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ABSTRACT

The internet is facing the era of knowledge interconnection Web 3.0, and its goal is to realize a 
more intelligent network that can be understood by both humans and machines. In this environment, 
various types of knowledge graphs have emerged. Because of the heterogeneity of knowledge, 
commodity knowledge makes its management more challenging. A large-scale product knowledge 
organization framework is designed, objective product classification knowledge is combined with 
subjective user perspectives in the framework, a neural network-based learning index technology is 
proposed to improve query efficiency. According to the properties of the knowledge structure and 
the characteristics of query requirements, a connection strategy is realized based on sub-variable 
combination. The experimental results show that, compared with the existing knowledge management 
system, the proposed method has a significant improvement in the retrieval efficiency of large-scale 
commodity knowledge.
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INTRODUCTION

With the continuous development of Web technology, the Internet is moving from the Web 2.0 era 
characterized by the interconnection of people to the Web 3.0 era of knowledge interconnection 
(Sheth, A., & Thirunarayan, K. 2013). Its goal is to realize the Internet that can be understood by 
both humans and machines. It makes the network more intelligent. In this context, how to knowledge 
and efficiently manage the massive data on the Web so that it can provide users with higher-quality 
information services has become a hot issue that academia and industry are concerned about. In 2012, 
Google took the lead in launching the knowledge graph, and it was used as an auxiliary knowledge 
base to enhance its search function and build a next-generation intelligent search engine. Subsequently, 
various types of knowledge graphs have been launched, such as Wikipedia-based YAGO (Suchanek, F. 
M., et al. 2008; Hoffart, J., et al. 2013; Mahdisoltan,i F., Biega, J., & Suchanek, F. M. 2015), Dbpedia 
(Auer, S. O. R., et al. 2007) and Freebase (Bollacker, K. D., et al. 2008).

At the same time, commodity-related data on the Internet is also increasing rapidly, while the 
demand for accurate acquisition of commodity information by upper-level applications/users is 
difficult to meet. The contradiction between the two has not been alleviated, and there is a situation 
that is getting worse. The main reason for this contradiction is that, on the one hand, most of the data 
carrying product information exists in an unstructured form, which severely limits their automated and 
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intelligent applications; on the other hand, these large-scale information lack efficient data management 
mechanism, it causes users to directly face fragmented and highly redundant information, which 
further exacerbates the problem of information overload. Knowledgeable and structured processing 
of massive data containing commodity information on the Web, and achieving unified and efficient 
management can not only effectively resolve the contradiction, but also provide users with more 
comprehensive and accurate information services (Kim, H. 2017; Bartalesi, V., & Meghin,i C. 2017). 
How to efficiently retrieve large-scale commodity knowledge has become an important issue. There 
are many knowledge retrieval systems that support large-scale knowledge graphs, such as SW-store 
(Abadi, D. J., et al. 2009; Abadi, D. J., Marcus, A., Madden, S., et al. 2007), RDF-3x (Neumann, 
T., & Weikum, G. 2008; Neumann, T., & Weikum, G. 2010; Neumann, T., et al., 2010), Hexastore 
(Weiss, C., Karras, P., & Bernstein, A. 2008) and gStore (Zou, L., et al. 2014; Zou, L., Mo, J., et al. 
2011; Zeng, L., & Zou, L. 2018). When storing data, the URI (Uniform Resource Identifier) text in 
the knowledge graph is converted into an ID value through a mapping dictionary, thereby reducing the 
cost of data storage and query. Knowledge retrieval systems based on graph models, such as gStore, 
can use the graph structure characteristics of the knowledge graph to process knowledge retrieval, 
and there is high query efficiency.

When processing large-scale queries, a large amount of text needs to be converted into 
corresponding ID values, which leads to frequent access to the mapping dictionary. At this time, the 
time cost of the mapping dictionary cannot be ignored. In addition, the retrieval system based on the 
graph model cannot make full use of the structural features of the product knowledge graph when 
processing product knowledge queries, resulting in low performance when querying product viewpoint 
knowledge, and it cannot meet the requirements of product knowledge retrieval performance. This 
paper focuses on the above-mentioned problems and the main contributions are as follows:

•	 A commodity knowledge graph framework that combines objective and subjective knowledge 
is proposed to realize the unified organization of objective commodity information and user 
viewpoint information.

•	 A mapping dictionary with the learning index is proposed to improve the query speed of the 
mapping dictionary (Kraska, T., et al. 2018), and the prefix tree is used to further reduce the 
retrieval time. Experiments show that this method improves the retrieval efficiency of the 
mapping dictionary.

•	 A combination strategy of commodity attribute viewpoint variables is proposed. This method is 
based on the structural characteristics of commodity knowledge graphs. Experiments prove that 
this method effectively reduces the time of commodity knowledge retrieval.

RELATED WORK

RDF is a description form of knowledge graph/semantic network/ontology database data, describing 
entities, attributes, relationships, etc., of course, it can also be understood as a file-based knowledge 
base storage method. The flexibility offered by the Resource Description Framework (RDF) has led 
it to become a very popular standard for representing data with an undefined or variable schema 
using the concept of triples. Its success has resulted in many large scale multidisciplinary datasets, 
that have prompted the development of efficient RDF processing systems. Current approaches can 
be distinguished into two groups: the first, adopting the relational model storing the triples in tables, 
and the second creating data structures that model RDF data as a graph. The strategies of the first 
group are more easily scalable since they apply optimization strategies from the relational model 
like indexing and fragmentation. However, these approaches suffer many overheads when dealing 
with complex queries (e.g. compounded SPARQL graphs involving filters) persistent in existing 
applications. Three lists construct a table with three column attributes, and insert RDF triple data 
directly into the table. Although this method is simple to implement, it contains a lot of self-join 
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operations when processing complex queries. The horizontal table regards all the attributes in the 
RDF data as the column attributes of the table, avoiding the self-join operation, but leading to a large 
number of null values. Attribute tables reduce the generation of null values ​​by clustering attributes 
(Wilkinson, K., et al. 2003), but clustering needs to be handed over to data experts. When data is 
updated, re-clustering may be required, resulting in huge table maintenance costs. Each attribute is 
split vertically to construct a two-list (Abadi, D. J., et al. 2009; Abadi, D. J., et al. 2007), store the 
subject and the object separately, RDF triples are classified according to the attributes, and stored in 
the corresponding table, with good performance. But when the attribute is a variable, all tables need 
to be traversed, resulting in a sharp drop in performance. The full permutation index is to perform the 
full permutation and combination of the elements in the RDF triples, and build the index (Neumann, 
T., & Weikum, G. 2008; Neumann, T., & Weikum, G. 2010; Neumann, T., et al., 2010; Weiss, C., 
Karras, P., & Bernstein, A. 2008), which solves the problem of low efficiency of vertical partition 
query attributes, but the storage space cost is higher. An RDF data distribution method is presented 
(Schroeder, R., et al. 2021), which overcomes the shortcomings of the current approaches in order to 
scale RDF storage both on the volume of data and query processing. A Hetero-GCD2RDF data retrieval 
approach is proposed (Velu, A., & Thangavelu, M. 2021), it focuses on two aspects (1) Extraction of 
records from satellite data and represent it as linked data namely Resource Description Framework 
(RDF) and (2) Implementation of SPARQL query engine to the resultant RDF for data retrieval.

On the other hand, graph-based systems that use more complex data structures fail to efficiently 
manage the main memory and are not scalable in computer hardware with limited resources. The 
graph model method is a data graph converted from RDF data. Unlike the relational model method, 
it can retain the original graph structure. The knowledge query will be transformed into a subgraph 
matching problem (Zou, L., et al. 2014). Graph division divides the graph into several subgraphs 
(Yan, Y., et al. 2008; Yan, Y., Wang, C., Zhou, A., et al. 2009), and a bloom filter is constructed for 
the nodes contained in each subgraph. GRIN uses the distance between nodes to divide the graph by 
clustering (Udrea, O., Pugliese, A., & Subrahmanian, V. S. 2007), and then constructs a tree index 
according to the center node and radius of each cluster. In gStore, each entity node is signed (Signature) 
and encoded, a binary-based signature graph (Signature Graph) is constructed, and a VS-tree index 
is established on this basis, the search space is reduced. A novel approach is proposed to perform 
queries (Basic Graph Patterns, Wildcards, Aggregations and Sorting) on RDF data (Khelil, A., et al. 
2021). RDF graph exploration is combined with physical fragmentation of triples. SPARQL 1.1 offers 
a type of navigational query for RDF systems, called regular path query (RPQ). A regular path query 
allows for retrieving node pairs with the paths between them satisfying regular expressions. Regular 
path queries are always difficult to be evaluated efficiently because of the possible large search space. 
There has been no scalable and practical solution. Leon+, an in-memory distributed framework, is 
presented to address the RPQ problem in the context of the knowledge graph (Guo, X. T., Gao H., 
& Zou Z. N., 2021). To reduce search space and mitigate mounting communication costs, Leon+ 
takes advantage of join-ahead pruning via a novel RDF summarization technique together with a path 
partitioning strategy. The description of resources and their relationships is an essential task on the 
web. Generally, the web users do not share the same interests and viewpoints. Each user wants that 
the web provides data and information according to their interests and specialty. The existing query 
languages, which allow querying data on the web, cannot take into consideration the viewpoint of 
the user. Introducing viewpoint is proposed in the description of the resources (Djama, O. 2021). The 
Resource Description Framework (RDF) represents a common framework to share data and describe 
resources. A View-Point Resource Description Framework (VP-RDF) is proposed as an extension of 
RDF by adding new elements. VP-RDF can be useful in intelligent systems on the web.

In general, the relational mode method destroys the original graph structure of RDF data, resulting 
in additional storage or query costs. The graph model method can effectively save the graph structure 
of RDF data and provide better query performance. However, depending on the graph structure of 
the data, the existing methods have lower performance when retrieving product knowledge.
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ORGANIZATION OF LARGE-SCALE COMMODITY KNOWLEDGE

Overall Framework Overview
The commodity knowledge graph assists users to provide knowledge-based retrieval functions. 
Therefore, the framework should be consistent with the data structure of the online shopping platform. 
Its outline structure is shown in Figure 1.

The commodity knowledge graph is divided into 5 layers in total, of which the top two layers 
are objective knowledge, and the remaining three layers are subjective knowledge. The knowledge 
contained in each layer is as follows:

•	 Commodity classification layer. Online shopping malls can manage large-scale products by 
categorizing products and constructing classification trees. Potential consumers can search for 
products in catalogue style through product classification.

•	 Commodity instance layer. This layer mainly contains product examples and objective 
information provided by online shopping platforms, such as product name, brand, price, and 
product attributes provided by the website.

•	 Product attribute layer. This layer mainly includes the attributes of commodities. The attributes 
here are not the attributes provided by the platform, but the attributes are described by the 
opinions in the user comments.

Figure 1. Commodity knowledge graph framework



International Journal of Mobile Computing and Multimedia Communications
Volume 13 • Issue 1

5

•	 Opinion layer. The opinion layer mainly contains the opinions expressed by users, including 
opinions on commodities or commodity attributes.

•	 User layer. The user layer includes the registered users of the platform, and it is the main body 
of consumption and opinions on the platform.

Commodity objective knowledge
Objective commodity knowledge is mainly objective information provided by the website, including 
commodity classification information and commodity information. First, the types are defined for 
objective knowledge, these are shown in Table 1 .

When expressing objective knowledge, the required attributes are shown in Table 2.

For example, in the Amazon shopping platform, Amazon website has an electronics (electronic 
product) product category, headphones is also a product category, a sub-category of electronics, the 
product number B0753GRNQZ belongs to the headset category, the corresponding RDF data chart 
is as follows As shown in Figure 2.

Table 1. Objective knowledge type

     Class      Corresponding entity form      Meaning

     Shop <x,rdf:type,Shop>      x is an entity of online shopping platform

     Category <x,rdf:type,Category>      x is an entity of product classification

     Product <x,rdf:type,Product>      x is an entity of the commodity instance

Table 2. Objective knowledge attributes

     Attributes      Corresponding attribute form      Meaning

     categoryOf <x,categoryOf,y>      x is a product category of y

     subCategory <x,subCategory,y>      x is the product subcategory of y

     productOf <x,productOf,y>      x is the product of y category
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User Comments Subjective Knowledge
The subjective knowledge of user reviews is mainly the opinions expressed by users on the attributes 
of commodities, that is, the commodity attribute-user opinion word pairs are extracted from the 
reviews. The subjective knowledge of user reviews is a multiple relationship involving users, products, 
and product attributes. However, RDF triples cannot directly represent multiple relationships. The 
solution to this problem is to introduce intermediary nodes, and express multiple relationships through 
intermediary nodes. Since the user’s point of view is contained in the comments written by the user, 
the user comment is used as an intermediary node, the subjective knowledge of the user comment is 
realized. Subjective knowledge representation will introduce the following types, which are defined 
in Table 3.

When expressing subjective knowledge, the required attributes are shown in Table 4.

Figure 2. Examples of commodities‘ objective knowledge

Table 3.Subjective knowledge type

     Class      Corresponding entity form      Meaning

     User < x,rdf:type,User >      x is an entity of the user

     Feature < x,rdftype,Feature >      x is an entity of commodity attributes

     Review < x,rdf:type,Review >      x is an entity of user reviews
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For example, the user A001307232 thinks that the size of the product B0753GRNQZ is good, 
and the RDF data graph is used as shown in Figure 3. The opinions expressed by users are regarded 
as sub-attributes of opinion. In the example, the user opinion good (good) can be expressed as <good, 
rdfs: subPropertyOf, opinion> through triples.

LEARNING MAPPING DICTIONARY

When processing large-scale queries at the same time, a large number of URI texts need to be converted 
into corresponding ID values through a mapping dictionary. The traditional mapping dictionary uses 
Btree, but as the scale of the mapping dictionary increases, its query efficiency gradually decreases. 
The learning mapping dictionary is combined with the learning index technology, and the machine 
learning model is used to fragment the data based on the distribution of the data, thereby improving 
query efficiency.

Learning Index
Learning index is to combine traditional index with machine learning technology, the distribution 
of data is trained to obtain a model that conforms to the data distribution, so that in the traditional 
index, the query of the data is converted into the prediction of the data location by the model, and the 
query time is also converted into the execution time of the model in machine learning. At the same 
time, with the development of high-performance computing hardware such as GPU, TPU and FPGA 

Table 4. Subjective knowledge attributes

     Attributes      Corresponding attribute form      Meaning

     write < x,write,y >      User x wrote a review y

     reviewOn < x,reviewOn,y >      Comment x is for product y

     opinion < x,opinion,y >      Comment x comment on attribute y

Figure 3. Examples of commodities’ subjective knowledge
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and its wide application in complex calculations, it is also used in the field of machine learning to 
improve the execution efficiency of the model, thereby effectively reducing the time cost of retrieval.

Text Distribution
A learning mapping dictionary is constructed for URI text, the distribution of the text needs to 
be clarified first. Text is a composite data type, which is composed of a combination of multiple 
characters, which can be converted into a one-dimensional integer array through ASCII encoding, 
as shown in Figure 4.

In the commodity knowledge graph, all URI texts are sorted to form an ordered set U ={u1,u2,…
,uM}, and each URI text ui is converted into an array xi through ASCII encoding. The first N elements are 
taken in the array xi. For the array length n <N, xj

i = 0(j> n) is set, and the array set XN ={x1,x2,…,xm} 
is finally obtained. XN is converted from the URI text set U, the cumulative distribution function is 
constructed as equation (1).

d x
x x

M
x XN( ) =

<′
′∈∑ 	 (1)

Learning mapping dictionary structure
The learning mapping dictionary is divided into two layers. The first layer contains the machine 

learning model, and the second layer contains the B-tree. In the URI text set, the first layer of machine 
learning model is used to slice the data, and each data slice saved in the B-tree. Its structure is shown 
in Figure 5.

Figure 4. The text is converted into an array through ASCII encoding

Figure 5. Learning mapping dictionary structure



International Journal of Mobile Computing and Multimedia Communications
Volume 13 • Issue 1

9

The first layer is the machine learning model. First, the URI text set U is converted into an array 
set XN through ASCII encoding, and the neural network is used to train the text distribution, and 
finally the learning model P(x) is obtained, which realizes the prediction of the position p of the URI 
text ui in the data set U. In order to reduce the time cost of the neural network in query execution, a 
single hidden layer fully connected neural network is used here, as shown in Figure 6, the number of 
neural units in the input layer is N, and the output value is p.

In the data set U, the position of the URI text ui cannot be negative, and the value span is wide. 
Therefore, the activation function needs to have a wide output range and avoid the predicted value 
p £ 0, so in the neural network model, the ReLu function is used as the activation Function, as is 
shown in equation (2):

ReLu =
≤
>








0 0

0

,

,

x

x x
	 (2)

When training the model, the error value between the real position y of the URI text ui in the data 
set U and the predicted position p of the model is used, and the variance is used as the loss function, 
as is shown in equation (3):

L
M

p y
i

M

= −( )
=
∑
1

0

2
	 (3)

The second layer contains multiple B-trees. In an ideal state, the first layer model can correctly 
predict the position of ui in the text set, but the complexity of the data results in a large error between 
the predicted position and the true position. Therefore, based on the first layer predicted position, the 
threshold s is set, the data is divided, that is, when (h-1)×s £ P(xi) <h ×s, ui is saved to the h-th data 
slice, and each slice is saved by using B-tree.

Figure 6. Single hidden layer fully connected neural network
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URI Text Compression
In the commodity knowledge graph, the complete URI text is longer. Table 5 shows the complete URI 
text corresponding to some types of entities in the commodity knowledge graph. Among them, the 
URI text of the commodity type entity contains 41 characters, and the first 30 characters are used to 
represent the namespace. When the number of neural units in the input layer of the neural network N 
£ 30, for the neural network model, the URIs of all commodity types will be the same, so the number 
of neural units in the input layer needs to be at least N> 30. In the commodity knowledge graph, the 
namespace is used as the prefix of the complete URI, and its types are few and fixed, but the text 
length is generally longer, which causes the neural network model to require more input nodes, this 
reduces the execution efficiency of the neural network model.

In order to improve the execution efficiency of the machine learning model, the prefix tree is 
used to compress redundant prefixes in the URI text, and the number of neural units N in the input 
layer of the neural network model is reduced. The prefix of the URI text is the namespace, the slash 
(/) symbol is usually used to indicate the directory or classification level of the namespace, so the URI 
namespace is divided by the slash symbol, and then the prefix tree is constructed. Figure 7 shows the 
structure of the namespace compression prefix tree. In this structure, the circle represents the node 
of the prefix tree, the internal number is the number corresponding to the node, and the label of the 
edge corresponds to the text substring which is obtained after the namespace is divided.

Figure 7. Namespace compression prefix tree

Table 5. Examples of complete URI text corresponding to some types of entities

     Entity type      Full URI text

     commodity      <http://spgdzs/product/amazon/B00QJDVBFU>

     user      <http://spgdzs/user/amazon/AFY2WJ2HD7A4P6TIKGS2F6RUAXGA>
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After being compressed by the prefix tree, the complete URI text in Table 5 will be converted to 
as shown in Table 6. Compared with the complete URI text, the compressed URI text has a shorter 
length, which reduces the number of neural units N in the input layer of the neural network. This 
effectively reduces the execution time cost of learning the first layer neural network model of the 
mapping dictionary.

COMMODITY KNOWLEDGE QUERY OPTIMIZATION

Connection Cost
After each variable obtains the candidate value set, it is necessary to connect the variables according 
to the structure of the query graph. The process of connecting a variable is given in Algorithm 1, 
where IRT represents the intermediate result set, that is, the result set of the subgraph is formed by 
the connected variables.
Algorithm 1: Connect a variable node in algorithm
Input: SPARQL query graph Q, current intermediate result table 
IRT, variable node v to be connected;
Output: the intermediate result table nIRT after connecting 
variable node v;
1. Set the new intermediate result set nIRT to be empty, that is, 
nIRT = ϕ;
2. If the candidate set of variable node v is empty then
3. return nIRT;
4. For each intermediate result record r in IRT do
5. Set the temporary table tmp to be empty, that is, tmp = ϕ;
6. For each element e in intermediate result record r do
7. if e corresponds to the variable node v’ in Q, there is no 
connected edge between v’ and v, then
8. continue;
9. Obtain another candidate set list of v through e;
10. if tmp is empty then
11. The intersection of list and the candidate set of v is 
operated, and it is assigned to tmp;
12. else
13. Perform intersection operation between list and tmp, and 
assign the result to tmp;
14. For each element e in tmp do
15. Create a copy r’ of r and add e to r¢;
16. r¢is added to nIRT;
17. return nIRT;

Table 6. Compressed URI text sample for some types of entities

     Entity type      Compress URI text

     commodity      4/B00QJDVBFU>

     user      7/AFY2WJ2HD7A4P6TIKGS2F6RUAXGA>
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The time cost of the connection operation is mainly composed of two parts: the intersection 
operation cost and the I/O cost. The intersection operation is affected by the size of the list, and it 
is difficult to predict its cost before execution. The I/O cost is caused by the operation of accessing 
the disk. Since the access speed of the disk is several orders of magnitude slower than that of the 
memory, a huge I/O cost will be caused when the disk is frequently accessed. This causes the I/O cost 
to become the vast majority of the connection operation cost, so the connection cost can basically 
be determined by the I/O cost. The I/O cost is caused by connecting a variable in the algorithm, it is 
determined by the size of the intermediate result set IRT, so the total cost of query graph connection 
can be jointly determined by the size of the intermediate result set IRT during each step of the 
connection operation. The query graph contains a set of nodes V ={v1,v2,…,vn} and a set of edges E 
={e1,e2,…,em}. Assuming that only one edge is connected at a time, the total cost of the connection 
cost is in equation (4), where Si represents the size of the intermediate result set IRT and the cost of 
the i-th step during the i-th connection.:

cost E V S
i

m

i
,( ) =

=∑ 1
	 (4)

Connection Sequence
The cost Si of the i-th connection is obtained from the completion of the i-1 connection. The cost of 
each connection operation is obtained from the previous connection operation. Therefore, different 
connection orders will result in different connection costs. Here, the commodity knowledge data in 
Table 7 is analyzed.

Table 7 shows a sample of RDF data for the commodity knowledge graph. For the sake of 
simplicity, all URIs are expressed in abbreviations, and the first letter of the URI abbreviation is 
used to indicate the type of the element. For example, the URI starting with P is the product, the URI 
starting with C is the product category, the URI starting with R is the comment, the URI starting with 

Table 7. RDF triples sample of commodity knowledge graph

  Subject   Predicate   Object   Subject   Predicate   Object

  P1   productOf   C1   R3   reviewOn   P3

  P2   productOf   C1   R4   reviewOn   P2

  P3   productOf   C1   R5   reviewOn   P3

  P4   productOf   C2   R6   reviewOn   P4

  U1   write   R1   R1   O   F1

  U1   write   R2   R1   O   F2

  U1   write   R3   R2   O   F1

  U2   write   R4   R2   O   F2

  U2   write   R5   …   …   …

  U2   write   R6   R6   O   F1

  R1   reviewOn   P1   R6   O   F2

  R2   reviewOn   P2



International Journal of Mobile Computing and Multimedia Communications
Volume 13 • Issue 1

13

O is the opinion, and the URI starting with F is the product attribute. The data assumes that there 
are two product categories C1 and C2. Among them, there are 3 products under the C1 category, 1 
product under the C2 category, and two users have posted 3 comments, and each comment contains 
opinions on features F1 and F2. Figure 8 shows the RDF data graph corresponding to this example, 
where the edge labels are omitted.

Suppose query 1 queries the knowledge of C1 classification of all products and all opinion 
features. The query graph corresponding to this query is shown in Figure 9. The label of the edge 
is also omitted, but the label of the variable edge is retained. The set of candidate values for each 
variable in the figure is marked on the right side of the variable node.

Figure 8. Sample RDF data graph of commodity knowledge graph

Figure 9. SPARQL query graph and variable candidate nodes
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Query 1: All products and all opinion features of C1 category are queried
SELECT ?p ?f ?o where {
?p rdf:type Product.
?p productOf C1.
?r rdf:type Review.
?r reviewOn ?p.
?f rdf:type Feature.
?r ?o ?f.
};
It can be seen from the figure that the size of the candidate value set of variable ?f is 2, the size 

of candidate value set of variable ?r is 6, and the size of candidate value set of variable ?p is 3. At 
present, the latest graph model query system, such as gStore, preferentially select variable nodes with 
fewer elements in the candidate set for connection when selecting the connection order. Therefore, 
the query order for this query is ?f ® ?r ® ?p, and the intermediate result set IRT is generated by 
each step of the connection, it is shown in Table 8.

For the operations in Table 8, the variable ?r is first selected as the starting node of the connection 
operation, and the elements in the candidate value set are add to IRT in turn, at this time | IRT | = 
|C(?f)| = 2; then it connects with the variable ?r. At this time, S1 = 2, after the connection operation 
ends, | IRT | = 12; it connects with the variable ?p. At this time, S2 = 12, and after the connection is 
completed, | IRT | =10. Finally, the value of ?o is obtained according to each record variable in IRT, 
and S3 = 10 at this time. Therefore, the total cost is S1 + S2 + S3 = 24.

In the product knowledge graph, user comments are uniquely associated with one product, but 
they usually contain multiple opinions. According to this data feature, the variable ?p will be selected 
as the starting node of the connection operation, and the connection sequence is ?p ® ?r ® ?f. The 
intermediate result set IRT is generated by each step of the connection, it is shown in Table 9.

First, the elements in the candidate value set of the variable ?p are added to IRT in turn, at this 
time | IRT | = |C(?p)| = 3, and then they are connected with the variable ?r, at this time S1 = 3, After 
the connected completion, | IRT | = 5.Then they are connected with the variable ?f, at this time S2 
= 5, after the connection operation is completed, | IRT | = 10. Finally, the value of ?o is obtained 
according to each record variable in IRT, at this time S3 =10. The total cost of this connection sequence 
is S1 + S2 + S3 = 18. In different connection sequence, although the final result is unchanged, but 
the intermediate result set generated by each step is different.

Table 8. IRT data at each step in the connection process

  (a)Initialize   (b) First step   (c) Second step   (d) Third step

  ?f   ?f   ?r   ?f   ?r   ?p   ?f   ?r   ?p   ?o

  F1   F1   R1   F1   R1   P1   F1   R1   P1   O

  F2   F1   R2   F1   R2   P2   F1   R2   P2   O

  …   …   …   …   …   …   …   …   …

  F1   R6   F1   R5   P3   F1   R5   P3   O

  F2   R1   F2   R1   P1   F2   R1   P1   O

  F2   R2   F2   R2   P2   F2   R2   P2   O

  …   …   …   …   …   …   …   …   …

  F2   R6   F2   R5   P3   F2   R5   P3   O
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In the product knowledge graph, each user review Ri is written by a user Uj, and a product Pk 
connection is described. However, comments will express opinions on multiple product attributes, 
as is shown in Figure 10.

In the commodity knowledge graph, the number of commodities and users is huge, while the 
scale of commodity attributes is relatively small, which leads to prioritized connection of commodity 
attributes with user reviews during connection operations. However, user reviews are only associated 
with one product, but usually contain multiple opinions. Therefore, in the product knowledge graph, 
when product attributes and reviews are connected, the intermediate result set will expand, so the 
operation of connecting reviews and product attributes during the connection process should be 
performed at the end.

Variable Combination Connection Strategy
Existing query systems based on graph models are mainly for queries whose edge labels are constant 
in the query graph. When processing a query with a variable edge label, the connection process first 
connects the node variables and then obtains the value of the variable edge. This connection strategy 
leads to lower query performance.

Table 9. Intermediate result set IRT data for each step in the connection process

  (a)Initialize   (b) First step   (c) Second step   (d) Third step

  ?p   ?p   ?r   ?p   ?r   ?f   ?p   ?r   ?f   ?o

  P1   P1   R1   P1   R1   F1   P1   R1   F1   O

  P2   P2   R2   P1   R1   F2   P1   R1   F2   O

  P3   P2   R4   P2   R2   F1   P2   R2   F1   O

  P3   R3   P2   R2   F2   P2   R2   F2   O

  P3   R5   …   …   …   …   …   …   …

  P3   R5   F1   P3   R5   F1   O

  P3   R5   F2   P3   R5   F2   O

Figure 10. Data graph of a product comment
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However, in the commodity knowledge graph, the user’s opinion is an important piece of 
knowledge, and there are many queries surrounding the user’s opinion. Query 1 shows a simple 
user’s opinion query. However, there are often more complex queries around user opinions, such as 
querying products related to product P1. These products have common buyers with P1, and buyers 
have the same views on certain attributes of the product. The SPARQL is like query 2.

Query 2: Find the SPARQL of P1 related products
SELECT ?p ?f ?o where{
?r1 rdf:type Review.
?r1 reviewOn P1.
?r2 rdf:type Review.
?p rdf:type Product.
?p productOf C1.
?r2 reviewOn ?p.
?f rdf:type Feature.
?r1 ?o ?f.
?r2 ?o ?f.
?u rdf:type User.
?u write ?r1.
?u write ?r2.
}
For this query, first exclude variables ?o and ?f, and connect other variables according to the 

query graph, an intermediate result set is obtained, as is shown in Table 10.
The second result of the intermediate result set is discussed. When R1 and R2 respectively 

published different user opinions on the commodity attributes F1 and F2, the RDF data graph is 
shown in Figure 11.

Table 10. Join intermediate result set of query 2

     ?r1      ?u      ?r2      ?p

     R1      U1      R1      P1

     R1      U1      R2      P2

     R1      U1      R3      P3

Figure 11. A data graph where two user reviews‘ opinions are different
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According to the original connection strategy, the variable ?f will be connected, which will 
produce the results in Table 11.

When finally getting the result of the variable ?o, all the intermediate results in Table 11 are 
invalid and then deleted. When considering whether the intermediate result needs to be connected to 
the variable ?f, it is necessary for the values of the variables ?r1 and ?r2 to have the same edge before 
they need to be connected. Therefore, when the values of the variables ?r1 and ?r2 do not have the 
same edge, the middle result can be deleted directly without the need for further operation.

When two reviews R1 and R2 have the same opinion, but for different product attributes, only 
considering whether there are the same side labels, it will also lead to invalid intermediate results, 
as is shown in Figure 12.

The above connection methods are to separate product attributes and user opinions for separate 
queries, but in the product knowledge graph, product attributes and user opinions are combined 
and appear in pairs. Therefore, this feature is used in this section to propose a product Aspect and 
Opinion Combination (AOC) connection strategy, that is, the variable edge ?o and the variable node 
?f are combined into a whole variable. First, connect variable nodes other than variables ?f and ?o, 
and then connect variable combinations. The process of connecting combination variables is shown 
in Algorithm 2.
Algorithm 2: Connect a combined variable algorithm
Input: the current intermediate result table IRT, the combined 
variables (e, v) to be connected;
Output: the intermediate result table nIRT after connecting 
variable node v;
1. Set the new intermediate result set nIRT to be empty, that is, 
nIRT = ϕ;
2. If the candidate set of variable node v is empty then

Table 11. Invalid intermediate result list

     ?r1      ?u      ?r2      ?p      ?f

     R1      U1      R1      P2      F1

     R1      U1      R2      P2      F2

Figure 12. A data graph where two comments have the same opinion but not the same attribute
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3. return nIRT;
4. For each intermediate result record r in IRT do
5. Set the temporary table tmp to be empty, that is, tmp = ϕ;
6. Set the temporary table tmpv to be empty, that is, tmpv = ϕ;
7. for each element ele in the intermediate result record r do
8. If ele and v do not pass through edge e do
9. continue;
10. Add ele to tmpv;
11. Obtain another candidate value set list of v through ele;
12. if tmp is empty then
13. The intersection of list and the candidate set of v is 
performed, and the result is assigned to tmp;
14. else
15. Intersection operation between list and tmp is performed, and 
the result is assigned to tmp;
16. if tmp is empty then
17. continue
18. for each element ele in tmp then
19. Obtain ele edge candidate value set tmpe;
20. For each element edge in tmpe then
21. Get the candidate list list through ele and edge
22. if tmpv Í list then
23. Create a copy r¢of r, and add (edge, ele) to r¢;
24. r¢ is added to nIRT;
25. return nIRT;

EXPERIMENT AND PERFORMANCE ANALYSIS

Experimental Environment
The hardware environment of this experiment is a single Intel® Core™ i5-6500 @3.20 GHz quad-core 
processor computer with 16 GB DDR3 memory and 1 TB mechanical hard disk. In order to ensure 
the fairness of the experiment, hardware acceleration such as GPU, TPU or FPGA is not used. The 
operating system is a 64-bit Ubuntu 16.04 operating system.

The experimental data will be organized through the commodity knowledge graph framework 
designed in this paper. The data of the knowledge graph is a combination of real data and simulation 
data. The overall overview of the data set is shown in Table 12. Among them, product classification, 
product information, and user knowledge are real data from the Amazon platform. The total number 
of product entities is 478 626, and the total number of user entities is 1 000 000. User comments 
and opinion knowledge are simulation data (Mahria, B. B., Chaker, I., & Zahi, A. 2021). Each user 
randomly selects products and makes comments. The comments contain a random amount of opinion 
knowledge.



International Journal of Mobile Computing and Multimedia Communications
Volume 13 • Issue 1

19

Experimental Analysis of Learning Mapping Dictionary
The experiment is analyzed from two aspects: storage space and response time. Since both the 
learning mapping dictionary and the traditional mapping dictionary adopt the B-tree structure, in 
order to reduce the difference in the experimental environment, the two use the same B-tree in the 
experiment. In addition, the order of the B-tree has an impact on the data storage space and query 
response time, and the order of the B-tree will be discussed. The storage space occupied by the two 
mapping dictionaries is shown in Table 13.

The query efficiency of learning mapping dictionary is further verified. First, the effect of the 
order of B-tree is discussed on response time. Here randomly query URI text 100,000 times, and then 
the average response time of single query URI text is calculated, as is shown in Figure 13.

Table 12.Some statistics of the data set

     Data parameter      Data value

     Number of triples      116174460

     Data Format      Turtle

     Number of concepts      6

     Number of entities      11979407

     Number of attributes      10573

     Number of opinion words      10566

Table 13. The storage space (MB) is consumed by the data mapping dictionary

     Order      Traditional mapping dictionary      Learning mapping dictionary

     16      6 673      5 366

     32      2 480      2 364

     64      1 168      1 121

     128      805      783

Figure 13. Average response time of different orders’ B-tree
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For comparison of the number of random queries for URI text, a 128-order B-tree is used here to 
calculate the average response time of a single query for URI text. The result is shown in Figure 14.

Connection strategy experiment
According to the commodity knowledge graph, the experiment designed common commodity 
knowledge query sentences for the subjective and objective knowledge of commodities, as shown 
in Table 14..

Table 14 continued on next page

Figure 14. Average query time when B-tree order is 128

Table 14. Commodity knowledge query

     Numbering      SPARQL query statement

     Q1

     SELECT ?p WHERE {

     ?p rdf: type Product.

     ?p productOf C1.

     ?r rdf: type Review.

     ?r reviewOn ?p.

     ?r O1 F1.

     };

     Q2

     SELECT ?f ?o WHERE {

     ?r rdf: type Review.

     ?r reviewOn P1.

     ?r ?o ?f.

     };
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The meaning of the above SPARQL query is as follows:

Q1: Under the product category C1, find the product whose attribute F1 has an O1 opinion.
Q2: Query all user opinions and corresponding product attributes of product P1.
Q3: Inquire about all the products under a product category C1, which attributes are more concerned 

by users. By querying all the products under the product category and the corresponding user 
opinions and characteristics, the data is aggregated through the product attributes, and then the 
quantity is counted.

Q4: Query users who have the same hobbies as user U1. These users not only bought the same product 
as user U1, but they also expressed the same opinion on a certain product attribute of the product.

The results of the SPARQL query running time are shown in Table 15.

Table 14 continued

     Numbering      SPARQL query statement

     Q3

     SELECT ?f (count(?o) AS ?count) WHERE {

     ?p rdf: type Product.

     ?p productOf C1.

     ?r rdf: type Review.

     ?r reviewOn P1.

     ?r ?o ?f.

     }; GROUP BY ?f

     Q4

     SELECT ?u ?f ?o WHERE {

     ?r1 rdf: type Review.

     U1 write ?r1.

     ?p rdf: type Product.

     ?r1 reviewOn ?p.

     ?f rdf: type Feature.

     ?r1 ?o ?f.

     ?u rdf: type User.

     ?r2 rdf: type Review.

     ?u write ?2.

     ?r2 reviewOn ?p.

     ?r2 ?o ?f.

     };
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Performance Analysis
According to the results in Table 13, as the order of B-tree increases, the storage space of the two 
mapping dictionaries tends to decrease. When the two mapping dictionaries adopt the same order, 
the storage space of the learning mapping dictionary is less than that of the traditional mapping 
dictionary. The first layer in the learning mapping dictionary only needs to save the parameters of 
the machine learning model, and its storage space is much smaller than the overall storage space. In 
this experiment, the model storage space occupies about 1 KB. In the second layer of the learning 
mapping dictionary, the first layer learning model divides the data into multiple small-scale data 
fragments, and the height of the B-tree corresponding to each data fragment is not higher than the 
B-tree in the traditional mapping dictionary at the same time, the total number of keys contained in 
all B-tree internal nodes is also less than that of B-tree in the traditional mapping dictionary. Since 
the number of internal node keys occupies most of the storage space, the storage space occupied by 
the learning mapping dictionary is smaller than that of the traditional mapping dictionary.

The experimental results in Figure 13 show that when B-tree adopts different orders, the average 
response time of learning mapping dictionary is shorter than that of traditional mapping dictionary. 
In addition, with the increase of the B-tree order, the efficiency of learning mapping dictionary query 
is more obvious.

Experimental results in Figure 14 show that the average response time of learning mapping 
dictionary is shorter than that of traditional mapping dictionary when dealing with different random 
access times.

The learning mapping dictionary uses a machine learning model to divide a large-scale URI text 
set into multiple small-scale URI text set pieces. When querying URI text, only one of the URI text 
set pieces needs to be queried. Compared with traditional mapping dictionaries, learning mapping 
dictionary reduces the number of comparison operations in the query process. At the same time, 
the machine learning model of the first layer adopts a single hidden layer fully connected neural 
network model, which has low model complexity and high execution efficiency. CPU processor is 
used to execute this model, the average single execution time is less than 100 ns, which is less than 
the overall query time.

The experimental results in Table 15 show that the query performance is similar in query Q1. 
Since the query does not include queries on product attributes and user opinions, the optimization 
strategy has no effect. For queries Q2, Q3, and Q4, these queries all include product attributes and 
user opinions. At this time, the optimized query strategy comes into play. The system using the AOC 
strategy has higher query efficiency than gStore. Among them, the query Q2 statement is relatively 
simple, there is no complicated relationship, and the query is for a product, and the amount of related 
information is small. The system using the AOC connection strategy has improved the performance 
of gStore by 2 times. The query Q3 statement is also relatively simple, but the query involves the data 
of all products in a product category, and the amount of related data is large. The gStore query has not 
obtained results for more than one hour, and the system using the AOC strategy completes the query 
in a relatively short time. The generation of intermediate results are reduced, and the efficiency of 
the query is improved. The language complexity of query Q4 is greater than that of queries Q2 and 
Q3. gStore also cannot complete the query within 1 h. The system using the AOC strategy completes 

Table 15. SPARQL query running time

     Numbering      Q1      Q2   Q3   Q4

     gStore      290 ms      913 ms   >1 h   >1 h

     AOC      287 ms      271 ms   2 285 ms   2 389 ms
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the query in a relatively short time, which avoids generating invalid intermediate results, thereby 
improving Query efficiency.

CONCLUSION AND OUTLOOK

The ever-increasing amount of RDF data made available requires data to be partitioned across multiple 
servers. We have witnessed some research progress made towards scaling RDF query processing 
based on suitable data distribution methods. In general, they work well for queries matching simple 
triple patterns, but they are not efficient for queries involving more complex patterns.

In order to unify the management of objective information of commodities and subjective 
information of users’ viewpoints, a commodity knowledge graph framework is designed in this 
paper, the framework combines objective and subjective knowledge of commodities. Then, in order 
to improve query efficiency, reduce the cost of converting URI text into corresponding ID values, 
learning indexes are combined to improve query efficiency, and prefix trees are used to compress 
redundant prefixes in URI text, query efficiency is further improved. In order to improve the efficiency 
of commodity knowledge query, the connection strategy of the combination of commodity attribute 
viewpoint variables is designed, which has higher commodity knowledge query efficiency. Finally, 
the performance improvement of the method proposed in this paper is verified on the commodity 
knowledge graph data.

We apply a method that identifies frequent patterns accessed by queries in order to keep related 
data in the same partition. We deploy our reasoning on a summarized view of data in order to avoid 
exhaustive analysis on large datasets. As result, partitioning templates are obtained from data items 
in an RDF structure. In addition, we provide an approach for dynamic data insertions even if new 
data do not conform to the original RDF structure. Apart from the repartitioning approaches, we 
use an overflow repository to store data which may not follow the original schema. Our study shows 
that our method scales well and is effective to improve the overall performance by decreasing the 
amount of message passing among servers, compared to alternative data distribution approaches for 
RDF. In terms of principle, neural network is still a supervised traditional machine learning method; 
in terms of structure, there are many parameters and it is easy to lose spatial information. In future 
work, we will consider using GPUs to build heterogeneous computing platforms, the efficiency of 
product knowledge retrieval is further improved.
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