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ABSTRACT

During the COVID-19 pandemic, many universities have moved a large portion of their classes 
online. To better support students’ online learning activities and to best resemble the face-to-face 
setting, the technology-supported, synchronous remote learning platform was adopted in most cases. 
In this study, the authors aim to investigate factors that could influence students’ learning in this new 
environment during the COVID-19 pandemic. Specifically, a research model was developed and 
tested with 428 students. The result showed that students’ IT competence had a significant impact 
on their learning satisfaction, while social influence had a significant impact on their intention to use 
the remote learning technology in future classes. As to technology-facilitating conditions, significant 
impacts were found from it (at both institution and student levels) to learning satisfaction. They also 
found that COVID-19-related mental impacts could influence student satisfaction on and intention 
to use the remote learning technology.
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1. INTRODUCTION

The coronavirus (COVID-19) pandemic has changed our daily lives and routines dramatically (Chen 
& Roldan, 2021; Majumder & Biswas, 2021; Pileggi, 2021). To better protect ourselves and the local 
communities, most of our daily activities have been moved online whenever possible via the use of 
information and communication technologies, including education (Bawa, 2020; Benhima, 2021; 
Shastri & Chudasma, 2021; Sun et al., 2021). Since the breakout of the COVID-19 in the US, the 
course content delivery model in the education system at all levels has changed significantly (Amzalag, 
2021; Apak et al., 2021; Bawa, 2020; Carpenter et al., 2021; Dunaway & Kumi, 2021). For higher 
education, many universities have changed a significant portion of their traditional face-to-face classes 
to remote learning by leveraging online communication technologies and systems (such as Blackboard 
Collaborate Ultra, Zoom, etc.). This sudden and significant change requires faculty to devote more 
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time and effort to design (or re-design) their classes (Bawa, 2020; Carpenter et al., 2021; Tawafak 
et al., 2021). It could influence students’ learning significantly (Bawa, 2020; Tawafak et al., 2021).

In general, there are two types of e-learning, including asynchronous and synchronous e-learning 
(Hrastinski, 2008). Until recently, the more popular type of e-learning is still asynchronous e-learning 
(Hrastinski, 2008). However, with the advancement of information and telecommunication 
technologies, synchronous e-learning has gained growing popularity. In asynchronous e-learning, 
students and their instructor typically interact via the use of e-mails and discussion boards, and there 
is no requirement for all students and the instructor to be online at the same time, which enables 
increased flexibility in student learning (Hrastinski, 2008). Differently, in synchronous e-learning, 
students and their instructor will meet online during the designated class meeting time via the use of 
videoconferencing tools. Students will have a higher level of involvement and feel less isolated, because 
synchronous e-learning provides the chance for them to interact with their instructor (such as asking 
questions) and classmates (such as conducting group discussions) at real time (Hrastinski, 2008).

In this study, we aim to examine factors that could possibly influence students’ learning in 
technology-supported, synchronous remote learning environment during the COVID-19 pandemic. 
Potential factors from various perspectives were examined and a theoretical research model was 
then developed and tested. The model was tested with 428 students who took classes that adopted 
the technology-supported, synchronous remote learning instructional method during the COVID-19 
pandemic. Overall, the results showed that task-technology fit and COVID-19 mental impacts could 
significantly influence both students’ learning satisfaction and intention. In addition, students’ IT 
competence had a significant impact on their learning satisfaction, while social influence had a 
significant impact on their intention to use the remote learning technology in future classes. As to 
technology facilitating conditions, significant impacts were found from it (at both the institution and 
student levels) to learning satisfaction. We hope findings of this research could better help educators 
understand factors that could influence students’ learning in this new situation and bring some insights 
to high education under emergency situations.

The remainder of this paper is organized as follows: in Section 2 we discuss the related literature 
and provide the hypothesis development. Then, Section 3 provides details on the research method. 
Following that, data analyses and results are reported in Section 4. The paper concludes with a 
discussion of the research contributions and implications, and future research directions in Section 5.

2. RELATED LITERATURE AND HyPOTHESIS DEVELOPMENT

2.1 Technology-Supported Learning
The advancement, broad coverage, and rapid development of modern information and Internet 
technologies have been dramatically changing our lives in recent years. With their help, a lot of our 
daily activities could now be done very efficiently and effectively online, from working to entertaining, 
from selling to buying, and from information searching to knowledge sharing. This is even true as 
to higher education. Different types of learning management systems and communication tools have 
been created and adopted to support students’ learning in a remote manner, either synchronously or 
asynchronously. With their support, new types of instructional methodologies have been developed 
to better fit students’ learning needs, such as e-learning, blended learning, and flipped classrooms 
(So & Brush, 2008).

The most traditional form of technology-support learning is the e-learning (So & Brush, 2008). 
As a big change from the face-to-face learning that had always been utilized in the education system 
in the old days, e-learning has brought a significant level of flexibility in students’ learning. Without 
the time and location constrains, e-learning has opened the door of higher education to those who 
could not take classes on site (Kulkarni et al., 2013; Teo et al., 2018).
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However, over time, people started to notice some of the major drawbacks of e-learning. One of 
them is the lack of opportunity for students to physically meet and interact with their instructors and 
classmates (So & Brush, 2008). For those students who are socially active, e-learning may give them 
a feeling of coldness and separation. In addition, this learning platform seems to require a high level 
of students’ own learning esteem. In other words, it fits better to students who are highly motivated 
to learn, but not to those who are less motivated.

To overcome the issues potentially associated with e-learning and to make the best use of it 
flexibility in the meanwhile, more recently, two new technology-supported instructional methods 
have been coined, namely blended learning and flipped classrooms (Hung & Chou, 2015; Padilla-
Meléndez et al., 2013).

Blended learning is an instructional methodology that incorporates different teaching methods 
from both face-to-face instruction and e-learning, and enables students to perform both offline (i.e., 
in-class) and online activities (Padilla-Meléndez et al., 2013; So & Brush, 2008). It is believed to 
combine the advantages of both face-to-face instruction and e-learning, thus providing a better and 
more adaptive learning environment to students.

Defined as “events that traditionally happen within the classroom take place during the students’ 
own time, while work that is usually considered individual homework happens collaboratively in 
the classroom” (p. 1002) (Szafir & Mutlu, 2013), flipped classrooms emphasize learner-centric 
activities. As an example, students will need to read book chapters and related materials on their own 
schedule before class, and then perform problem-solving activities during their class meeting time. 
The instructor will no longer take the lead of the class by lecturing, but rather facilitating students’ 
in-class activities and providing insights and answers to questions (Rutherfoord & Rutherfoord, 2013; 
Szafir & Mutlu, 2013). It has been found that this instructional method could provide a better fit to 
personalized learning and accommodate various learning styles among different students (Rutherfoord 
& Rutherfoord, 2013; Szafir & Mutlu, 2013).

As of right now, the whole world is still strongly influenced by COVID-19. Considering its high 
level of contagiousness, many universities across the country have moved their classes online, with the 
support of modern information technology and learning management systems. To better assist students’ 
learning and accommodate their social interaction needs (although via online platforms) during this 
difficult time, synchronous remote learning is mostly adopted and being utilized. It provides students 
the opportunity to interact with their instructors and classmates verbally and visually in front of their 
computer screens during the designated class meeting time, with the support of videoconferencing 
and online communication tools (such as Blackboard Collaborative Ultra and Zoom). In this study, 
we aim to investigate factors that could influence students’ learning on the technology-supported 
synchronous remote learning platform during the COVID-19 pandemic.

2.2 Technology Facilitating Conditions
Facilitating conditions is defined as an individual’s belief on the existence of organizational and 
technical support of using an information system (Venkatesh & Bala, 2008; Venkatesh et al., 2003). 
It is one of the influential factors stated in the unified theory of acceptance and use of technology 
(UTAUT) (Venkatesh et al., 2003). In existing literature on technology-supported learning, facilitating 
conditions has been found to be able to significantly influence students’ learning acceptance (Nikou 
& Economides, 2017). For example, Nikou and Economides (2017) found that facilitating conditions 
had a significantly positive impact on students’ perceived ease of use in mobile learning.

As to assessing students’ online learning satisfaction during the COVID-19 pandemic, some 
recent research has been done by applying UTAUT to this new context (Chayomchai et al., 2020; 
Tiwari, 2020). For example, Tiwari (2020) found that facilitating conditions could positively influence 
students’ intention to attend online classes during the COVID-19 pandemic.

By definition, facilitating conditions could be about both the “organizational” and “technical” 
support. However, in the context of remote learning during the COVID-19 pandemic, it is most likely 



International Journal of Information and Communication Technology Education
Volume 18 • Issue 1

4

to be about the technical support which enables students to successfully take classes remotely. Thus, 
in this study, we focus on this perspective of facilitating conditions, and use the term “technology 
facilitating conditions” accordingly. In addition, to ensure students being able to successfully take 
their classes online, the technology facilitating conditions both from the institution and at students’ 
own places are essentially important. For students to conduct their learning activities effectively, 
adequate technology support from both sides is needed. Therefore, in this study, we look into these 
two types of technology facilitating conditions and include both of them in our proposed research 
model. Specifically, we hypothesize that both types of facilitating conditions can positively influence 
students’ satisfaction on technology-supported, synchronous remote learning during the COVID-19 
pandemic, and their intention to use technology-supported, synchronous remote learning in the future.

H1a: The institution’s technology facilitating conditions can positively influence students’ satisfaction 
on technology-supported, synchronous remote learning during the coronavirus (COVID-19) 
pandemic.

H1b: The institution’s technology facilitating conditions can positively influence students’ intention 
to use technology-supported, synchronous remote learning in the future.

H2a: Technology facilitating conditions at students’ own places can positively influence their 
satisfaction on technology-supported, synchronous remote learning during the coronavirus 
(COVID-19) pandemic.

H2b: Technology facilitating conditions at students’ own places can positively influence their intention 
to use technology-supported, synchronous remote learning in the future.

2.3 Task-Technology Fit
Derived from the cognitive fit theory (Vessey, 1991), task-technology fit states that information 
technology is more likely to have a positive impact on an individual’s task performance if the 
functionality of the information technology matches the requirements of the tasks that the user needs to 
perform (Goodhue & Thompson, 1995). In the context of technology-supported learning, “technology” 
refers to the information systems or techniques that are used to support students’ learning activities, 
and “tasks” refer to the learning activities that students need to conduct.

Previous literature has examined and identified the impact of task-technology fit on student 
learning. For example, Lin (2012) found that task-technology fit could significantly influence 
students’ satisfaction on and their continuance intention to use virtual learning systems. In another 
study, Lin and Wang (2012) examined task-technology fit in the context of blended learning, and 
found that it had significant impacts on both students’ perceived usefulness and acceptance on an 
online learning system that was adopted in the blended class. In a more recent study, Cheng (2019) 
investigated the role of task-technology fit in could-based e-learning continuance. The study found 
out that task-technology fit had significant impacts on students’ perceived usefulness, confirmation 
(i.e., the degree of congruence between expectation of the information technology and its actual 
performance), satisfaction, and continuance intention toward the cloud-based e-learning system. It 
also found a significant relationship from task-technology fit to perceived impact on learning. In 
addition, recent research also found a significant impact of task-technology fit on students’ satisfaction 
in the context of the adoption of digital textbooks (Ye, 2021), as well as their perceived performance 
impacts in the mobile learning environment (Bere, 2018).

In this study, we expect task-technology fit to play an important role in influencing students’ 
learning in technology-supported, synchronous remote learning environment, during the COVID-19 
pandemic. If students perceive a higher level of fit between the supporting technology/systems and 
their learning tasks, it would be more likely for them to become satisfied in learning, as well as 
become more willing to use the synchronous remote learning technology in their future classes. 
Therefore, we hypothesize:
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H3a: Task-technology fit can positively influence students’ satisfaction on technology-supported, 
synchronous remote learning during the coronavirus (COVID-19) pandemic.

H3b: Task-technology fit can positively influence students’ intention to use technology-supported, 
synchronous remote learning in the future.

2.4 IT Competence
In general, IT competence is about one’ ability in using and applying information technologies in 
problem solving. More formally, it is defined as an individual’s level of proficiency in utilizing a variety 
of information technology related tools, resources, and systems to exchange, create, disseminate, 
store, and manage information (Phan et al., 2020). In technology-supported learning, students’ IT 
competence is about their proficiency in using online course management systems and related tools 
to perform and complete their learning tasks (Oluwatobi & Yemisi, 2014; Phan et al., 2020).

When examining the impact of IT competence in student learning, previous research found that 
it could significantly influence students’ perceived ease of use, usefulness, and reliability toward the 
e-portal that was used to support their learning activities occurred online (Oluwatobi & Yemisi, 2014). 
In another more recent study, Phan et al. (2020) emphasized the importance of IT competence in 
student learning success, and stated that a high level of IT competence would help improve students’ 
cognitive ability and self-learning ability while conducting their learning tasks using online systems. 
They also developed a multi-level framework for assessing IT competence (Phan et al., 2020).

In our study, we also expect a significant impact of IT competence in student learning, especially 
considering that under the COVID-19 pandemic, almost all of their learning activities need to be 
conducted online, via the use of related information technologies and systems. Thus, we posit that 
students’ IT competence can significantly influence their satisfaction on technology-supported, 
synchronous remote learning, as well as on their intention to use the remote learning technology in 
the future.

H4a: Students’ IT competence can positively influence their satisfaction on technology-supported, 
synchronous remote learning during the coronavirus (COVID-19) pandemic.

H4b: Students’ IT competence can positively influence their intention to use technology-supported, 
synchronous remote learning in the future.

2.5 Mental Impacts
During this global COVID-19 pandemic, the general public have been under intolerable psychological 
pressure (Cao et al., 2020). Many people (students as well) have experienced noticeable stress and 
anxiety. This very unpleasant, and somewhat long-lasting COVID-19 pandemic is likely to impose 
some level of negative mental and cognitive impacts on human beings in general. It is reported 
that taking care of people’s mental health during the COVID-19 pandemic could help significantly 
improve their work-life quality (Majumder & Biswas, 2021). Therefore, in this study, we would like 
to examine how the potential mental impacts of the COVID-19 pandemic could influence students’ 
learning in remote classes.

A few recent research studies have evaluated the impact of the COVID-19 pandemic on college 
students’ psychological and mental system (Cao et al., 2020; Olmos-Gómez, 2020). For example, Cao 
et al. (2020) surveyed college students in China about their levels of anxiety during the COVID-19 
pandemic. They found that 0.9% of the respondents were experiencing severe anxiety, 2.7% with 
moderate anxiety, and 21.3% with mild anxiety. In addition, living in urban areas, having stable family 
income, and living with parents could significantly help reduce students’ level of anxiety (Cao et al., 
2020). In another study, Olmos-Gómez (2020) compared the psychological impacts of the COVID-19 
pandemic on students seeking different types of education degrees (including primary education, 
early learning, social education, and physical education and sport) in Spain. It was found that students 
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with the primary education and social education degrees were more psychologically negative, while 
those majoring in physical education and sport tended to be more positive.

In our study, we would like to examine the relationships between the COVID-19 related mental 
impacts and students’ leaning satisfaction and intention. For those who possess a stronger level of 
COVID-19 mental impacts might possibly value the technology-supported, synchronous learning 
more, and thus being more willing to use it in their future classes, compared with those who are less 
mentally influenced by COVID-19. Thus, we hypothesize:

H5a: High (low) levels of COVID-19 related mental impacts can lead to high (low) levels of students’ 
satisfaction on technology-supported, synchronous remote learning during the coronavirus 
(COVID-19) pandemic.

H5b: High (low) levels of COVID-19 related mental impacts can lead to high (low) levels of students’ 
intention to use technology-supported, synchronous remote learning in the future.

2.6 Social Influence
Social influence is defined as the degree to which an individual perceives that important others 
believe he/she should use the information technology or system (Venkatesh et al., 2003). According 
to UTAUT (Venkatesh et al., 2003), social influence is a significant determinant on users’ behavioral 
intention, which in turn influences actual usage behavior. As to the context of technology-supported 
learning, the “important others” refer to those who could influence students learning-related activities 
and decision making (such as their parents, instructors, classmates, etc.).

Previous research found that social influence could significantly influence students’ intention 
to use the e-learning system (Decman, 2015). In the context of blended learning, it was found that 
social influence had a significant impact on learning climate, which in turn significantly influenced 
students’ learning satisfaction (Chen et al., 2013). In addition, recent research on student learning 
during the COVID-19 pandemic found that social influence could significantly influence students’ 
intention to adopt online classes during the pandemic (Tiwari, 2020). In our study, we expect social 
influence to play an important role in influencing both students’ satisfaction on technology-supported, 
synchronous remote learning during the COVID-19 pandemic, and their intention to use the remote 
learning platform in the future.

H6a: Social influence can positively influence students’ satisfaction on technology-supported, 
synchronous remote learning during the coronavirus (COVID-19) pandemic.

H6b: Social influence can positively influence students’ intention to use technology-supported, 
synchronous remote learning in the future.

2.7 Learning Satisfaction and Intention
User satisfaction and intention to use are two of the most widely adopted measures on assessing the 
success of adoption of information technology and systems (Venkatesh et al., 2003).

When adopted in the context of technology-supported learning, user satisfaction is mostly referred 
to as learning satisfaction, which is defined as the extent to which the learner is pleased with using 
the supporting technology and systems to perform his/her learning-related tasks. Previous research on 
technology-supported learning has invested factors that could influence students’ learning satisfaction. 
For example, it was found that students’ perceived usefulness of the e-learning system (Johnson et 
al., 2008) as well as the ease of use associated with the system (Sun et al., 2008) could significantly 
influence their learning satisfaction. Studies on blended learning also found that perceived usefulness 
(performance expectancy) and climate associated with the learning environment could significantly 
influence students’ learning satisfaction (Chen, 2014; Wu et al., 2010). Recent research on investigating 
student learning during the COVID-19 pandemic found that information quality, system quality, 
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and service quality of the e-leaning system could significantly influence users’ learning satisfaction 
(Shahzad et al., 2021).

In the context of technology-supported learning, intention is defined as the learner’s willingness 
to use the related technology and systems (online learning systems in most cases) to conduct their 
learning tasks (Cheng, 2012). Previous research on e-leaning found that perceived usefulness, ease 
of use, and perceived enjoyment associated with the e-learning system had significant impacts on 
students’ intention to use the system in the future (Cheng, 2012). Recent studies on investigating 
students learning performance during the COVID-19 pandemic also found that perceived usefulness 
(performance expectancy) and ease of use (effort expectancy) could significantly influence their 
intention to adopt the online learning format of their classes (Chayomchai et al., 2020; Tiwari, 2020). 
It was also found that trust could positively influence students’ intention to use the online technology 
for their classes during the COVID-19 pandemic (Chayomchai et al., 2020).

When assessing the success of information systems adoption, it is theorized that user satisfaction 
has a significant impact on users’ intention to use the system in the future (DeLone & McLean, 1992, 
2003). Such an impact was found to be held in the context of technology-supported learning (Chiu 
& Tsai, 2014; Lin, 2012). For example, Lin (2012) found that student satisfaction could significantly 
influence their intention to continue using the virtual learning system that was adopted to assist their 
online learning activities. In addition, Chiu and Tsai (2014) found the significantly positive impact 
of satisfaction on students’ intention to use the web-based learning system in the clinical nursing 
setting. Consistent with these studies, in this research, we also expect such an impact to be significant 
in the context of students’ remote learning during the COVID-19 pandemic. Thus, we hypothesize:

H7: Students’ learning satisfaction can positively influence their intention to use technology-
supported, synchronous remote learning in the future.

The proposed research model with the above listed hypotheses is summarized in Figure 1.

3. RESEARCH METHOD

3.1 Research Process and Data Collection
To test the proposed research model and hypotheses, we used the survey method. After receiving 
the IRB approval, the link of the online survey questionnaire was sent to students who attended 
various classes in the college of business that adopted the synchronous remote learning instructional 
methodology. The survey was sent out around the end of the Fall 2020 semester. We believe the timing 
was appropriate for our collection since by then students already had the experience with synchronous 
remote learning for almost an entire semester (and when COVID-19 was still an issue). Extra credit 
was provided as an incentive for students’ voluntary participation. In total, 428 students completed 
the survey, with 202 being males and 226 being females. The average age of participants was 19.80. 
On average, they had been at college for 2.18 years.

3.2 Measures of Constructs in the Research Model
To measure technology facilitating conditions (at both the institution and student levels), we adopted 
the items from the original UTAUT paper (Venkatesh et al., 2003) with wording changes to fit the 
context of our study. Items used to measure the task-technology fit were adapted from (Cheng, 2019). 
To measure IT competence, we leveraged information from (Ravichandran & Lertwongsatien, 2005) 
and (Pérez-Aróstegui et al., 2015) with revisions and further development to better fit the context 
of our study.

As to measures of the COVID-19 mental impacts, to the best of our knowledge, we haven’t 
seen it being adopted as a single theoretical construct in a nomological network in existing research 
about student learning during the COVID-19 pandemic. However, recent research has been done to 
systematically assess students’ psychological responses in the e-learning environment during the 



International Journal of Information and Communication Technology Education
Volume 18 • Issue 1

8

COVID-19 pandemic (Lan et al., 2020). Leveraging the information presented in (Lan et al., 2020), 
we developed the measurement items for our construct, COVID-19 mental impacts.

In addition, measures on social influence was adopted from (Tiwari, 2020), and measures on 
learning satisfaction was adopted from (Mohammadi, 2015). To measure learning intention, we 
adapted the items from the UTAUT paper (Venkatesh et al., 2003) with wording changes to fit our 
context of study.

All constructs in the research model were measured using the 7-Likert scale. Table 1 shows the 
descriptive statistics about them. Detailed measurement items are provided in Appendix A.

4. DATA ANALySES AND RESULTS

Structural equation modeling (SEM) techniques were used to assess the research model. In particular, 
PLS (a component-based SEM) was utilized, which is a robust method for causal model assessment 
(Chin et al., 1988; Chin, 1998) and have been widely used in IS education research (Hiranrat et 
al., 2021). In this study, we used Smart PLS 2.0 (M3) beta (Ringle et al., 2005), a widely adopted 
PLS tool, for causal model analysis (Romanow et al., 2020). Findings obtained from this study are 

Figure 1. Research Model and Hypotheses
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perceptions, based on students’ ratings on the measurement items for each latent construct. In the 
following sub-sections, we present the data analysis and results for both the measurement model and 
structural model (hypothesis testing).

4.1 Measurement Model Assessment
To perform the measurement model assessment, we conducted the reliability and validity tests. The 
testing results are listed in Tables 2 and 3, respectively.

For reliability test, item loadings for all constructs were calculated. As shown in Table 2, all 
loadings passed the recommended threshold value of 0.7 (Au et al., 2008), and all loadings are 
statistically significant. The Cronbach’s alpha values for the constructs were also calculated and 
presented in the table, all of which passed the suggested threshold value of 0.7 (Hair et al., 1998; 
Nunnally, 1978).

The validity test results are presented in Table 3, including values on composite reliability, average 
variance extracted (AVE), and the square root of AVE for each construct, as well as correlations across 
different constructs. For composite reliability, all constructs passed the recommended threshold of 0.7, 
which indicates that the measurement items used for each construct had good internal consistency (Au 
et al., 2008). As to the values of AVE, all of them passed the threshold of 0.5 (which is equivalent to 
the square root of AVE being greater than 0.707) (Gefen et al., 2000). This result indicates adequate 
convergent validity for each construct. In addition, for each construct, its square root of AVE value 
(i.e., data presented in the diagonal cells in bold case in Table 3) was greater than all correlations 
between it and other constructs. This means that each construct was more closely related to its own 
measures rather than measures for other constructs, indicating adequate discriminant validity (Chin 
et al., 1988; Chin, 1998). Overall, these results together suggest the model as good validity.

4.2 Structural Model Assessment
Figure 2 shows the PLS test results of the research model.

As hypothesized, both types of technology facilitating conditions (i.e., the institution’s technology 
facilitating conditions and the technology facilitating conditions at students’ own places) could 
significantly influence students’ satisfaction on technology-supported, synchronous remote learning 
during the COVID-19 pandemic, with path coefficients of 0.113 and 0.129, respectively (denoted as S 
and I on the paths shown in Figure 2). Therefore, H1a and H2a were both supported. As to the impact 
of both types of technology facilitating conditions on students’ intention to use technology-supported, 
synchronous remote learning in the future, none of them were statistically significant. Thus, H1b 
and H2b were not supported. This shows that the level of technical support students received, either 
from the institution or at their own places, did not have significant impacts on their intention to use 

Table 1. Descriptive Statistics

Construct Mean Standard Deviation

COVID-19 Mental Impacts 4.684 1.828

Learn Intention 4.245 1.946

IT Competence 5.919 1.218

Learning Satisfaction 4.833 1.672

Social Influence 4.867 1.639

Technology Facilitating Conditions (Institution) 5.061 1.400

Technology Facilitating Conditions (Student) 5.283 1.572

Task-Technology Fit 4.819 1.704
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the remote learning technology in their future classes. Such a result may indicate that when deciding 
whether or not to take future classes via the remote learning platform (if there is a choice), technology 
facilitating conditions was not a concern by students at large. Since this study was conducted at the 
US, where the information systems and Internet technologies are considered as very advanced and 
broadly covered in general, such a result is understandable. However, in less developed countries, 
where information systems and Internet technologies are still under development, different results 
might be expected (which future research could further examine).

As to task-technology fit, it had significant impacts on both students’ satisfaction on, and intention 
to use, the technology-supported, synchronous remote learning during the COVID-19 pandemic (path 
coefficients of 0.458 and 0.345, respectively). Thus, H3a and H3b were both supported. This shows 
that when students perceived a higher level of fit between their learning tasks and the synchronous 
remote learning platform, it would be more likely for them to be satisfied in learning and be willing 
to use the remote learning technology in their future classes.

Table 2. Reliability Test Results

Construct Cronbach’s Alpha Item Loading T-statistics

COVID-19 Mental Impacts 0.823

COVIDMI1 0.876 16.837

COVIDMI2 0.930 50.362

COVIDMI3 0.937 91.01

Learn Intention 0.947

INT1 0.937 154.08

INT2 0.920 168.846

INT3 0.924 159.992

IT Competence 0.887

ITC1 0.819 53.362

ITC2 0.932 82.959

ITC3 0.887 51.836

Learning Satisfaction 0.918

SAT1 0.729 125.169

SAT2 0.819 189.711

SAT3 0.772 100.422

Social Influence 0.780

SI1 0.872 53.373

SI2 0.920 36.818

SI3 0.894 16.186

Technology Facilitating Conditions 
(Institution) 0.924

TFCI1 0.914 53.747

TFCI2 0.948 37.96

TFCI3 0.898 47.183

Technology Facilitating Conditions 
(Student) 0.799

TFCS1 0.892 27.899

TFCS2 0.859 46.462

TFCS3 0.925 25.676

Task-Technology Fit 0.721

TTF1 0.892 93.639

TTF2 0.859 169.242

TTF3 0.925 93.888
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Table 3. Internal Consistency and Validity Test Result

Construct Composite 
Reliability AVE COVIDMI INT ITC SAT SI TFCI TFCS TTF

COVIDMI 0.823 0.735 0.857

INT 0.947 0.904 -0.139 0.951

ITC 0.887 0.815 -0.142 0.358 0.903

SAT 0.918 0.859 -0.305 0.601 0.566 0.927

SI 0.780 0.691 -0.048 0.312 0.259 0.309 0.831

TFCI 0.924 0.868 -0.303 0.593 0.517 0.708 0.294 0.932

TFCS 0.799 0.712 -0.14 0.367 0.5 0.534 0.287 0.49 0.844

TTF 0.721 0.642 -0.249 0.394 0.572 0.558 0.285 0.482 0.636 0.801

Note: Diagonal elements in bold case are the square root of average variance extracted (AVE). Off-diagonal elements are 
correlations across constructs.

Figure 2. Research Model and Hypotheses
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As to students’ IT competence, it was found that it could significantly influence students’ learning 
satisfaction (path coefficient of 0.171), but not on learning intention. Therefore, H4a was supported, 
but not H4b. This result shows that when a student was more competent in using information 
technology, he/she would be more satisficed in using the synchronous remote learning technology 
to support his/her learning during the COVID-19 pandemic. However, his/her level of competence 
in using information technology didn’t seem to be able to significantly influence his/her intention to 
use the remote learning technology in future classes. This may indicate that there could be other more 
important factors to consider when students made decisions on whether or not to use the synchronous 
remote learning technology in future classes.

As to the COVID-19 specific construct that we developed and utilized in this study, which is 
COVID-19 mental impacts, the data analysis results showed that it had statistically significant impacts 
on both students’ learning satisfaction (H5a) and their intention to use the synchronous remote learning 
technology in the future (H5b). However, what we found interesting was that such an impact was 
positive on learning intention (with the path coefficient of 0.086), but negative on learning satisfaction 
(with the path coefficient of -0.091). This indicates that when a student perceived a higher level of 
depression and anxiety during the COVID-19 pandemic, he/she would be more willing to choose 
to take future classes using the remote learning technology (when there was a choice); however, he/
she was less satisfied on their current remote classes. The negative relationship between COVID-19 
mental impacts and learning satisfaction might be because that for students who perceived a high 
level of depression and anxiety during the COVID-19 pandemic, it would be more likely for them 
to hold negative feelings and emotions toward different things in general, including their learning 
in current classes. Compared with other students who were less depressed and anxious during the 
COVID-19 pandemic, they tended to form more negative attitudes and options. However, when 
making choices and decisions about how to attend future classes, those students who experienced 
a higher level of depression and anxiety would be more willing to take future classes by continuing 
using the synchronous remote learning technology. This is reasonable since they might feel classes 
that utilize the synchronous remote learning technology to be more mentally comfortable and could 
somewhat better protect their physical health at least in the near future. On the other hand, students 
who were less concerned about the COVID-19 pandemic would be less likely to choose to keep using 
the remote learning technology in future classes, since they might get bored of conducting all their 
learning activities online in the past semester (or academic year) and miss their personal interactions 
with their instructors and classmates.

For social influence, the results showed that it could significantly influence students’ intention 
to use technology-supported, synchronous remote learning in the future (with the path coefficient 
of 0.107), but not on learning satisfaction. Therefore, H6a was supported, but not H6b. This result 
indicates that if students believed that people who were important to them (and those who could 
influence their learning) thought that they’d better attend classes remotely during the COVID-19 
pandemic, they would be more willing to choose to use the remote learning technology even in their 
future classes (if there was a choice). However, the options of the influencers didn’t seem to have 
a strong impact on their levels of satisfaction on their current classes. This seems to be reasonable, 
since students who were more influenced by others would be more willing to take others’ options 
into consideration when making future decisions, but others’ options might not necessarily influence 
their perceptions on current situation.

In addition, it was found that learning satisfaction could significantly influence learning intention 
(with the path coefficient of 0.362), in support of H7. Together, the significant factors – technology 
facilitating conditions (at both the institution and student levels), task-technology fit, IT competence, 
and COVID-19 mental impacts – explained 59.8% of the variance of learning satisfaction. For learning 
intention, the significant factors – task-technology fit, COVID-19 mental impacts, social influence, 
and leaning satisfaction – explained 43.8% of its variance.
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5. DISCUSSION

This study examined students’ learning on technology-supported, asynchronous remote learning 
platform during the current COVID-19 pandemic. Several research contributions are made in this 
study. First, we developed a research model to assess factors that could possibly influence student 
learning in this new situation from various perspectives, including the technology-related perspective 
and the social and mental related perspective. As to the technology-related perspective, specific factors 
that we investigated include technology facilitating conditions, task-technology fit, and students’ IT 
competence. For the social and mental related perspective, we specifically examined COVID-19 
mental impacts and social influence. A relatively large-scale empirically study, with 428 participants, 
was conducted to test the proposed research model. The data analysis results could potentially help 
us, as educators, to better understand student learning at this special moment of time.

Another contribution is the use and development of constructs technology facilitating conditions 
and COVID-19 mental impacts. In this study, we examined technology facilitating conditions at 
two levels, including: the technology facilitating conditions supported by the institution, and that at 
students’ own places. We believe both of them could be influential on student learning in our context 
of study. However, to the best of our knowledge, little existing research has examined technology 
facilitating conditions on student learning at these two levels, and none has been seen particularly 
on assessing student learning during the COVID-19 pandemic.

In addition, we developed and included a COVID-19 specific factor, which is COVID-19 
mental impacts, in our proposed research model. This could contribute to existing research on 
assessing remote learning during the COVID-19 pandemic in several ways. First, existing research 
models developed for examining student learning during the COVID-19 pandemic mainly adopted 
and applied theories and constructs related to information systems adoption and assessment. Little 
effort has been made on factors that are specific to the COVID-19 pandemic. We hope our study 
could provide an example for future research to further investigate related factors that are specific 
to this special situation. Second, although some research has been done to assess the psychological 
and mental impacts of the COVID-19 pandemic on students, little effort has been made to include 
those impacts into a nomological network to further investigate their causal relationships to student 
learning. The current study aims to address such a gap.

Some interesting results have been found in this study, which could help educators better 
understand influential factors related to student learning during the COVID-19 pandemic, and 
potentially provide some helpful insights for educators to further improve student learning during this 
special moment of time. First, the data analysis results showed that technology facilitating conditions 
(at both the institution and student levels) had a significant impact on students’ learning satisfaction 
in their synchronous remote classes during the COVID-19 pandemic; however, it had no significant 
impact on students’ intention to use synchronous remote learning in their future classes. Similar results 
were found on IT competence; that is, it could significantly influence students’ learning satisfaction 
but not intention. These results may indicate that, in most cases, technology-related factors might be 
more influential on students’ satisfaction toward their current remote classes during the COVID-19 
pandemic, but not necessarily to be an important influential factor on students’ willingness to keep 
using the synchronous remote learning platform in the future. Therefore, to ensure a high level of 
student satisfaction in learning during this special moment, the institution needs to try its best to provide 
highly effective technology support. In the meanwhile, it may also be important for the institution and 
individual educators to emphasize to students the helpfulness and importance of maintaining a good 
level of technology related support (such as fast Internet connections, effective computer systems, 
update-to-date programs, etc.) at the students’ own places.

On the contrast, social influence was found to have a significant impact on intention, but not 
satisfaction. This may suggest that options from those who were important to, or who could affect 
a student’s learning, could highly influence the student’s decision about how he/she would like to 
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take future classes. But those people’s options might not influence his/her level of satisfaction on 
current classes. Therefore, when promoting technology-supported instructional methods to be used 
in future classes, in addition to focus on students themselves, the institution and educators may also 
need to spend effort to promote them to people who are important to the students and who could 
influence their learning.

As to task-technology fit and COVID-19 mental impacts, both of them were found to be able to 
significantly influence both student satisfaction and intention, suggesting their significant influential 
powers on student learning during the COVID-19 pandemic. Therefore, to ensure student learning 
success at large, the institution needs to put special effort to make sure the systems and tools that 
are used to support students’ synchronous learning at this special moment can highly fit students’ 
learning activities. In the meanwhile, it would also be important for the institution and educators to 
be aware of their students’ mental health conditions, and possibly provide additional help, advice, 
and services to help those in need to better cope with the pandemic.

Future research can further improve the current study in a couple of directions. First, we 
included on COVID-19 specific factor in this research. We hope more research effort could be put 
in this direction, to include more context specific factors and examine their causal relationships with 
students learning. Second, since this study was conducted in the US, where information and Internet 
technologies are considered as very advanced in general, the current results may not hold on students 
in other countries. Future research could apply the proposed model to other countries and cultures, 
and potentially perform multi-cultural comparisons.
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APPENDIX A: MEASUREMENT ITEMS

Technology Facilitating Conditions (Institution)

TFCI1: The institution provides sufficient resources (such as instructions, tutorials, and training) on 
how to use the features and functions of the remote learning technology (such as Blackboard 
Collaborate Ultra/Zoom).

FCIL2: The institution’s information technology support team is available for assistance with technical 
difficulties related to the remote learning technology (such as Blackboard Collaborate Ultra/
Zoom).

FCIL3: In case the remote learning technology (such as Blackboard Collaborate Ultra/Zoom) is 
temporarily out of service, the institution can bring it back quickly.

Technology Facilitating Conditions (Student)

FCSL1: I have sufficient technology infrastructure (such as computer hardware and software) at my 
own place to support my remote learning.

FCSL2: The speed and quality of the Internet at my own place is effective enough to support my 
remote learning.

FCSL3: When I need, I always know where and how to get the assistance with technical difficulties 
related to the remote learning technology (such as Blackboard Collaborate Ultra/Zoom).

Task-Technology Fit

TTF1: Using the remote learning technology (such as Blackboard Collaborate Ultra/Zoom) fits well 
with my learning goals.

TTF2: Using the remote learning technology (such as Blackboard Collaborate Ultra/Zoom) fits well 
with my learning needs.

TTF3: Using the remote learning technology (such as Blackboard Collaborate Ultra/Zoom) fits well 
with different aspects of my learning.

IT Competence

ITC1: In general, I am comfortable with using information technology and information systems.
ITC2: I am confident about using the remote learning technology (such as Blackboard Collaborate 

Ultra/Zoom).
ITC3: I am capable of using the remote learning technology (such as Blackboard Collaborate Ultra/

Zoom).

COVID-19 Mental Impacts

COVIDMI1: During the coronavirus (COVID-19) pandemic, I feel I am close to panic.
COVIDMI2: During the coronavirus (COVID-19) pandemic, I have found it difficult to do things.
COVIDMI3: During the coronavirus (COVID-19) pandemic, I have been unable to become enthusiastic 

about anything.

Social Influence
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SI1: People who are important to me think that I should attend remote classes during the coronavirus 
(COVID-19) pandemic.

SI2: People who affect my learning think that I should attend remote classes during the coronavirus 
(COVID-19) pandemic.

SI3: I expect to attend remote classes because people around me (such as my friends) are doing so 
during the coronavirus (COVID-19) pandemic.

Learning Satisfaction

SAT1: Overall, I am pleased with the remote learning technology (such as Blackboard Collaborate 
Ultra/Zoom).

SAT2: Overall, I am satisfied with the remote learning technology (such as Blackboard Collaborate 
Ultra/Zoom).

SAT3: Overall, the remote learning technology (such as Blackboard Collaborate Ultra/Zoom) satisfies 
my learning needs.

Learning Intention

INT1: When it is offered, I intend to use the remote learning technology (such as Blackboard 
Collaborate Ultra/Zoom) in my future classes, regardless of whether the coronavirus (COVID-19) 
is still an issue or not.

INT2: When it is offered, I am willing to use the remote learning technology (such as Blackboard 
Collaborate Ultra/Zoom) in my future classes, regardless of whether the coronavirus (COVID-19) 
is still an issue or not.

INT3: When it is offered, I would like to use the remote learning technology (such as Blackboard 
Collaborate Ultra/Zoom) in my future classes, regardless of whether the coronavirus (COVID-19) 
is still an issue or not.
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