead (LA), dynamic
reclaiming algorithm (DRA), dynamic reclaiming-one task extension (DR-OTE), and aggressive
speed adjustment (AGR) algorithms are the most important.

DPM algorithms are classified as offline and online approaches. The algorithms that use both
DVFS and DPM techniques are designated as integrated algorithms. These algorithms are further
divided according to when the task speed assignment decisions are made, that is, either offline or
online. Multicore algorithms are classified according to the flexibility in the DVFS support provided by
the platform. If the hardware allows setting a different frequency for each core, the DVFS algorithms
are classified as Independent Frequencies, whereas if a single frequency is shared among a subset of
cores, the algorithms are classified as Voltage Islands

The DVFS multiprocessor algorithms for independent frequencies can be further distinguished
between approaches that assign frequencies to cores independently of the running tasks (Per-CPU
algorithms) and those that compute a frequency for each task and use it for the core executing that
task (Per-Task algorithms). ES which are powered by a renewable energy source are qualified as
energy harvesting systems. Uncertainty of energy availability in energy harvesting systems makes the
problem of task scheduling mores challenging. In general, energy-harvesting algorithms can broadly
divided into energy-greedy and computation-greedy classes depending on the actions they take when
the energy level is low. Under that condition, energy-greedy algorithms exploit the available slack
in the system by procrastinating tasks and charging the battery as much as possible. In contrast, the
computation-greedy algorithms give priority to execute the pending workload, and charge the battery

Figure 3. Classification of RT scheduling algorithms for ES

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

8

only for the shortest time, which guarantees the execution of the next computational unit (Moser et
al., 2006; Bambagini, 2014; Chandarli, 2014; Housseyni et al., 2016).

Faults tolerant-aware RT scheduling has to guarantee the functional and timing correctness even in
the presence of hardware and software faults. Faults are generally classified into three main categories:
permanent, transient, and intermittent. Permanent faults do not die away with time. They are caused
by total failure of the computational unit and remain until they are repaired as the affected unit is
replaced (hardware redundancy). Transient faults are temporary malfunctioning of the computational
unit. They die away after some time. Intermittent faults are repeated occurrences of transient faults.
Many Faults tolerant-aware algorithms have been proposed to deal with the different kinds of faults.
Most of these algorithms deal with transient faults that occur at the processor and bus levels.

In order to achieve fault tolerance, the first requirement is that faults have to be detected. In
general, there exists two main techniques for faults detection: watchdog and redundancy.

Watchdog timer monitors periodically the execution time of programs or transmitted data,
whether it exceeds a certain limit. Redundancies can be classified into two categories hardware-
based redundancy and time-based redundancy. Hardware-based redundancy methods attempt to
tolerate transient faults by copy-executions of each original task on another separated hardware.
These methods can be classified into three main categories: TMR (Triple Modular Redundancy),
PB (Primary/Backup), and PE (Primary/Exception). In TMR, the critical components are replicated
three times and error checking is achieved by comparing results after completion. In this scheme,
the overhead is always on the order of the number of copies running simultaneously. In PB, the tasks
are assumed to be periodic and two instances of each task (a primary and a backup) are scheduled
on a uni-processor system. The main idea behind this technique is that the backup of a task need not
execute if its primary executes successfully and that no resource conflicts occur between the two
versions of any task. One of the restrictions of this approach is that the period of any task should be

Figure 4. Classification of energy-aware algorithms

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

9

a multiple of the period of its preceding tasks. It also assumes that the execution time of the backup
is shorter than that of the primary. PE is the same as PB method except that exception handlers are
executed instead of backup programs. In general, hardware redundancy is avoided as far as possible,
due to limited resources. Software (or Temporal) redundancy is more cost-efficient to handle transient
faults. One possible approach is to schedule critical tasks multiple times and perform voting of the
results (re-execution).

Another common technique is to insert checkpoints into the software and rollback the execution
from a safe state in case faults are detected. For real-time applications, temporal redundancy must
be used with utmost care, since the overhead in time may lead to deadline violations. Faults-tolerant
algorithms can be either reactive in the sense they handle the faults only when they occur. Whereas,
cognitive algorithms can predict and plan in priori the handling of faults (Kandasamy et al., 2000;
Mottaghia & Zarandi, 2014; Han, 2015; Fan & al., 2017; Barkahoum & Hamoudi, 2019).

Figure 5. Classification of faults tolerant-aware algorithms

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

10

Some typical examples of intelligent RT embedded systems scheduling applications include
outpatient clinics (OPCs), smart transport and spacecraft.

In the context of OPCs, intelligent RT scheduler that schedules patients and resources based on
the actual status of departments is crucial particularly when the patient demand is high and patient
arrivals are random. Generally, OPCs systems are push systems where scheduling is based on average
demand prediction and is considered for long term (monthly or bimonthly). Often, planning and actual
scenario vary due to uncertainty and variability in demand and this mismatch results in prolonged
waiting times and under-utilization of resources (Munavalli et al., 2020).

In the field of smart transport, the focus of the smart transportation industry has been shifting
towards the research and development of smart cars with autonomous control while promoting
safe driving which is one of the crucial concerns in autonomous smart cars. The major issue for
the better provision of safe driving is real time tasks scheduling and an efficient inference system
for autonomous control. In such systems, on optimal control system consists of an intelligent part
which can be implemented as ANN or an expert system with a knowledge base and a control unit;
where the knowledge base contains the data and thresholds for rules and the control unit contains
the functionality for smart vehicle autonomous control. The intelligent RT scheduler provides an
efficient way of controlling smart cars in different scenarios such as heavy rainfall, obstacle detection,
driver’s focus diversion etc., while ensuring the practices of safe driving, timing constraints respect
and energy consumption (Sehrish et al., 2019).

Spacecraft operations have been a major area of application for intelligent RT scheduling.
the use of an automated intelligent scheduler will assist to create observations of both targeted

geographical regions of interest and general mapping observations while respecting spacecraft
constraints such as data volume, observation timing, visibility, lighting, season, and science priorities.
Numerous space missions have used automated planning and scheduling on the ground to enable
significant operational efficiencies. For instance, Europa Clipper has been a mission concept under
study by NASA for a spacecraft to fly to the Jovian planet-moon system in order to study the icy moon
Europa. The Europa Clipper concept considers a number of possible science instruments, including
a radar to study the ice shell and subsurface properties, and infrared instrument to study surface
composition, a topographic imager to gather high resolution images of surface features, and an ion and
neutral mass spectrometer to investigate Europa’s trace atmosphere during flybys. In order to achieve
these goals, an automated intelligent RT scheduler is implemented. The intelligent scheduler functions
on three steps namely instrument definition, campaign generation, and target selection. In the first
step, the spacecraft and instruments must be defined along with the constraints that may impact how
and when data can be collected. To generate valid schedules, the interactions between the instruments
and the spacecraft should be modeled as well as how the instruments interact with each other. In
the second step, campaigns are generated to represent the constrained and prioritized requests of the
scientists. In order to collect relevant data for a particular scientific campaign, constraints are made
on both internal and external conditions. Then, a priority is assigned to each campaign to enable the
scheduler to make the best choice when different observation types are feasible. Finally, the last step
is to select the best tradeoff between feasible observations (Rabideau & al., 2015).

4. RESolvINg THE RT SCHEdUlINg pRoBlEM
foR EMBEddEd SySTEMS USINg AI.

The RT scheduling problem for ES can be defined as a Multi-Objective Optimization (MOO)
problem under constraints. It is qualified to be NP-hard, makes it difficult to devise conventional
approaches. As an alternative, AI-based approaches seem to be promising solutions. RT scheduling
optimization for ES has to take into account three conflictual objectives that are deadlines respect,
energy consumption minimization and reliability.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

11

This poses a big challenge because lowering the voltage to reduce energy consumption reduces the
processor clock frequency that means increasing task execution time, which can lead to no guarantee
of task deadlines. Furthermore, lowering the voltage to reduce energy consumption has been shown to
increase the number of transient faults. Even the redundancy mechanism (i.e. hardware redundancy)
to tolerate faults will increase the energy consumption although it decreases the overall execution
time. For a nontrivial MOO problem, no single solution exists, that simultaneously optimizes each
objective and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called
no dominated or Pareto optimal if none of the objective functions can be improved in value without
degrading some of the other objective values. In the literature, there are several theoretical options
to solve a MOO problem. Many methods convert the original problem with multiple objectives into
a single-objective. This is called a scalarized problem. MOO methods can be generally partitioned
into four classes (Multi-Objective Optimization, n.d):

- The “no preference” methods in which decision maker (DM) is expected to be available, but an
unbiased tradeoff solution is identified without preference information.

- The “a priori” methods in which preference information is first asked from the DM and then a
solution best satisfying these preferences is found.

- The “a posteriori” methods in which a representative set of Pareto optimal solutions is first found
and then the DM must choose one of them.

- The interactive methods in which the DM is allowed to iteratively search for the most preferred
solution. In each iteration, the DM is shown Pareto optimal solution(s) and describes how the
solution(s) could be improved. The information given by the DM is then taken into account while
generating new Pareto optimal solution(s) to study in the next iteration.

AI includes a set of methods and models to address complex problems of the real world application
including the RT scheduling problem.

By intelligent RT scheduling, it is meant any conventional RT scheduling which incorporates
an AI method or model. Figure 6 shows a classification of AI methods which have largely been used
to resolve RT scheduling. These models comprise mainly: Constraint Programming (CP), Game
Theory (GT), Artificial Immune Systems (AIS), Cellular Automata (CA), Machine learning including
Artificial Neural Networks (ANN) and Reinforcement learning, Fuzzy logic, Multi-Agent Systems
(MAS), Evolutionary Algorithms (EA), and Swarm intelligence including ants colony, bees colony
and PSO.

4.1. Constraint programming
Due to the large variety of constraints that must be fulfilled by a RT scheduler, the constraint
programming (CP) paradigm seems to be justifiable. In this context, the RT scheduling problem can
be formulated as a constrained satisfaction problem (CSP).

CP is so popular, because it helps to specify in a declarative and generic fashion relevant
constraints. Furthermore, CP offers a powerful search space reduction using constraint propagation
that can detect infeasible branches in the search tree earlier and this is triggered every time a new
constraint is added to the model. One big advantage of CP is the possibility to create and integrate
new heuristics using the available meta-heuristics (Szymanek et al., 2000). CP can be applied also
in solving combinatorial optimization problems by expressing the objective function as a constraint
variable and then iteratively, solve the same problem with an increasing tighter bound on this variable.
Basically, CP encompasses two steps that are:

1. Formulate the problem in terms of variables and constraints.
2. Find a feasible or an optimal assignment of the variables such that the constraints are satisfied.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

12

In CP, it is well known that the time to seek for feasible solutions represents the major performance
bottleneck. The search must be guided by a search strategy that aims at quickly directing the search
towards good solutions without losing the completeness of CP. A search strategy is related to the
order of choice of variables with their values.

Standard CP optimization method is based on branch and bound (B&B) algorithm. The latter can
be successfully applied to small and middle size problems, but for large and complex problems with
heterogeneous constraints, more sophisticated optimization methods are required. Dynamic Constraint
Programming (DCP) is a version of CP where dynamic (i.e. at execution time) addition/retraction of
constraints are possible. Two main classes of methods can be distinguished in DCP: proactive and
reactive methods. Proactive methods propose to build robust solutions that remain solutions even
if changes occur. On the other hand, reactive methods try to reuse as much as possible previous
reasoning and solutions found in the past. They avoid restarting from scratch and can be seen as a
form of learning. One of the main methods currently used to perform such learning is a justification
technique that keeps trace of inferences made by the solver during the search. Such an extension of
constraint programming is called explanation-based constraint programming.

In her PhD thesis, (Eklin, 2004) coped with periodic and dependent tasks RT scheduling problem
taking into account the energy consumption minimization for ES on heterogeneous multiprocessor
architecture with a shared bus using CP.

Firstly, she proposed a taxonomy of typical constraints that appear in RT embedded systems
design. A set of heuristics to reduce the search time of the optimization algorithm had also proposed.
These heuristics use some design space reduction techniques such as symmetries exclusion. In addition,

Figure 6. Classification of AI methods used to resolve RT scheduling

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

13

the author integrated a power model in order to minimize the energy consumption while meeting the
deadlines. She applied the DVFS technique.

The constraint model uses many variables:
For a task: The start time, the execution time, the blocking time, the execution node (processor),

the speed level and the consumed energy. For a message: the start time, the transmission delay.

Some additional assumptions are made:
- A task invocation is not allowed to migrate to another node during preemption,
- A task invocation will run at a single speed level during its entire execution.

For a schedule of length lcp, each task invocation is treated as a separate task.
A possible CP-based formulation of the RT scheduling problem is illustrated in figure 7.
Where:

start
k

i
()τ is the start time of the task

node
k

i
()τ is the execution node

level
k

i
()τ is the speed level

start message
k

i

l

j
_ (,)τ τ is the start time of the message transmission

The work of (Hladik et al., 2005) applied dynamic constraint programming (DCP) to solve the
problem of distributed preemptive RT scheduling taking into account fault-tolerance including periodic
tasks with fixed priorities and hard constraints. The processors are considered homogeneous. (i.e. they
have the same speed) and are fully connected to a network using a token ring protocol. The presented
method follows logic Benders-based decomposition. The latter can be seen as a form of learning
from mistakes. It is a solving strategy that uses a partition of the problem among its variables: x, y.
The strategy can be applied to a problem of this general form:

P M x cy

s t g x Ay a with x D y

: inf()

. : () : ,

+
+ ≥ ∈ ≥ 0

The master problem considers only a subset of variables x and the sub-problem (SP) tries to
complete the assignment on y and produces a Benders cut added to the master problem.

The author separated the allocation problem (master problem) from the schedulability (sub-
problem) one. The allocation and resource constraints is solved by means of DCP tools, whereas
schedulability and timing constraints is checked with specific real-time scheduling analyses. In other
term, the master problem is solved with CP yields a valid allocation and the subproblem checks the
schedulability of this allocation finding out why it is unschedulable and designing a set of constraints,
named nogoods which rules out all the assignments which are unschedulable for the same reason.
The main idea is to learn from the schedulability analysis how to re-model the allocation problem
and reduce the search space.

Two classes of constraints are defined:

- Resources constraints including memory capacity, processor utilization factor and network use.
- Allocation constraints that are imposed by the system architecture. These constraints include

residence (a task needs some specific resource which is only available on specific processors),

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

14

co-residence (several tasks should be assigned to the same processor), and exclusion (tasks that
be replicated for fault-tolerance cannot be assigned to the same processor).

To solve the allocation problem, different basic search strategies based on some criteria have
been defined and compared. These criteria are:

mindomain (the search strategy chooses the variable with the smallest domain size),
maxmemory (the search strategy chooses the variable with the biggest memory need),
maxutilization (the search strategy chooses the variable with the biggest processor utilization), and

learning (the search strategy uses the nogoods learned during the resolution).

Figure 7. RT scheduling problem formulation using CP

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

15

4.2. game Theory
Game theory (GT) is a multi-player decision theory and any game must specify the players of the
game, the information and actions available to each player at each decision point, and the payoffs
for each outcome. The players participate in a Game in order to get maximum benefit by selecting
a reasonable action. Equilibrium is a key concept in game theory. As optimization problems seek to
optimal solutions, a game looks for equilibrium. The latter defines a stable state in which either one
outcome occurs or a set of outcomes occur with known probability.

Game theory includes two main branches that are non-cooperative and cooperative (Game
Theory, n.d).

A game is cooperative if the players are able to form binding commitments externally enforced
through contract law. A game is non-cooperative if players either cannot form agreements or if all
agreements need to be self-enforcing. Cooperative games are often analyzed through the framework
of cooperative game theory, which focuses on predicting which coalitions will form, the joint actions
that groups take, and the resulting collective payoffs.

In the context of RT scheduling problem, GT can be applied by considering each task as a selfish
agent free to select its own processor. Every processor declares its scheduling policy in advance,
and this induces a simultaneous-move game between the tasks. The strategy of a task consists of
choosing the processor on which it will be executed. Each task wants to optimize its cost function
and the game reaches an equilibrium where no task can optimize its cost function by migrating to
another processor. The goal of a system designer is to design a scheduling policy on each processor
such that ineffectiveness resulting from the selfish behavior is as minor as possible (Kulkarni, 2015).

(Ahmad & Ranka, 2008) formulated the RT scheduling problem on heterogeneous multi-cores
architecture as a cooperative game theory problem to minimize the energy consumption and the
makespan (the time required to execute all the tasks) simultaneously, while maintaining deadline
constraints. The RT scheduling is based on a scenario where it is assumed that the schedule of the
parallel application that minimizes the execution time (makespan) on the multi-cores architecture
is known and the objective is to find a new schedule (with allowable reduction in schedule length)
that tries to minimize the energy consumption of the entire architecture using the DVS technique.
Hence, the objective is to optimize the cumulative performance rather than to satisfy individual
cores. The paper showed that for such RT scheduling problem, a simple cooperation for joint resource
allocation was significantly better than no cooperation. So the cores of the architecture acting as
players can benefit only if the overall cores can benefit from the execution of tasks. This collective
benefit can be achieved very efficiently via the concept of NBS (Nash Bargaining Solution). NBS is
a solution to a game in which players use bargaining interactions to demand a portion of some entity.
The interactions continue until a resolution is met and all the players achieve their demands. The
remarkable property of the NBS is that it guarantees pareto-optimality and fairness. By converting
the energy-aware RT scheduling problem into a cooperative game theory solution, the authors proved
to guarantee pareto-optimal solutions in mere O(nmlog(m)) time (where n is the number of tasks
and m is the number of cores).

(Wu, 2012) addressed the question of how to reduce the temperature difference between
embedded processor multicores against real-time guarantee. For this end, they proposed a generalized
tit-for-tat based corporative energy-aware scheduling game for multicore systems namely GTFTES
(Generalized Tit-For-Tat Energy-aware Scheduling). In the proposed game, game players are the
cores competing for different tasks whose number is always lower than the number of the processor
cores. In the proposed scheduling scenario, each core submits a price that a task should pay for the
executing service (in terms of temperature amount, which is estimated based on the ATMI thermal
model, and deadlines guarantee). Naturally, the core biding the lowest bids will win the auction. The
auctioneer (the scheduler) firstly decides the winning cores, and then assigns the tasks to the cores.
The auctioneer charges each core the harm they cause to other cores, and ensures that the optimal
strategy for a task is to bid the value of the cores. Each player (core) decides to cooperate or retaliate

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

16

according to the hardness factor h. Specifically, after each round of the game, each player will
calculate the proportion that the players who cooperate (this proportion is specified as hardness h).
If his over a predefined value, the player will decide to cooperate in the next game round. Otherwise,
he will choose to retaliate without considering the power status of the processor. Simulations results
showed that the proposed game could reduce the temperature difference between different groups of
cores, which effectively avoids the local hotspot of a processor. (Abdeyazdan et al., 2013) applied
the idea of Nash equilibrium in game theory for static tasks graph pre-scheduling on homogeneous
multiprocessor architecture. Given a game with strategy sets for players, a pure Nash equilibrium
is a strategy profile in which each player deterministically plays her chosen strategy and no one has
an incentive to unilaterally change her strategy. The proposed algorithm tries to establish a trade-off
between time and energy. In order to minimize the energy consumption, the number of processors
should be minimized but while minimizing the makespan, the number of available processors may
be increased. To determine the optimal number of processors, the algorithm consider each level of a
task graph as a selfish player attempting to get suitable number of processors to execute its tasks in
parallel. The overall benefit of applying the processors is maximized when the Nash equilibrium is
reached among the levels. Afterward, considering the determined number of processors, the algorithm
again applies the Nash equilibrium concept to determine the appropriate merging of tasks with their
parents. In this case, each task is considered as a player and the best merging is the one it minimizes
tasks earliest start time.

4.3. Artificial Immune Systems
Artificial immune systems (AIS) are a class of computationally intelligent, rule-based machine learning
systems derived from the principles inspired by the human immune system. The till-known function
of AIS is to protect the host organism against attack by invading pathogens, and that the immune
system is comprised of several interacting subsystems which are closely linked with the endocrine
and the central nervous systems. Some views that are more radical suggest that the immune system
is part of a larger cognitive system that has a fundamental role in the maintenance of the body and
the preservation of homeostasis (Artificial Immune Systems, n.d).

Traditionally, the immune system is thought to comprise a series of layers, each providing
protection against a specific type of pathogenic attack (Lay, 2009).

Several AIS algorithms for combinatorial optimization have been designed and most of them
are based on the clonal selection and immune network principles.

One of the most known AIS algorithms for optimization is the DCA (Dendritic Cell Algorithm),
an algorithm derived from the operation of dendritic cells (DC).

DCs collect antigens, which are then presented to T‐cells in a lymph node, along with information
about the concentrations of cytokine signals associated with cell death, either necrotic or apoptotic.
The information provided by DCs is used to determine whether the initiation of an immune response
against those antigens is necessary.

The general function of the DCA is to provide an indication of danger levels associated with
different parts of the system. Based on the idea of a DC detecting chemical signals, the DCA makes
use of virtual DCs and virtual signals derived from various aspects of the system being monitored.
As shown in figure 8, each DC takes the form of a data structure, consisting of a matrix of input
signals, a matrix of output signals, an antigen store and a migration threshold.

DCA functioning is based around a regular cell update cycle. During each update cycle, each
DC belonging to the population updates its input signal matrix and antigen store by evaluating the
values passed to it from the environment and then use some or all of the input signals, weights them
according to a set of weighting values and combines them to produce the appropriate output value
for its required output signals. Thus, the algorithm can be adjusted to favor some specific signals or
categories of signals.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

17

For example, a signal can be assigned a high weighting value if it always indicates the presence
of danger in the system. This high weight will enable the presence of this signal to render the DC
mature. Each new DC is considered immature and has a maximum lifespan defined as a number of cell
update cycles. At the end of this lifecycle, if this DC could not reach maturity, it will be transformed
into the semi‐mature state.

Nevertheless, if at any point in its lifecycle the value of a DC’s output signal exceeds a specific
migration threshold, it will be transformed into the mature state, after which it presents its antigen
and signal values to a lymph node structure to derive a measure of danger for that antigen. In the
framework of a PhD thesis, (Lay, 2009) suggested some modification on the conventional DCA,
so it will be possible to apply it to reduce tasks deadlines overrun problem and hence improve the
reliability in a non-preemptive and fixed-priorities tasks RT scheduling The DCA should be executed
in parallel with the system, which it is monitoring, such that it is able to predict or detect overruns as
the system operates. The proposed algorithm is shown in figure 9. In each cycle, the DCA monitoring
component chooses a random pool of DCs from the overall pool, which are to be evaluated in that
cycle. It then invokes the task scheduler, and for each task currently in the run queue, it determines
the values for the DC input signals based on the state of the task at that point in the simulation, and
updates the signal and antigen matrices of each selected DC. Once the input signals have been processed
for all the tasks in the run queue, the output signals for all the selected DCs are then evaluated, and
the lifecycle counter for each selected DC is incremented. For each DC, the output signal value is
compared against the DC’s maturation threshold, and if the output signal value is greater than the
maturation threshold, the DC becomes mature. The DC becomes semi‐mature if the lifecycle counter
is greater than the lifecycle threshold. Once a DC has reached maturity or semi‐maturity, its antigen
is evaluated, and the DC is reset and returned to the population.

Figure 8. Data structure of single DC

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

18

The random selection of a subset of DCs in each cycle and the non‐deterministic characteristics
of the task execution, guarantees a continuous evaluation of the status of the run queue throughout
the simulation.

In the context of the deadline-overrun problem, the DCA is applied with three signal categories:

- PAMP (Pathogen Associated Molecular Patterns) which corresponds to the actual overrun occurring
when the task completion time is greater than the task deadline.

- Danger which corresponds to a potential overrun occurring when at any point from the task release
to completion, the worst-case response time is greater than the time to deadline.

- Safe, when at all points from the task release to completion, the worst-case response time is less
than the time to deadline.

The behavior of the DCA depends strongly on its input parameters especially the weights and
the threshold values.

Figure 9. DCA pseudocode, amended for application to the deadline overrun problem

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

19

4.4. Cellular Automata
Cellular Automaton (CA) is a computation model used to model and simulate behaviors of complex
dynamic and parallel systems. CA can be seen as a grid of cells together form a neighborhood. Each
cell has a state and can change its state according to its neighborhood state. This is called a local
transition rule. By applying local rules on cells synchronously or asynchronously, the CA changes
its global state and some complex emerging behaviors can be produced. This is a primary inherent
characteristic of CA. In its simplest form, a cellular automaton is defined as CA = (D, S, N, £, F)
where: D is the grid dimension, S is the set of cells states, £ is the local transition function and F is
the global transition function (Cellular automaton, n.d).

Many authors have been interested in applying CA to solve the traditional multiprocessor
scheduling problem. But only few works targeting the application of CA to solve RT scheduling
problem for ES. Existing literature works differ according to how the neighboring, the cell states and
the local transition rules are defined and how they are evolved.

It is well known that one of the difficulties in using CA is the exponentially increasing number of
rules with increasing number of processor and neighborhood radius. For this reason, it is not wonder
if we find many authors have been combine optimization metaheuristics such as genetic algorithms
and their variants notably quantum inspired genetic algorithms or other swarm based techniques to
solve the combinatorial explosion of rules in CA.

The first application of CA to solve the problem of scheduling is due to (Seredynski, 1998).
The author proposed to use cellular automaton (CA) as a tool for designing distributed scheduling

algorithms for allocating parallel program tasks in multiprocessor systems. To do so, a program graph
is considered as a CA containing elementary automata interacting locally according to some rules.
The proposed algorithm has two phases: in the first phase, it tries to discover effective rules for the
CA by a genetic algorithm. In the second phase, for any initial allocation of tasks in a multiprocessor
system, the CA-based scheduler attempts to find an allocation minimizing the total execution time
of the program in a given system topology. The proposed approach was validated for a number of
program graphs scheduled in a two-processor system. (Swiecicka et al., 2006) presented a CA-
based multiprocessor scheduler working in three modes that are learning, normal operating, and
reusing. In the learning mode, knowledge about solving a given instance of the scheduling problem
is extracted and coded into CA rules. A genetic algorithm is used to discover the most suitable CA
rules. Discovered rules in the learning mode are used in the normal operating mode by CA-based
scheduler for automatic scheduling without a calculation of a cost function, an optimal or suboptimal
solution of the scheduling problem for any initial allocation of program tasks in the multiprocessor
system. In the third mode, previously discovered rules are reused with support of an artificial immune
system (AIS) to solve new instances of the problem.

(Ghafarian et al., 2009) proposed a scheduler that uses a two dimensional evolving CA based on
ant colony optimization method to find optimal response time for some of well-known precedence
task graph in the multiprocessor scheduling area.

(Agrawal & Rao, 2012) presented an irregular CA to find an energy-aware schedule. The rules
for cellular automata are learned using a genetic algorithm. To solve the scheduling problem using
CA, the tasks graph with precedence constraints and the architecture graph have to be mapped to the
CA domain. An elementary task of the program is mapped to a cell in the CA space. The CA uses a
neighborhood of size 5, which includes two parents and two children of the task, and the task itself.
The state of the cell specifies the component to which the task is assigned. Initially, tasks are assigned
randomly to the components. Then according to the rules and the neighborhood, CA evolve sequentially
to reach a state, which gives a near-optimum schedule. In a more recent work (Boutekkouk, 2015), a
CA-based solution is proposed to solve multi-cores energy-aware RT scheduling problem with periodic
and independent tasks using the DVS (Dynamic Voltage Scaling) technique. The proposed CA is a
two dimensional grid where each cell represents the information of the task allocation on a processor
with a certain frequency mode. Thus, a cell state is a triplet (task, processor, frequency mode). The

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

20

user has the choice to choose between two scheduling policies that are DM (Deadline Monotonic)
and EDF (Earliest Deadline First) when more than one task is allocated to the same processor. The
author defined a set of local transition rules in order to simulate the CA. Such transition rules can
for instance change the allocation, the priority or the frequency mode of a task. These rules try to
optimize power consumption, balancing usage ratios of processors and minimize the number of tasks
missing their deadlines. By applying these rules continually, some emerging behaviors or some good
configurations with minimal power consumption are observed.

In the example of figure 10, there are five processors (p0... p4) and twenty tasks (T0… T19).
Each processor is characterized by a color and three frequency modes that are High frequency

mode (H), Middle frequency mode (M), and Low frequency mode (L).

4.5. Reinforcement learning
Reinforcement Learning (RL) is a branch of machine learning concerned with how software agents
have to take actions in an uncertain, potentially complex environment in order to maximize the notion
of cumulative reward. RL does not need labelled input/output pairs be presented and sub-optimal
actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration and
exploitation of the current knowledge (Reinforcement learning, n.d).

Among efficient application of RL is to solve MDP (Markov Decision Process) without explicit
specification of the transition probabilities (i.e. probabilities are not known in priori), in this case, the
values of the transition probabilities are needed in value and policy iteration. Reinforcement learning
can also be combined with function approximation to address problems with a very large number of
states. Informally, a MDP is a discrete time stochastic control process, used for probabilistic modeling
of decision making. More formally, an MDP (Markov decision process, n.d) is a quadruplet (S, A,
Pa, Ra) where

{\displaystyle S}S is a finite or infinite set of states,
{\displaystyle A}A is a finite or infinite set of actions,

Pa (s, s’) is the probability that action a{\displaystyle a} in state s{\displaystyle s} at time t{\
displaystyle t} will lead to state s’{\displaystyle s’} at time {\displaystyle t+1}t+1,
P s s s s s s a a
a t t t
(, ') Pr(' | ,)= = = =+1

{\displaystyle R_{a}(s,s’)}Ra (s, s’) is the immediate reward (or expected immediate reward)
received after transitioning from state s {\displaystyle s} to state s’ {\displaystyle s’}due to action a.
The core problem of MDPs is to find a policy for the decision maker: a function π that specifies the

Figure 10. Example of a CA state in the first period using EDF

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

21

action π(s) that the decision maker will choose when in state s. Once a Markov decision process is
combined with a policy in this way, this fixes the action for each state and the resulting combination
behaves like a Markov chain.

{\displaystyle a}The goal is to choose a policy π that will maximize some cumulative function
of the random rewards, typically the expected discounted sum over a potentially infinite horizon:

E R s st
at t t

t

[(,)]γ +
=

∞

∑ 1
0

Where we choose at = π(st) (i.e. actions given by the policy) and the expectation is given over

s P s s
t at t t
+ +1 1~ (,)

Where {\displaystyle \ \gamma \ } is the discount factor satisfying
(Glaubius et al., 2010) considered the problem of learning near optimal RT scheduling when the

system model is not known using MDP. In contrast to classical real-time scheduling approaches that
are based on worst-case execution time (WCET) analysis, this work assumes that each task’s duration
obeys some underlying but unknown stationary distribution. Thus, RL suits well this situation. The
tasks model consists of N tasks that require mutually exclusive use of a single common resource.
Each task consists of an infinite sequence of jobs. Furthermore, many assumptions are made:

- inter-task job durations are independently distributed,
- intra-task job durations are independently and identically distributed,
- The scheduling is supposed not preemptive and each duration distribution must have bounded

support on the positive integers.

The goal is to schedule jobs in order to preserve temporal isolation.
More formally, the RT scheduling problem is modeled as an MDP over a set of utilization states

X. each state x is an n-vector (x1… xn) where each xi is the total number of quanta during which task
Ti occupied the shared resource since system initialization.

τ x xi
i

n

() =
=
∑�
1

τ x() denotes the total elapsed time in state x.
Each action I in this MDP corresponds to the decision to run task Ti. Transitions are determined

according to task duration distributions, so that:

P y x i
P t i y x t

otherwise
i(| ,)

(|)
=

= +

∆

0

Where Δi is the zero vector except that component i is equal to one. The cost of a state is its L1-
distance from target utilization within the hyperplane of states with equal elapsed time τ(x)

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

22

C x x x u
i i

i

n

() | () |= −
=
∑ τ
1

The target utilization denes a target utilization ray {λu: λ 3 0}. When the components of u are
rational, this ray regularly passes through many utilization states. In Figure 11, for example, the
utilization ray passes through integer multiples of (1, 2). Every state on this ray has zero cost, and
states with the same displacement from the target utilization ray have equal cost.

T1 (grey, open arrowheads) stochastically transitions to the right, while T2 (black, closed
arrowheads) deterministically transitions upward. The dashed ray indicates the utilization target. This
task scheduling MDP has an infinite state space and unbounded costs. However, an optimal policy
can be estimated accurately using a finite state approximation. RL is used to integrate the model and

Figure 11. Illustrates the utilization state model for a problem with two tasks and a target utilization u = (1, 2) = 3 (that is, task T1
should receive 1/3 of the processor, and task T2 should receive the rest).

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

23

the policy estimation. In order to know how much experience is necessary before learned policies
can be trusted. The authors address this issue by deriving a PAC (Probably Approximately Correct)
bound on the sample complexity of obtaining a near-optimal policy.

In the context of a PhD thesis, (Tidwell, 2011) defined a Markov Decision Process (MDP) model
that enables to derive value-optimal schedulers, and also provides a formal framework for comparing
the performance of different scheduling policies. He equally showed how the problem structure allows
to bound the number of states in the MDP by wrapping states into a finite number of exemplar states.

Q-learning
Q-learning is a reinforcement learning algorithm which does not require a model of the environment. It
treats problems with stochastic transitions and rewards, without requiring adaptations. “Q” designates
the function that returns the reward used to provide the reinforcement and can be understood as the
“quality” of an action taken in a given state.

In Q-learning, the system consists of a finite state space S and a set of actions A. Selecting an
action a Î A at state s Î S conducts the system to a new state with a reward or penalty.

A policy π is a mapping π: S®A. For each state–action pair (s, a), it maintains a value function
Qπ(s, a) that represents the penalty or reward. Based on the function value, the agent decides which
action should be taken in current state to achieve the maximum rewards. The Q-value for each state–
action pair is updated iteratively in the Q-table each time an action is issued and a penalty is received
based on the following expression:

Q s a Q s a s a
t t t t t t t
(,) (,) (,)← +α

x p s a
a

Q s a Q s a
t t t

t
t t t t

(,)
min

(,) (,)+
+

+ + −

δi
1

1 1

Where pt(st,at) is the penalty received in state st with action at taken. αt is the learning rate that
determines what degree the newly acquired information will override the old information.

δ is the discount rate that determines the importance of future rewards and plays an important
role when the environment is sequential. Q(st+1,at+1) is determined based on the action, which costs
minimum Q-value. The next time when state st is visited again, the action with the minimum Q-value
is chosen (Q-learning, n.d).

(ul Islam & Lin, 2015) proposed to use Q-learning algorithm to reduce the energy consumption
in RT scheduling of periodic and preemptive tasks using a set of DVFS techniques on mono-core
processor. The impetus behind applying Q-learning is because existing DVFS techniques work with
different strategies and perform well under different conditions. However, a single DVFS technique
is not always optimal under different workloads, dynamic slacks, and power settings. Furthermore,
the variation in device configuration also affects the suitability of a given DVFS algorithm. Thus,
the aim of the Q-learning algorithm is to take the advantage of different strategies used by each of
the existing DVFS techniques by training the scheduler what and when selecting the more suitable
DVFS policy in order to minimize the energy consumption while meeting tasks deadlines. In their
experiments, the authors selected three hard real-time DVFS techniques that are CC, LA, and DRA.
Results show that the proposed approach under some assumptions can save more energy than any
single policy executing individually.

4.6. Artificial Neural Networks
Artificial Neural Networks (ANN) have proved their efficiency in classification and optimization
problems with constraints. To solve optimization problems using ANN, one must first select an
appropriate neural network model, and then map the cost functions and the constraints of a the

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

24

target problem into an energy function which represents a state function of the selected model. The
mapping must be accomplished in such a way that while the energy function has reached a stable
state (i.e. local minimum or as a global minimum), the corresponding cost functions and violations
of the constraints are minimized.

However, for ES where resources are limited, the application of ANN is still questionable.
Because of the particularity of ES, any ANN-based solution should attentively select the

appropriate number of neurons, layers and connections between them, and conceive the learning
algorithm as simple as possible (Feng & al., 2005). Traditionally, the online scheduling problem can
be modeled through ANN as follows:

- In the case of mono-processor architecture, Neurons nij are organized in a matrix form, with the
size NT x NC, where line i is the task Ti and the column j corresponds to schedule time unit j.
The number of time units NC is the least common multiple of all the task periods and NT is the
number of tasks.

- A neuron nij is considered active when the task Ti is being executed, during the corresponding time
unit j.

- One line of neurons is added to model the possible inactivity of the processor during the schedule
times. These neurons are called slack neurons.

- In the case of a homogeneous Multiprocessor architecture, several matrices arranged in layers are
required to model the different execution resources.

- New slack neurons are then necessary to manage the exclusive execution of each task on resources.
So for each couple (task Ti, resource j), Ci,j new slack neurons must be added.

Slack neurons are added to ensure the network convergence when applying a k-out-of-N rule
on each vertical line of neurons. k-out-of-N rule allows the construction of N neurons for which the
evolution leads to a stable state with exactly k active neurons among N.

An example of network with p resource layers is shown in Figure 12. Grey circles represent slack
neurons (Chillet et al., 2007).

However, this technique has two major drawbacks. The first is the important number of necessary
slack neurons needed to model the problem. The second problem is the presence of several local
minima when several rules are applied to the same set of neurons. These local minima are particular
points of the energy function, which represent invalid solutions. To ensure convergence towards
valid solutions, these minima must be detected and the network needs to be re-initialized. In order

Figure 12. Classical structure used to model the ANN. Grey circles represent slack neurons

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

25

to reduce the number of required neurons and avoid re-initializations of the network, many authors
have proposed some modifications.

(Chillet et al., 2007) presented a model of ANN used for RT online scheduling on heterogeneous
on chip multiprocessors. The proposed model is an adaptation of the Hopfield model and the main
objective concerns the minimization of the neurons number to facilitate its hardware implementation.
To do so, the authors proposed new constructing rules to design smaller neural network so the number
of slack neurons is considerably reduced and independent of the period. Moreover, no re-initialization
is necessary because there is no local minimum in the energy function. The authors proposed two
modifications of the neural network structure. Firstly, a specific neuron is placed for each task and each
type of execution resource, this neuron is called inhibitor neuron. The main idea consists in creating a
mutual exclusion between the possible task instantiations on execution resources. Secondly, in order
to remove the slack neurons which model the possible inactivity of the processor (idle cycles). The
authors proposed the application of a kl-out-of-N1 classical rule on the horizontal sets of neurons and
an at-most-k2-among-N2 rule on the vertical sets of neurons.

(Rehaiem et al., 2016) presented an ANN model which is a Hopfield model for energy-aware
online RT non-preemptive scheduling with hard constraints based on the combination of DVS and
Neural Feedback Scheduling (NFS) with the priority-energy earliest-deadline-first (PEDF) algorithm.
A flexible BP (Back Propagation) learning algorithm is adopted in which only the symbol of gradient
to the error function is needed rather than the increase amplitude of gradient.

The basic idea of the NFS is to allocate available resources dynamically among multiple real-
time tasks based on feedback information about actual resource usage. The addressed optimization
problem is to minimize the total energy consumed by the set of n tasks by optimally determining their
start times, their voltages and corresponding execution speeds when scheduling them. PEDF is an
extension of the well-known earliest deadline first (EDF) algorithm. It maintains a list of all released
tasks and when tasks are released, the task with the nearest deadline is selected to be executed. A
check is performed to see if the task deadline can be met by executing it at the lower voltage (speed).
If the deadline can be met, PEDF assigns the lower voltage and the task begins execution.

4.7. fuzzy logic
Fuzzy logic is a superset of classical Boolean logic and extends it to deal with new issues such as the
partial truth and uncertainty. The basic elements of fuzzy logic are linguistic variables, fuzzy sets
and fuzzy rules. A fuzzy set is a set of pairs of elements generalizing the concept of a traditional set,
allowing its components to have a partial membership defined as a membership function. The latter
can be expressed as a curve that defines how each point in the input space is mapped to a membership
value or a degree of truth between zero and one. The most common form of a membership function
is triangular, trapezoidal and bell curves (Fuzzy logic, n.d).

Using fuzzy logic to solve any problem follows generally three steps that are fuzzification,
computing fuzzy output functions by executing all applicable inference rules in the rule base and
defuzzification. Fuzzification is the transformation of the digital inputs or the crisp set into a set
of membership values in the interval [0, 1] to corresponding fuzzy sets. The fuzzy inference rules
describe the relationships between linguistic, inaccurate and qualitative expressions of system input
and output and finally, defuzzification, which is the process that convert a fuzzy set to a crisp set.

Literature on fuzzy logic application to solve the RT scheduling problem is relatively new. (Saini,
2005; Vijayakumar & Aparna, 2010; Blej & Azizi, 2016).

For RT systems with hard constraints, the objective was primary to guarantee timing constraints
(deadline) respect however, for soft real time systems the objective is to minimize the mean response
time of the system. The idea of applying fuzzy logic in RT scheduling problem seems very important.
This is justified by the fact that ES are dealing with inaccurate and uncertain data. The latter include
for example, the arrival times of tasks, the actual execution times of tasks which are generally very
far from their execution times at the worst case, the best clock frequency of the processor which

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

26

leads to the minimal energy consumption, the right time to migrate a task to another processor, etc.
Intrinsic uncertainty in real-time systems and in particular dynamic systems increases the difficulties
of conventional scheduling algorithms to optimize performance and/or energy consumption. By
integrating fuzzy logic into the real-time scheduling problem, the scheduler’s decisions regarding
choice of the best processor clock rate, priorities, and task migration dates can be improved
considerably.

(Mehalaine & Boutekkouk, 2016) presented an energy aware fuzzy RT scheduling model for
periodic independent tasks targeting mono-processor embedded architecture. The proposed algorithm
functions on two steps. The first step uses fuzzy system to generate fuzzy priorities and the second
step uses the outputs of the first one to schedule tasks with minimum energy consumption basing on
the EDF* algorithm. Energy consumption is reduced by processor use with minimum speed without
tasks deadlines missing.

In the proposed model, the input stage comprises three variables that are Texei: the actual execution
time of the task, which is expressed in processor cycles; Ri: the arrival date of the task and Di: the
relative deadline of the task as shown in Figure 13. The three input parameters decide the highest
priority of the task from the tasks queue.

The arrival date of the task Ti: V=Ri, X = [0, 1], TV= {already arrived, near, far}.
The actual execution time of task Ti: V = Texe, X = [0, 1], TV= {large, medium, small} (relative

to worst execution time). The relative deadline of the task Ti:
V=Di, X= [0,1], TV = {very close, close, medium, far} (relative to the moment t)
The output (fuzzy priorities): V = Prio, X = [0, 1], TV = {high, medium, low}
Twenty (20) fuzzy inference rules were defined. As examples of these rules are:

R1: if (Di = very close) then the fuzzy scheduling priority is high;
R2: if (Ri = already arrived) and (Texe = large) and (Di = close) then the fuzzy scheduling priority

is high;
R3: if (Ri = close) and (Texe = large) and (Di = close) then the fuzzy scheduling priority is high;
R4: if (Ri = close) and (Texe = medium) and (Di = close) then the fuzzy scheduling priority is average;

Figure 13. Linguistics variables and corresponding output variable

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

27

4.8. Multi Agent Systems
Multi Agents Systems (MAS) are becoming mainstream for complex large scale and distributed
systems modeling and simulation. One major benefit of using MAS is their ability to model complex
interactions, and many aspects such as reactivity, proactivity, autonomy and decision making explicitly.
Furthermore, MAS offer a pool of design methodologies and associated tools and platforms helping
designers to efficiently develop MAS-based systems. MAS have been extended to cover a large class
of systems including RT and cyber physical systems.

(Jin et al., 2009) developed a software RT scheduler agent. Tasks should firstly register in the
agent. Then, after the agent agrees for a reasonable execution sequence, it synchronizes all tasks
and schedules them. The schedule module is implemented with a soft Rate Monotonic Scheduling
(RMA) algorithm. The latter can lead client task to miss its deadline when the new request cannot
be satisfied with current schedule group. However, it at least can avoid the case that new task contest
with scare resources, thus guarantee not to deteriorate the whole system performance. When multi-
access requests happened in designate intervals, the agent can figure out whether or not the current
tasks could be merged. If they can meet their time constraints, then it computes their priorities and
schedules them sequentially. Else, the tasks should be scheduled in a new group.

(Chniter et al., 2018) proposed a multi-agent adaptive architecture to handle dynamic
reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under
energy constraints. Tasks are assumed periodic, independent and non-preemptive.

The proposed architecture is supposed to optimally allocate tasks to processors while determining
for each task the execution speed, the start time, the finish time and the effective execution duration
on the target processor. A token ring topology is used to minimize the exchanges of messages among
all entities. The hardware platform is composed of identical processors where each one has a fixed
number of available scaling factors. The proposed architecture integrates a centralized scheduler
agent (ScA) and a Reconfiguration Agent (RAp).

Figure 14. The set of decisions for the proposed fuzzy model

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

28

The ScA is considered as the common decision making element for the scheduler. In this agent, the
computation is centralized to avoid any error. ScA is responsible for the management of the consumed
energy in the system, ensuring the calculation of the solution, sending statistics on the current state,
updating a non-feasible solution, and communicating the solution to each RAp.

Once a request is received from RAp, the scheduler triggers proactively the coordination module
and the solver, which is based on constraint programming and simulated annealing research techniques.
The role of the RAp consists in locally applying the addition removal-update of real-time tasks to
adapt the related device and the whole system to its environment.

However, these functional reconfiguration scenarios may not respond to the time and power
requirements and can push the system to an infeasible state. In this case, the RAp coordinates and
requests a help from the scheduler agent, which proposes the required solutions.

(Cavaresi et al., 2018) studied the deadline-missing rate occurring in general-purpose setups,
evaluated on an agent-based simulator developed on OMNET++, named MAXIM-GPRT.

The obtained results strengthen the motivations for adopting and adapting real-time scheduling
mechanisms as the local scheduler within agents.

Figure 15. Defuzzification

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

29

4.9. Evolutionary Algorithms
Evolutionary Algorithms (EA) usually begin with a population of organisms (initial solutions) and
then allow them to mutate and recombine, selecting only the fittest to survive each generation. The
well-known evolutionary algorithms are genetic algorithms (GA), genetic programming, evolution
strategies (ES), evolution programming and differential evolution (DE). Genetic algorithms (GA)
are evolutionary algorithms which generate near optimal solution of a problem by a guided random
search method where elements (i.e. individuals) in a given set of solutions (i.e. population) are
randomly combined and modified until some termination condition is achieved. The population evolves
iteratively in order to improve a given fitness function of its individuals. GA reflect the “survival of
the fittest” competition mechanism. In fact, many studies have showed the efficiency of GA-based
scheduling compared to other ones. (Monnier et al., 1998 ; Zomaya et al., 1999 ; Boutekkouk &
Bounabi, 2014 ; Samal et al., 2014 ; Pradhan et al., 2015 ; Zhiyu & Li, 2016 ; Kaur & Singh, 2019).

However, the efficiency of GA for RT scenarios has been questionable since the search time for
good solutions using GA is relatively long and this can lead to tasks deadlines missing. In addition, it
is well known that GA are very sensitive to many input parameters and if these parameters are not well
chosen and controlled, GA can itself diverge from optimal or near optimal solutions. In their former
applications, GA were used to minimize the total execution time (makespan) in the multiprocessor
scheduling problem under strict hypothesis. In the real time context, several works have tried to apply
GA to primarily minimize the response time mean and the number of tasks missing their deadlines.
Other works have applied GA to optimize multiple objectives (multi-objective optimization) including
time, energy consumption and reliability. Existing works differ in solution or chromosome coding (i.e.
binary versus real coding), the population size, the method of selection, the crossover (one point, two
points, etc.…), the mutation, the reparation mechanism, the halt criterion, the adopted multi-objective
optimization technique (weighted sum versus based-Pareto, etc.).

(Dahal et al., 2008) proposed to use GA incorporating traditional scheduling heuristics to generate
a feasible schedule. The scheduling algorithm considered, aims in meeting deadlines and achieving
high utilization of processors. The architecture is assumed consisting of identical processors connected
through a shared medium and the tasks are aperiodic, independent and non-preemptive. Each task is
characterized by its arrival time, ready time, worst-case computation time and its relative deadline.
The algorithm considers a set of tasks from the sorted list to generate an initial population. In the
initial population, each chromosome is generated by assigning each task in the task set to a randomly
selected processor and the pair (task, processor) is inserted in a randomly selected unoccupied
locus of the chromosome. GA operators are then applied to the population of chromosomes until a
maximum number of iterations have been completed. When applying GA operators to the population,
reproduction is applied first followed by crossover, partial-gene mutation, sublist-based mutation and
then order-based mutation. In each iteration, the algorithm sorts the tasks in the chromosomes based
on their deadlines, evaluates and sorts the chromosomes based on their fitness value. The tasks that
are found infeasible (exceed their deadline) are removed from the chromosomes so that they are not
reconsidered for scheduling.

(Huang et al., 2011) tackled the problem of analysis and optimization of fault-tolerant task
scheduling for multiprocessor embedded systems. A Binary Tree Analysis (BTA) is proposed to
compute the system-level reliability in the presence of software/hardware redundancy. The BTA is
then integrated into a multi-objective evolutionary algorithm (MOEA) via a two-step encoding to
perform reliability-aware design optimization. The optimization results contain the mapping of tasks
to processing elements, the exact task and message schedule and the fault-tolerance policy assignment.
In addition, the authors proposed a virtual mapping technique to take both permanent and transient
faults into account. The EA is performed in two main steps: production of new solutions by varying
existing solutions and selection of good solutions based on their fitness (figure 16). Using MOEA,
the schedule is encoded as a chromosome. Nevertheless, a direct encoding of a schedule requires a
very large chromosome, which affects the optimization efficiency. Therefore, instead of encoding the

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

30

entire schedule, the algorithm place only partial information, namely the mapping and fault-tolerance
policy, into the chromosome. A scheduler is embedded to transform the chromosome to an optimized
schedule and the resulting schedule is then utilized for fitness evaluation (i.e. reliability analysis).

(Boutekkouk & Bounabi, 2014) presented a multi-objective genetic algorithm to optimize the
performance of a time-driven real-time distributed embedded system with mixed constraints and a
shared bus based on the DVS technique. The three objectives to minimize are the energy consumption,
the average response time and the number of tasks missing their deadlines.

4.10. Swarm Intelligence
Swarm Intelligence (SI) can be defined as the collective behavior of decentralized and self-organized
swarms. Bird flocks, fish schools and the colony of social insects such as ants and bees are some
well-known examples of SI. The more attractive feature of SI is the fact that each individual agent
has a simple cognitive capacity but the cooperation of all agents lead to some complex emerging
behavior as self-organization. The individual agents of these swarms behave without supervision and
each of these agents has a stochastic behavior. The intelligence of the swarm lies in the networks of
interactions among these simple agents and between agents and the environment. In the context of

Figure 16. Work flow of EA-based Optimization

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

31

RT scheduling for ES, numerous works have been investigated the idea of adopting SI for scheduling
performances optimization especially ant colony, PSO and bees colony optimization meta-heuristics.

4.10.1 Ant Colony Optimization
Ant Colony Optimization (ACO) is relatively a recent technique, based on a probabilistic decision
process, originally introduced to solve the Traveling Salesman Problem. ACO is inspired from the
cooperative behavior of real ants for nourishment foraging by which ants start from their nest going
in random directions, depositing pheromones. As time goes by, the shortest path to the food will
be concentrated by pheromones, encouraging the other ants to follow this path instead of longer
tracks. The ACO heuristic seems appropriate for problems in which the solution can be found via
subsequent decisions. In fact, the amount of pheromone models the probability, for each decision
point or admissible choice. All the decisions are initialized with this probability. Then, the process
is iteratively re-started to construct different solutions (each ant constructs a solution). Typically, the
probability is generated according to the following formula (Ant colony optimization algorithms, n.d):

p y
y n y

l nx
x x

x x

,
[,] * [,]

[,] * [,]
=

∈

τ

τ

α β

α βΣ Ω 1 1

Where x is the current point (state) in the decision process, and y is the candidate destination, ηx,y
models the desirability of state transition from x to y (typically equals to the inverse of the distance
between x and y). τx,y is the amount of pheromone deposited for transition from x {\displaystyle x}
to {\displaystyle y}y.

α is a parameter to control the influence of τx,y while β is a parameter to control the influence of
ηx,y. τx,l and ηx,l represent attractiveness and the track level for the other possible state transitions. Ωx
contains all the choices in the current point. At the end of each iteration, the results are ranked and the
pheromones updated through different policies. In general, the pheromones are updated as follows:

τ τ
x y x

p y
,
() * ,= = + ∈1

Where ρ is is the pheromone evaporation coefficient. є is a term usually proportional to the
quality of the solution to maintain consistency among different iterations. In this way, only the best
choices are reinforced and the others are penalized through evaporation.

Regarding the application of ACO to optimize RT scheduling, many authors have believed that
ACO seem very appropriate to optimize scheduling of tasks in soft real-time systems since these
algorithms provide inherent parallelism and robustness. In addition, ACO are adaptive and can easily
be tuned to any domain-specific problem.

(Ferrandi et al., 2010) proposed an ACO heuristic that, given a heterogeneous multiprocessors
architecture and an application modeled as an acyclic tasks graph, executes both scheduling and
mapping to optimize the overall execution time of the application (makespan). The heuristic is
compared with several other heuristics like simulated annealing, taboo search and genetic algorithms,
on the performance to reach the optimum value and on the potential to explore the design space. The
authors stated that the approach obtains better results than other heuristics by at least 16% in average,
despite an overhead in execution time.

(Umrani et al., 2013) presented an ACO based approach for generating a feasible RT schedule
that ensure load balancing across the processors and deadlines respect for all tasks. The processors
are assumed heterogeneous. The algorithm pseudo-code is shown in figure 17.

The obtained results of simulation showed that the proposed ACO algorithm performs better
than the FCFS (First Come First Served) algorithm with respect to the wait time.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

32

4.10.2 Bee Colony Optimization
Bee Colony Optimization (BCO) (Bolaji et al., 2013) is a combinatorial optimization metaheuristic
inspired by the behavior of honeybees in the nature. In a honeybee colony, forager bees examine the
environment for flower paths and if they find a good source of food, they share it with other bees.
As soon as, the forager bees come back to the hive, they share the discovered information about food
sources by a special movement named waggle dance. The latter brings meaningful information like
direction, distance, quantity and quality of the food source and are shared with respect to other bees.
The general Artificial BCO algorithm is presented as follows (Karaboga et al., 2012):

Initialization Phase
Repeat
Employed Bees Phase
Onlooker Bees Phase
Scout Bees Phase
Memorize the best solution achieved so far
Until (Cycle=Maximum Cycle Number or a Maximum CPU time)
In the initialization phase, the population of food sources is initialized by artificial scout bees

and control parameters are set. Typically, ABC consists of three control parameters that are the
population size (i.e. the number of food sources), the maximum cycle number (the maximum number
of generations) and limit which is used to determine the number of allowable generations for which
each non improved food source is to be abandoned. In the employed bees phase, each employee bee
is assigned to its food source and in turn, seeks for new food sources having more nectar within the
neighborhood of the food source in its memory. After producing the new food source, its fitness is
evaluated and a greedy selection is applied between it and its parent. After that, employed bees share
their food source information with onlooker bees waiting in the hive by dancing on the dancing area. In
the onlooker bees phase, artificial onlooker bees probabilistically choose their food sources depending
on the information provided by the employed bees. For this purpose, a fitness based selection technique
can be used, such as the roulette wheel selection method. After a food source for an onlooker bee is
probabilistically chosen, a neighborhood source is determined, and its fitness value is evaluated. As in

Figure 17 . Pseudo-code for ACO algorithm for Multiprocessor RT scheduling problem

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

33

the employed bees phase, a greedy selection is applied between two sources. In the scout bees phase,
employed bees whose solutions cannot be upgraded through the limit parameter become scouts and
their solutions are abandoned. Then, the scouts start to search for new solutions, randomly. Hence,
those poor sources (i.e. initially poor or have been made poor by exploitation) are abandoned and
negative feedback behavior arises to balance the positive feedback. These three steps are repeated
until a termination criterion is satisfied (i.e. a maximum cycle number or a maximum CPU time).

According to literature, only few works have been interested in applying BCO to optimize RT
scheduling. In fact, the BCO was used as a local search method in a global search meta-heuristic or
combined with another optimization heuristic.

(Kazemi et al., 2016) proposed to hybrid between BCO and simulated annealing to optimize RT
scheduling of non-preemptive tasks with soft constraints on heterogeneous multiprocessor platform.
The proposed algorithm tries to minimize five parameters that are the total tardiness of tasks, the
total number of utilized processors, the total completion time, the total waiting time of tasks, and the
total waiting time of processors. The impetus behind the combination between ABC and simulated
annealing is to avoid trapping in local minima points and improve the convergence speed of both
BCO and SA. The proposed multi-objective optimization uses the weighted sum method. Simulation
results demonstrated the efficiency of the proposed methodology as compared with the existing
scheduling algorithms.

4.10.3 PSO
PSO algorithm is inspired by a social behavior of a group of migrant birds. It imitates the communication
of the real birds when they are flying together. Each bird moves towards a certain direction; when in
communication, it determine the best position. Therefore, each bird depends on the current position

Figure 18. Pseudo-code for PSO algorithm

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

34

at a particular speed towards the best birds. Then, each bird forms its new position and repeats the
process until the bird reaches the desired destination (Particle swarm optimization, n.d).

In the PSO algorithm, each solution is a group of birds and each bird is said to be a particle. All
particles have a fitness value which is determined by the function to be optimized and each particle
has a speed which determines its flight direction and distance and then the particle searches the
optimal solution in the solutions space with the current optimal particle.

The PSO algorithm involves the interaction and intelligence in the swarm to learn from their own
experience (local search) and from the surrounding particles experience (global search).

The typical procedure of PSO is as follows:
(Zhang et al., 2014) proposed a PSO-based algorithm to solve energy-aware RT scheduling

problem on heterogeneous multiprocessors using the DVFS technique. RT tasks are assumed periodic,
independent and non-preemptive. Experimental results showed that the PSO-based energy-aware
metaheuristic uses 40%–50% less energy than the GA-based and SFLA (Shuffled Frog-Leaping
Algorithm)-based algorithms and spends 10% less time than the SFLA-based algorithm in finding
the solutions. Besides, it can also find 19% more feasible solutions than the SFLA-based algorithm.

(Awadallah, 2016) addressed the optimization problem of energy-aware RT scheduling on
heterogeneous multiprocessor platforms using the DVFS technique. Tasks are supposed periodic,
dependent and preemptive. A hybrid approach of PSO variant and Min-Min algorithm is proposed
to minimize the overall energy consumption, while respecting tasks deadlines. The hybrid approach
proposed in this paper modifies the initialization step in the PSO procedure by assigning priorities
for each task and then incorporating a Min-Min solution in the randomly generated population. This
approach gives the PSO algorithm a push to start from a good solution and then goes on trying to
optimize the solution resulting in the Min-Min solution. Authors stated that the proposed algorithm
significantly outperforms related approaches in terms of the number of executed iterations and energy
saving.

dISCUSSIoN

Applying AI to resolve the problem of RT scheduling for ES has gained more attention from
researchers. The impetus behind this is because the RT scheduling problem for modern ES is a hard
multi-objective problem under a variety of constraints and conventional methods have proved to be
relatively unsuccessful to find high quality solutions in a reasonable search time.

It is noted that modern ES are working in a dynamic environment with only a partial or imprecise
knowledge. In addition, modern ES are becoming very complex in terms of functionality, data and
communication. For these reasons, researchers over the past decade have investigated the applicability
of AI methods to the RT scheduling problem for ES.

Some important remarks can be appointed out:

1. Most of existing works target only one class of RT scheduling algorithms (i.e. periodic tasks,
hard timing constraints, non-preemptive, etc.)

2. Most of existing works target only one or two objectives (i.e. minimizing the response time and/
or energy consumption).

3. Most of existing works make very restricted, sometimes unrealistic assumptions. For instance, a
task is subject to, at most, one fault occurrence, the processor can adjust its speed in a continuous
range; the number of cores is always greater than the number of tasks, etc.

4. Most of energy-aware RT scheduling works reduce dynamic energy but either neglect static
energy or use very abstract and simple static energy models.

5. Most of existing works targeting reliability enhancement consider only transient faults for
processors and underestimate some other important faults such as communication and memory
faults.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

35

6. Lack of a unified framework for validation and approving of the proposed approaches and
algorithms on standard benchmarks.

Undoubtedly, each surveyed AI method has a set of advantages and a set of drawbacks.
The big challenge remains in choosing the most appropriate AI method (s). In practice, authors

favor the combination of two or more methods in order to improve the quality of results.
CP seems a powerful mathematical tool sine it can model constraints explicitly and enables

the integration of sophisticated search techniques in order to improve the search time. However, CP
cannot specify explicitly all things related to RT scheduling for modern ES and weaker for continuous
variables (for example in the case of continuous voltages values for a processor). Furthermore, most
CP tools can fail to find good solutions when constraints contain a big number of variables and lack
of user-feedback and interactivity.

The application of Game theory to resolve the RT scheduling problem for ES is relatively a
recent tendency and needs more studies especially when the number of players increases but the most
important question is related to considering GT as an optimization technique: GT provides a general
rule of logic for wining, but not for the optimization strategy.

The primary use of CA is to simulate complex systems and to conclude some emerging behaviors
for non-linear systems. Furthermore, with CA it seems very hard to define in some local rules all the
necessary constraints for RT, energy and reliability aspects.

In the context of RT scheduling, MAS can bring a big benefit in particular to model complex
interactions in large scale distributed embedded systems including cooperation, negotiation, etc. MAS
offer also a good opportunity to model high-level aspects as autonomy, self-organization, planning,
etc. however, and despite the academic maturity of MAS, their adoption in the ES industry is still
unpopular.

AIS are still a nonstandard method and its application to RT scheduling has not well established
yet. Machine learning and notably reinforcement learning and ANN are so important.

However, the major issue with ANN is the fact there is no perfect theory as a guide in the aspect
of network structure development and design, so network parameters are adjusted just only on the
basis of former researchers designing experience and experiment analysis.

Furthermore, we think that the big issue with machine learning is the huge amount of required
resources in terms of memory in order to implement it in embedded devices.

EA and swarm intelligence meta-heuristics are attracting more attention from researchers to
solve the multiprocessor scheduling optimization problem, but their validation in the context of RT
scheduling for ES is still debatable. Table 1 recapitulates the key strengths and pitfalls of the above
presented methods.

In order to alleviate some of the drawbacks of the above-mentioned AI methods with regard to
the RT scheduling problem for ES, researchers have resorted to some well-known solutions inspired
from other disciplines. Among these solutions, we can mention:

1. Enhance the search time for good solutions by parallelization of GA and other meta-heuristics
and apply some relatively new styles of computing such as quantum computing.

Quantum computing (Quantum computing, n.d) is a newly emerging interdisciplinary science of
information science and quantum science. In quantum computing, the smallest unit of information
storage is the quantum bit (qubit). A qubit can be in the state 1, in the state 0 or in a superposition of
both. The state of a qubit can be represented as: /ψ> = α|0 > + β|1 > where |0 > and |1 > represent the
values of classical bits 0 and 1 respectively, α and β are complex numbers satisfying |α|2+|β|2 =1. |α|2 is
the probability where a qubit is in state 0 and |β|2 represents the probability where a qubit is in state 1.
A quantum register of m qubits can represent 2m values simultaneously. However, when the ‘measure’
is taken, the superposition is destroyed and only one of the values becomes available for use. QIGAs

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

36

(Quantum Inspired Genetic Algorithms) are a combination of GA and quantum computing. They
are mainly based on qubits and states superposition of quantum mechanics. A quantum chromosome
is simply a string of m qubits that forms a quantum register. Two main operations characterizing
QIGA: interference and qubit rotation gates strategy. Interference allows modifying the amplitudes
of individuals in order to improve performance. It mainly consists of moving the state of each qubit
in the sense of the value of the best solution. This is useful for intensifying the search around the
best solution. The rotation of individual’s amplitudes is performed by quantum gates. Quantum gates

Table 1. Key strengths and pitfalls of AI-based methods used in RT scheduling problem for embedded systems

Method Key strengths Key pitfalls

Constraint
Programming

-constraints are modeled explicitly.
-enables the integration of sophisticated
search techniques.

-weak for continuous variables.
-can fail to find good solutions when constraints
contain a big number of variables.
-lack of user-feedback and interactivity.

Game theory -provides a systematic quantitative
approach for deciding the best strategy that
will result in maximum gain or minimum
loss in competitive situations.

-questionable when the number of players increases.
-provides a general rule of logic for wining, but not
for the optimization strategy.

Cellular Automata -simulate complex systems to conclude
some emerging behaviors

-it seems very hard to define in some local rules
all the necessary constraints for RT, energy and
reliability aspects.

Artificial immune
systems

-suitable for adaptive RT scheduling
modeling.

-a nonstandard method and its application to RT
scheduling has not well established yet.
-may lead to poor performance.

Artificial Neural
networks

-more suitable for complex and intelligent
embedded systems.
-ability to work with incomplete
knowledge.

-there is no perfect theory as a guide in the aspect
of network structure development and design, so
network parameters are adjusted just only on the
basis of former researchers designing experience and
experiment analysis.
-huge amount of required resources in terms of
memory in order to implement it in embedded
devices.

Reinforcement
learning

-dynamic learning capacity. -huge amount of required resources in terms of
memory in order to implement it in embedded
devices.

Multi-Agents
Systems

-model complex interactions in large scale
distributed embedded systems
-offer a good opportunity to model
high-level aspects as autonomy, self-
organization, planning, etc.
-Availability of simulation platforms.

-their adoption in the ES industry is still unpopular.
-lack of agent oriented programming languages
especially for embedded systems.

Fuzzy logic -suitable to model uncertainty. -can lead to a considerable overhead in performance.
-requires much experience to select the most
appropriate membership function and inference
rules.

Evolutionary
Algorithms

-Well suitable for nonlinear and multi-
modal embedded systems.

-poor performance if the parameters are not well
controlled.
-can diverge from optimums.

Swarm
intelligence

-Well suitable to model adaptive embedded
systems.
-Simplicity and ease of implementation.

-requires many parameters.
-can lead to premature convergence.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

37

can also be designed in accordance with the present problem. The population Q(t) is updated with a
quantum gates rotation of qubits constituting the individuals.

For instance, the work of (Boutekkouk, 2019b) was interested in RT scheduling optimization
with periodic/aperiodic dependent tasks and hard/soft constraints targeting multicores architecture
using traditional GA and QIGA. Two strategies called SQIGA (Static Quantum Inspired Genetic
Algorithm) based on static preemptive scheduling and DQIGA (Dynamic Quantum Inspired Genetic
Algorithm) based on dynamic preemptive scheduling were developed to minimize tasks response

Figure 19. Structure of quantum inspired genetic algorithm

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

38

times mean and the number of tasks missing their deadlines under the idea of balancing between
processors usage ratios.

Note that the genetic diversity in QIGA is mainly caused by qubit representation so it is not
necessary to use genetic operators. Thus, the big evident advantage of QIGA is the reduction in
population size and the search time to find optimal solution with comparison to conventional GA
(Konar et al., 2018).

2. Deep learning

Deep learning is a subset of machine learning that has networks capable of learning unsupervised
from data that is unstructured or unlabeled (Deep Learning Definition, n.d). Deep learning mimics
the multilayered human cognition system. Deep-learning architectures comprise of three major
layers: the input layer, hidden layers, and the output layer. The number of hidden layers defines
the depth of the architecture. The input layer takes the input from the environment or the user and
consequently the result of the input layer becomes the input of the first hidden layer. Each hidden
layer adds an abstraction to the features and these features then become the input to the next higher
layer and this process continues. The output of the final hidden layer serves as the input to the last
layer which is an output layer. This output layer provides the result based upon the calculations in
the lower layers. Deep learning is generally used where the dataset is very large. (Zhang et al., 2019)
proposed an energy-efficient scheduling algorithm (QL-HDS) for periodic tasks based on the deep
Q-learning model. Specially, a deep Q-learning model is designed to learn the Q-values of three
DVFS technology techniques for different system sates by combining a stacked auto-encoder (SAE)
which is a typical deep learning model and a Q-learning model. Furthermore, a training strategy is
devised to learn the parameters of the deep Q-learning model based on the experience replay scheme.
Finally, the performance of the proposed scheme is evaluated by comparison with QL-HDS on
different simulation task sets. Results demonstrated that the proposed algorithm could save average
4:2% energy than QL-HDS.

3. Using hybrid methods

In order to get best results, the authors have resorted to combine between a diversity of methods
including for instance ANN with GA, ANN with fuzzy logic; GA combined with a swarm intelligence
based meta-heuristic or other local search technique, etc.

For instance, (Kashani & Jamei, 2011) used BCO as a local search method in a memetic algorithm
to optimize the makespan of the traditional tasks scheduling problem in distributed systems. (Elhossini
et al., 2013) combines between a GA, PSO and ANN to generate and evaluate the performance and
power consumption of a static scheduler for DSP-based ES. (Mahmood et al., 2017) formulated the
RT scheduling for DVS-enabled multiprocessor ES as a combinatorial optimization problem using
genetic algorithm hybridized with the stochastic evolution algorithm to allocate and schedule real-
time tasks with precedence constraints.

The simulation results show that the proposed algorithm outperforms other algorithms such as
GA, PSO, ACO and cuckoo search in terms of solution quality.

In a real-time context, AI activities is known to be a bottleneck with regard to performance
so in order to solve this dilemma, we can for instance parallelize them or to implement them as
high performance hardware components with multicores (e.g. DSPs) or reconfigurable computing
capabilities (FPGA). For instance, Fraunhofer IMS has developed AIfES (Artificial Intelligence
for Embedded Systems) which is a platform-independent and constantly growing machine learning
library in the programming language C, which implies a fully configurable feedforward artificial

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

39

neural network (ANN) (Artificial-Intelligence-for-Embedded-Systems, n.d). The implementation of
rule-based AI systems in RT embedded systems is also possible (Bouzayen et al., 2017).

5. CoNClUSIoN ANd fUTURE woRK

In this paper, the most relevant taxonomies and AI methods used in the RT scheduling problem for
ES were overviewed. RT scheduling is considered as a hard multi-objective optimization problem
under a variety of constraints where the necessity to advise new methods that can deal with this
problem efficiently. These new methods are inspired by AI domain and include mainly Constraint
Programming, Game theory, Machine Learning, fuzzy logic, Artificial Immune Systems, Cellular
Automata, Evolutionary Algorithms, Multi Agent Systems and Swarm Intelligence. For each method,
the underlying principle and some of the most pertinent works were presented while explaining
the idea of each work. However, the validation of such methods is still under research and more
experimentations are still required. The survey is ended by a discussion putting the light on some
interesting current and future directions including EA and swarm intelligence parallelization,
leveraging quantum computing to reduce the search time, use of machine learning and especially
the deep and reinforcement learning to deal with big, incomplete and complex data interconnections
and the combination between AI methods to get better results. Noting that the implementation of AI
notably the EA and deep learning into RT embedded devices is becoming possible with the emerging
of new embedded hardware technologies such as the multicore, high performance DSP, the FPGA
and the quantum architectures. AI-based optimization is still an open and fresh topic requiring more
investigation and an effective collaboration between academy and industry. AI may additionally
pose unprecedented challenges (i.e. AI security) due to its ever-growing complexity and the Internet
connection, which make AI more vulnerable to threats. It is speculated that future trends will converge
towards boosting existing AI methods by adding securing and safety mechanisms while leveraging
the progress in hardware technology and high performance computing.

As middle-term perspectives, it is planned to study the different mechanisms used to secure AI
methods and estimate their overhead in terms of time and energy consumption in the context of RT
scheduling.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

40

REfERENCES

Abdeyazdan, M., Parsa, S., & Rahmani, A. M. (2013). Task graph pre-scheduling, using Nash equilibrium in
game theory. The Journal of Supercomputing, 64(1), 177–203. doi:10.1007/s11227-012-0845-z

Agrawal, P., & Rao, S. (2012). Energy-Aware Scheduling of Distributed Systems Using Cellular automata. 6th
Annual IEEE International Systems Conference (IEEE SysCon 2012).

Ahmad, I., & Ranka, S. (2008). Using Game Theory for Scheduling Tasks on Multi-Core Processors for
Simultaneous Optimization of Performance and Energy. IEEE International Symposium on Parallel and
Distributed Processing.

Ahmeda, M., Fisher, N., Wang, S., & Hettiarachchi, P. (2011). Minimizing peak temperature in embedded real-
time systems via thermal-aware periodic resources. Sustainable Computing: Informatics and Systems, 1(3),
226–240. doi:10.1016/j.suscom.2011.05.006

Ant colony optimization algorithms. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Ant_colony_optimization_
algorithms

Artificial Immune Systems. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Artificial_immune_system

Artificial Intelligence for Embedded Systems. (n.d.). https://www.ims.fraunhofer.de/en/Business_Units_and_
Core_Competencies/Electronic-Assistance-Systems/Technologies/Artificial-Intelligence-for-Embedded-Systems-
AIfES.html

Awadallah, M. H. A. (2016). Hybrid Scheduling Scheme for Real Time Systems. International Journal of
Computers and Technology, 15(6), 6838–6849. doi:10.24297/ijct.v15i6.1584

Bambagini, M. (2014). Energy Saving in Real-Time Embedded Systems (PhD thesis). Scuola Superiore, Sant’Anna,
di Studi Universitari, e di perfezionamento.

Bambagini, M., Marinouni, M., Aydin, H., & Buttazzo, G. (2016). Energy-Aware Scheduling for Real-Time
Systems: A Survey. ACM Transactions on Embedded Computing Systems, 15(1), 7:1-7:34.

Barkahoum, K., & Hamoudi, K. (2019). An Efficient Fault-Tolerant Scheduling Approach with Energy
Minimization for Hard Real-Time Embedded Systems. Cybernetics and Information Technologies, 19(4), 45–60.
doi:10.2478/cait-2019-0035

Blej, M., & Azizi, M. (2016). Task parameters managing and system accuracy in fuzzy real time scheduling.
International Journal of Engineering and Scientific Research, 5(7), 61–67.

Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2013). Artificial bee colony algorithm, its
variants and applications: A survey. Journal of Theoretical and Applied Information Technology, 47(2), 434–459.

Boutekkouk, F. (2015, April). A cellular automaton based approach for real time embedded systems scheduling
problem resolution. CSOC2015. 4th Computer Science On-line Conference. doi:10.1007/978-3-319-18476-0_2

Boutekkouk, F. (2019a). Embedded systems codesign under artificial intelligence perspective: a review.
International Journal of Ad Hoc and Ubiquitous Computing, 32(4), 257-269.

Boutekkouk, F. (2019b). Real time scheduling optimization. Journal of Information Technology Research,
12(4), 132–152.

Boutekkouk, F., & Bounabi, C. (2014). Real Time distributed embedded systems Performance optimization
using MultiObjective genetic algorithms. International Conference on Artificial Intelligence and Information
Technology CAIIT’2014.

Bouzayen, W., Gharsellaoui, H., & Khalgui, M. (2017). New Solutions for AI-Based Adaptive System Under
Real-Time and Low-Memory Constraints. PDPTA’17: The 23rd Int’l Conf on Parallel and Distributed Processing
Techniques and Applications.

Calvaresi, D., Albanese, G., Marinoni, M., Dubosson, F., Sernani, P., Dragoni, A. F., & Schumacher, M. (2018).
Timing Reliability for Local Schedulers in Multi-Agent Systems. 1st International Workshop in Real-Time
compliant Multi-Agent Systems @AAMAS 2018.

http://dx.doi.org/10.1007/s11227-012-0845-z
http://dx.doi.org/10.1016/j.suscom.2011.05.006
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
https://en.wikipedia.org/wiki/Artificial_immune_system
https://www.ims.fraunhofer.de/en/Business_Units_and_Core_Competencies/Electronic-Assistance-Systems/Technologies/Artificial-Intelligence-for-Embedded-Systems-AIfES.html
https://www.ims.fraunhofer.de/en/Business_Units_and_Core_Competencies/Electronic-Assistance-Systems/Technologies/Artificial-Intelligence-for-Embedded-Systems-AIfES.html
https://www.ims.fraunhofer.de/en/Business_Units_and_Core_Competencies/Electronic-Assistance-Systems/Technologies/Artificial-Intelligence-for-Embedded-Systems-AIfES.html
http://dx.doi.org/10.24297/ijct.v15i6.1584
http://dx.doi.org/10.2478/cait-2019-0035
http://dx.doi.org/10.1007/978-3-319-18476-0_2

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

41

Cellular Automaton. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Cellular_automaton

Chandarli, Y. (2014). Real-time Scheduling for Energy-Harvesting Embedded Systems (Thèse doctorat).
Université Paris, Est.

Chillet, D., Pillement, S., & Sentieys, O. (2007). A Neural Network Model for Real-Time Scheduling on
Heterogeneous SoC Architectures. Proceedings of International Joint Conference on Neural Networks.
doi:10.1109/IJCNN.2007.4370938

Chniter, H., Li, Y., Khalgui, M., Koubaa, A., Li, Z., & Jarray, F. (2018). Multi-agent Adaptive Architecture for
Flexible Distributed Real-time Systems. IEEE Access, 6.

Classification of embedded systems. (n.d.). https://www.watelectronics.com/classification-of-embedded-systems/

Dahal, K., Hossain, A., Varghese, B., Abraham, A., Xhafa, F., & Daradoumis, A. (2008). Scheduling in
Multiprocessor System Using Genetic Algorithms. 27th Computer Information Systems and Industrial
Management Applications CISIM ‘08.

Deep Learning Definition. (n.d.). In Investopedia. https://www.investopedia.com/terms/d/deep-learning

Ekelin, C. (2004). An Optimization Framework for Scheduling of Embedded Real-Time Systems (PhD thesis).
Chalmers University of Technology.

Elhossini, A., Areibi, S., & Dony, R. (2013). Architecture Exploration Based on GA-PSO Optimization, ANN
Modeling, and Static Scheduling. VLSI Design, 2013, 624369. doi:10.1155/2013/624369

Elmenreich, W. (2003). Intelligent Methods for Embedded Systems. In WISES 2003, the First Workshop on
Intelligent Solutions in Embedded Systems. Vienna University of Technology.

Fan, M., Han, Q., & Yang, X. (2017). Energy minimization for on-line real-time scheduling with reliability
awareness. Journal of Systems and Software, 127, 168–176. doi:10.1016/j.jss.2017.02.004

Feng, X., Tang, L., & Leung, H. (2005). A Real Time Scheduler Using Generic Neural Network for Scheduling
with Deadlines. International Conference on Neural Networks and Brain.

Ferrandi, F., Lanzi, P. L., Pilato, C., Sciuto, D., & Tumeo, A. (2010). Ant Colony Heuristic for Mapping and
Scheduling Tasks and Communications on Heterogeneous Embedded Systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 29(6).

Fuzzy logic. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Fuzzy_logic

Game Theory. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Game_theory

Ghafarian, T., Deldari, H., & Akbarzadeh, M. (2009). Multiprocessor Scheduling with Evolving Cellular
Automata Based on Ant Colony Optimization. The 14th International CSI Computer Conference (CSICC’09),
Tehran, Iran. doi:10.1109/CSICC.2009.5349618

Glaubius, R., Tidwell, T., Gill, C., & Smart, W. D. (2010). Real-Time Scheduling via Reinforcement Learning.
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence UAI2010.

Han, Q. (2015). Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems (PhD thesis). Florida
International University, FIU Digital Commons.

Hladik, P-E., Cambazard, H., Deplanche, A-M., & Jussien, N. (2005). Dynamic Constraint Programming for
Solving Hard Real-Time Allocation Problems. Journal of Network, 4.

Housseyni, W., Mosbahi, O., Khalgui, M., & Chetto, M. (2016). Real-Time Scheduling of Reconfigurable
Distributed Embedded Systems with Energy Harvesting Prediction. IEEE/ACM 20th International Symposium
on Distributed Simulation and Real Time Applications, London, UK. doi:10.1109/DS-RT.2016.30

Huang, J., Olaf Blech, J., & Raabe, A. (2011). Analysis and Optimization of Fault-Tolerant Task Scheduling on
Multiprocessor Embedded Systems. Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Taipei. doi:10.1145/2039370.2039409

https://en.wikipedia.org/wiki/Cellular_automaton
http://dx.doi.org/10.1109/IJCNN.2007.4370938
https://www.watelectronics.com/classification-of-embedded-systems/
https://www.investopedia.com/terms/d/deep-learning
http://dx.doi.org/10.1155/2013/624369
http://dx.doi.org/10.1016/j.jss.2017.02.004
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Game_theory
http://dx.doi.org/10.1109/CSICC.2009.5349618
http://dx.doi.org/10.1109/DS-RT.2016.30
http://dx.doi.org/10.1145/2039370.2039409

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

42

Jin, H., Chen, L.-Y., Chen, N.-W., & Lei, Y. (2009). Software Agent Design with Real Time Scheduling for
Embedded Systems. International Conferences on Embedded Software and Systems ICESS.2009, Hangzhou,
Zhejiang, China. doi:10.1109/ICESS.2009.55

Kandasamy, N., Hayes, J. P., & Murray, B. T. (2000). Task Scheduling Algorithms for Fault Tolerance in Real-
Time Embedded Systems. In Dependable Network Computing. Springer. doi:10.1007/978-1-4615-4549-1_18

Karaboga, D., Gorkemli, B., & Karaboga, C. O. N. (2012). A comprehensive survey: Artificial bee colony
(ABC) algorithm and applications. Artificial Intelligence Review. Advance online publication. doi:10.1007/
s10462-012-9328-0

Kashani, M. H., & Jamei, M. (2011). Utilizing Bee Colony to Solve Task Scheduling Problem in Distributed
Systems. 2011 Third International Conference on Computational Intelligence, Communication Systems and
Networks. doi:10.1109/CICSyN.2011.69

Kaur, R., & Singh, G. (2019). Design and Analysis of Multi - Heuristic Based Solution for Task Graph Scheduling
Problem. International Journal of Engineering and Advanced Technology, 8(6), 2673–2681. doi:10.35940/ijeat.
F8680.088619

Kazemi, H., Zahedi, Z. M., & Shokouhifar, M. (2016). Swarm intelligence scheduling of soft real-time tasks in
heterogeneous multiprocessor systems. Electrical & Computer Engineering: An International Journal, 5(1), 1–13.

Konar, D., Sharma, K., Sarogi, V., & Bhattacharyya, S. (2018). A Multi-Objective Quantum-Inspired Genetic
Algorithm (Mo-QIGA) for Real-Time Tasks Scheduling in Multiprocessor Environment. ICICT, 2018. Procedia
Computer Science, 131, 591–599. doi:10.1016/j.procs.2018.04.301

Kulkarni, J. (2015). The Design of Scheduling Algorithms Using Game Theoretic Ideas (PhD thesis). Department
of Computer Science in the Graduate School of Duke University.

Laalaoui, Y., & Bouguila, N. (2014). Pre-run-time scheduling in real-time systems: Current researches and
Artificial Intelligence perspectives. Expert Systems with Applications, 41(5), 2196–2210. doi:10.1016/j.
eswa.2013.09.018

Lay, N. C. (2009). Enhancing real-time embedded systems development using artificial immune systems (PhD
thesis). The University of York Computer Science.

Lee, I., Leung, J. Y. T., & Son, S. H. (2007). Handbook of Real-Time and Embedded Systems. Chapman and
Hall/CRC. doi:10.1201/9781420011746

MacCarthy, B. L., & Jou, P. (1995). A case-based expert system for scheduling problems with sequence dependent
setup times. Transactions on Information and Communications Technologies, 8.

Mahmood, A., Khan, S. A., Albalooshi, F., & Awwad, N. (2017). Energy-Aware Real-Time Task Scheduling in
Multiprocessor Systems Using a Hybrid Genetic Algorithm. Electronics, 6(40).

Markov decision process. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Markov_decision_process

Mehalaine, R., & Boutekkouk, F. (2016). Fuzzy Energy aware Real Time Scheduling targeting monoprocessor
embedded architectures. CSOC 2016: 5th Computer Science On-line Conference.

Monnier, Y., Beauvais, J.-P., & Deplanche, A.-M. (1998). A Genetic Algorithm for Scheduling Tasks in a Real-
Time Distributed System. 24th EUROMICRO Conference, Vasteras, Sweden. doi:10.1109/EURMIC.1998.708092

Moser, C., Brunelli, D., Thiele, L., & Benini, L. (2006). Real-Time Scheduling with Regenerative Energy.
Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06). doi:10.1109/ECRTS.2006.23

Mottaghia, M. H., & Zarandi, H. R. (2014). DFTS: A dynamic fault-tolerant scheduling for real-time tasks in
multicore processors. Microprocessors and Microsystems, 38(1), 88–97. doi:10.1016/j.micpro.2013.11.013

Multi-Objective Optimization. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Multi-objective_optimization

Munavalli, J. R., Vasudeva Rao, S., Srinivasan, A., & van Merode, G. G. (2020). An intelligent real-time
scheduler for out-patient clinics: A multi-agent system model. Health Informatics Journal, 26(4), 1–24.
doi:10.1177/1460458220905380 PMID:32081068

http://dx.doi.org/10.1109/ICESS.2009.55
http://dx.doi.org/10.1007/978-1-4615-4549-1_18
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1109/CICSyN.2011.69
http://dx.doi.org/10.35940/ijeat.F8680.088619
http://dx.doi.org/10.35940/ijeat.F8680.088619
http://dx.doi.org/10.1016/j.procs.2018.04.301
http://dx.doi.org/10.1016/j.eswa.2013.09.018
http://dx.doi.org/10.1016/j.eswa.2013.09.018
http://dx.doi.org/10.1201/9781420011746
https://en.wikipedia.org/wiki/Markov_decision_process
http://dx.doi.org/10.1109/EURMIC.1998.708092
http://dx.doi.org/10.1109/ECRTS.2006.23
http://dx.doi.org/10.1016/j.micpro.2013.11.013
https://en.wikipedia.org/wiki/Multi-objective_optimization
http://dx.doi.org/10.1177/1460458220905380
http://www.ncbi.nlm.nih.gov/pubmed/32081068

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

43

Musliner, D. J., Hendler, J. A., & Agrawala, A. K. (1994). The Challenges of Real-Time AI. U. Maryland Technical
Report CS-TR-3290, UMIACS-TR-94-69.

Niu, L., & Quan, G. (2006). Energy Minimization for Real-Time Systems With (m; k)-Guarantee. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 14(7), 717–729.

Particle swarm optimization. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Particle_swarm_optimization

Pradhan, S. R., Sharma, S., Konar, D., & Sharma, K. (2015). A Comparative Study on Dynamic Scheduling
of Real-Time Tasks in Multiprocessor System using Genetic Algorithms. International Journal of Computer
Applications, 120(20).

Q-learning. (n.d). In Wikipedia. https://en.wikipedia.org/wiki/Q-learning

Quantum computing. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Quantum_computing

Rabideau, G., Chien, S., & Ferguson, E. (2015). Using Automated Scheduling for Mission Analysis and a Case
Study Using the Europa Clipper Mission Concept. In iwpss2015, 9th International Workshop on Planning and
Scheduling for Space (IWPSS), Buenos Aires, Argentina.

Rehaiem, G., Gharsellaoui, H., & Ben Ahmed, S. (2016). A Neural Networks Based Approach for the Real-
Time Scheduling of Reconfigurable Embedded Systems with Minimization of Power Consumption. ICIS 2016,
Okayama, Japan.

Reinforcement learning. (n.d.). In Wikipedia. https://en.wikipedia.org/wiki/Reinforcement_learning

Saini, G. (2005). Application of Fuzzy Logic to Real-Time Scheduling. 14th IEEE-NPSS Real Time Conference,
Stockholm, Sweden. doi:10.1109/RTC.2005.1547449

Samal, A. K., Mall, R., & Tripathy, C. (2014). Fault tolerant scheduling of hard real-time tasks on multiprocessor
system using a hybrid genetic algorithm. Swarm and Evolutionary Computation, 14, 92–105. doi:10.1016/j.
swevo.2013.10.002

Sehrish, M., Shabir, A, Bong Wan K., Dong Hwan, P. & DoHyeun K. (2019). Hybrid Inference Based Scheduling
Mechanism for Efficient Real Time Task and Resource Management in Smart Cars for Safe Driving. Electronics
Journal, 8(344), 1-23.

Seredynski, F. (1998). Scheduling Tasks of a parallel program in two-Processor Systems with the use of
Cellular Automata. Journal Future Generation Computer Systems, 14(5-6), 351–364. doi:10.1016/S0167-
739X(98)00039-9

Swiecicka, A., Seredynski, F., & Zomaya, A. Y. (2006). Multiprocessor Scheduling and Rescheduling with Use
of Cellular Automata and Artificial Immune System Support. IEEE Transactions on Parallel and Distributed
Systems, 17(3), 253–262. doi:10.1109/TPDS.2006.38

Szymanek, R., Gruian, F., & Kuchcinski, K. (2000). Digital systems design using constraint logic programming.
Practical Application of Constraint Logic Programming (PACLP) Conference.

Tidwell, T. (2011). Utility-Aware Scheduling of Stochastic Real-Time Systems (PhD thesis). Washington
University in St. Louis, School of Engineering and Applied Science.

ul Islam, F.M.M. & Lin, M. (2015). Hybrid DVFS Scheduling for Real-Time Systems Based on Reinforcement
Learning. IEEE Systems Journal, 11(2), 931-940.

Umarani Srikanth, G., Uma Maheswari, V., Shanthi, A. P., & Siromoney, A. (2013). Scheduling of Real Time
Tasks Using Ant Colony Optimisation. International Journal of Soft Computing, 8(1), 50–55.

Vijayakumar, P., & Aparna, P. (2010). Fuzzy EDF Algorithm for Soft Real Time Systems International Journal
of Computer Communication and Information System (IJCCIS), 2(1).

Wu, G., Xu, Z., Xia, Q., & Ren, J. (2012). An Energy-Aware Multi-Core Scheduler based on Generalized Tit-
For-Tat Cooperative Game. Journal of Computers, 7(1), 106–115. doi:10.4304/jcp.7.1.106-115

Zhang, Q., Lin, M., Yang, L. T., Chen, Z., & Li, P. (2019). Energy-Efficient Scheduling for Real-Time Systems
Based on Deep Q-Learning Model. IEEE Transactions on Sustainable Computing, 4(1), 132–141. doi:10.1109/
TSUSC.2017.2743704

https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Reinforcement_learning
http://dx.doi.org/10.1109/RTC.2005.1547449
http://dx.doi.org/10.1016/j.swevo.2013.10.002
http://dx.doi.org/10.1016/j.swevo.2013.10.002
http://dx.doi.org/10.1016/S0167-739X(98)00039-9
http://dx.doi.org/10.1016/S0167-739X(98)00039-9
http://dx.doi.org/10.1109/TPDS.2006.38
http://dx.doi.org/10.4304/jcp.7.1.106-115
http://dx.doi.org/10.1109/TSUSC.2017.2743704
http://dx.doi.org/10.1109/TSUSC.2017.2743704

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

44

Fateh Boutekkouk is a senior lecturer in informatics, at the University of Oum El Bouaghi, Algeria. His research
interests include design of embedded and intelligent systems, networks on chip, and formal verification. He obtained
his doctorate degree from the University of Constantine in 2010.

Zhang, W., Xie, H., Cao, B., & Cheng, A. M. K. (2014). Energy-Aware Real-Time Task Scheduling for
Heterogeneous Multiprocessors with Particle Swarm Optimization Algorithm. Mathematical Problems in
Engineering, 2014, 2014. doi:10.1155/2014/287475

Zhiyu, H., & Li, L. (2016). A Study on Multi-core Task Scheduling Algorithm based on Artificial Intelligence.
International Journal of Grid and Distributed Computing, 9(12), 307–320. doi:10.14257/ijgdc.2016.9.12.27

Zhou, J., Yan, J., Wei, T., Chen, M., & Hu, X. S. (2017). Energy-Adaptive Scheduling of Imprecise Computation
Tasks for QoS Optimization in Real-Time MPSoC Systems. Design, Automation & Test in Europe Conference
& Exhibition.

Zomaya, A. Y., Ward, C., & Macey, B. (1999). Genetic Scheduling for Parallel Processor Systems: Comparative
Studies and Performance Issues. IEEE Transactions on Parallel and Distributed Systems, 10(8), 795–812.
doi:10.1109/71.790598

http://dx.doi.org/10.1155/2014/287475
http://dx.doi.org/10.14257/ijgdc.2016.9.12.27
http://dx.doi.org/10.1109/71.790598

