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ABSTRACT

Edge computing undertakes downlink cloud services and uplink terminal computing tasks; data 
interaction latency and network transmission cost are thus significantly reduced. Although a lot of 
research has been conducted in mobile edge computing (MEC), which assumed that all homogeneous 
cloudlets are placed in WMAN and user mobility is also ignored, little attention has been paid to 
how to place heterogeneous cloudlets in wireless metropolitan area network (WMAN) to minimize 
the deployment cost of cloudlets. Meanwhile, the method of selecting an optimal access point (AP) 
for deployment, modeling, and heuristic algorithm (HA) needs to be improved. Therefore, this paper 
designs a new heterogeneous cloudlet deployment model considering the quality of service (QoS) 
and mobility of users, and the improved heuristic algorithm (IHA) is proposed to minimize cloudlet 
deployment cost. The extensive simulations demonstrate that IHA is more efficient than HA, and the 
designed model is superior to the existing work.

Keywords
Cloudlet Deployment Cost, Heterogeneous, Latency, Minimization, Mobile Edge Computing (MEC), Optimal 
AP, QoS, Users Mobility

INTRODUCTION

Benefited from the rapid development of wireless network technology, smart mobile devices, mobile 
device software and hardware technologies, the growing number of users are peculiarly prone to run 
related services on mobile devices than on traditional computers. However, portable smart mobile 
devices are limited by enhanced computing resources, including computing ability, communication 
resources, storage and usability functions, including power, size, and weight. Meanwhile, it is 
difficult to provide computing resource demands for intensive and complex user tasks. Therefore, 
there is an increasing need for mobile users offloading tasks to the cloud, which has given birth to 
the new paradigm of Mobile Cloud Computing (MCC) (Gai et al., 2016; Pang et al., 2017; Shaukat 
et al., 2016). Although MCC can enable mobile devices to overcome resource shortages such as 
computing power, storage capacity, and energy, which remains some problems such as bandwidth 
constraints, unreliable links and latency when mobile devices access remote cloud services by using 
wireless signals or wireless networks. Therefore, MCC is not effective enough for delay-intensive 
applications such as high-quality video streaming, augmented reality (AR) and virtual reality (VR) 
(Tyng-Yeu & You-Jie, 2017).
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In order to solve this problem, precursory researchers proposed the concept of mobile edge 
computing (MEC), which a key technology in the emerging fifth-generation network, which can host 
computing-intensive applications, and the network MEC is close to mobile users and provides context-
aware services with the help of network information. MEC can support various applications that strictly 
require real-time response such as driverless vehicles, AR, VR, robotics, and immersive media by 
bringing cloudlets closer to mobile users.(Rahimi et al., 2020; Luo et al; 2019). Satyanarayanan et al., 
(2009) are the first to state that cloudlet is a new element to extend the cloud architecture of mobile 
devices and can access networks through high-speed wireless links such as Wi-Fi, and cloudlet is 
also called “data center in a box” and cloudlet technology is a supplement and extension to MCC. 
Ahuja & Rolli (2012) proposed that cloudlet, which is typically deployed at wireless access points 
(APs), has computing resources, reliable transmission and data processing ability, can process user 
task requests and reduce latency of user access to services. Therefore, compared with MCC, MEC is 
closer to mobile users than MCC, mobile devices can offload their computing tasks to the cloudlet 
or edge cloud by accessing the wireless network, which greatly reduces the access delay for mobile 
devices to access the cloud service and improve the task processing capability of the mobile device.

Most of the existing studies focus on user task scheduling on cloudlet (see, e.g., Mukherjee et 
al., 2019; Nayak et al., 2019; Zhang et al., 2018; Fei et al., 2018; Verbelen et al., 2014), cloudlet 
resource allocation(see, e.g., Chukhno et al., 2020; Wang et al., 2020; Josilo et al., 2020) and cloudlet 
task migration(see, e.g., Sun et al., 2019; Shen et al., 2019). However, little attention has been paid to 
cloudlet deployment in MEC. Due to the limited coverage of Wi-Fi, especially in highly computing 
environments with complex user distribution like wireless metropolitan area network (WMAN), it is 
possible to study how to use cloudlet to effectively handle the computationally intensive tasks offloaded 
by mobile devices, but it is also very essential to deploy cloudlet in such a complex environment. 
There are several cloudlet placement problems in networks that have been studied in recent years. 
The software-defined network (SDN) based Internet of Things(IoT) is applied to the problem of 
cloudlet placement, and the coexistence of APs in different Internet of Things is discussed (Zhao et 
al., 2018). The cloudlet placement problem that takes total energy consumption as the optimization 
goal while ensuring the quality of service(QoS) of users is proved to be an NP-hard problem and 
a decomposition algorithm based on the SDN framework is proposed to solve this problem(Yang 
et al., 2019). However, SDN networks are generally not suitable for networks operated by ISP and 
the access process of various IoT devices are highly simplified to treat resources as direct wireless 
connections, when it comes to the actual situation of multiple cloudlets, and this access process 
cannot be simplified to a direct wireless connection. Therefore, the problem of cloudlet placement 
in WMAN is considered (Zhang et al., 2019; Wei et al., 2020), in view of the relatively large scale of 
WMAN, the distribution of APs is considered and a normalized cut value is formulated to minimize 
the target WMAN segmentation model to minimize the average access delay from users to cloudlet 
(Liu, 2019). However, the cost of cloudlet deployment is not mentioned in the above literature. The 
budget of the cloudlet infrastructure service provider (ISP) is limited, from the perspective of the 
ISP, how to reduce the cost of cloudlet deployment is normally very important. Therefore, Mondal 
et al., (2019a) apply Karush-Kuhn-Tucker of Lagrangian function to optimize the deployment cost of 
cloudlet in fiber-wireless network. The simulated degradation algorithm is used to solve the problem of 
cost-aware cloudlet resource allocation (Raei et al., 2019). The long-term cost of cloudlet deployment 
and operation are considered (Mondal et al., 2019b). Fan et al., (2019) considered the cost of cloudlet 
deployment and the average end-to-end delay, and developed a Lagrangian heuristic algorithm to 
solve this problem. Wang et al., (2020) aimed to optimize the cost of cloudlet deployment and network 
delay, and proposed a fault-tolerant cloudlet deployment solution, and then a binary-based differential 
evolution cuckoo search algorithm was proposed to solve this problem.

However, these studies do not address the mobility of users and the heterogeneity of cloudlet in 
WMAN. Although there are few studies on minimizing the cost of heterogeneous cloudlet deployment 
in WMAN, it is very important and cannot be ignored. Because in a large-scale WMAN with a large 
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number of APs, which needs to deploy some APs for users offloading tasks, if a small number of 
cloudlets are deployed in dense areas, it will violate the QoS of users, otherwise, if a large number 
of cloudlets are deployed at sparsely populated areas, it will cause resource waste and increase the 
cost of cloudlet service providers. Therefore, Yao et al., (2017) first propose the minimum cost of 
heterogeneous cloudlet deployment while ensuring the QoS of users on MEC environment and 
formulate the problem as an integer linear programming (ILP). Because of the poor scalability of 
ILP, they propose a heuristic algorithm (HA), where each cloudlet with different capacities can be 
deployed all unoccupied APs, the HA select an optimal AP by Aps degree. However, the AP with a 
heavy workload may not be the closest to the user, which will increase user tolerable delay, meanwhile, 
it does not address the average latency of APs transmitting the user requests and the resource demands 
of the user task requests. Therefore, based on (Yao et al., 2017), this paper consider the mobility of 
users, the number of user task requests and the average delay of APs transmitting user task requests to 
improve and build a new heterogeneous cloudlet deployment cost model . The problem of minimizing 
the cost of heterogeneous cloudlet deployment can be divided into three sub-problems, including 
how many cloud servers are placed while ensuring users’ QoS, choose which wireless APs are used 
for cloudlet deployment and how to place different capacity cloudlet servers according to different 
user densities in WMAN. The minimization the deployment cost of heterogeneous cloudlet servers 
in WMAN based on MEC environment is defined as an NP-hard problem, therefore, an improved 
heuristic algorithm (IHA) is proposed in this paper, which will combine the user request rate of each 
AP with the transmission delay between AP and cloudlet, calculate the average network latency to 
sort APs, and select an optimal location for cloudlet deployment.

Motivated by the above facts in this work and the contributions of this article can be summed 
up as follows:

·	 A new and more comprehensive cost-aware heterogeneous cloudlet deployment model is designed 
by introducing the number of user task requests and the average delay of APs transmitting user 
task requests. The heterogeneous cloudlet deployment model is designed to improve the QoS of 
end users and reduce the cost of cloudlet deployment.

·	 As against existing heuristic algorithm, the problem is formulated as an ILP. Accordingly, an 
IHA is developed, which combines the user request rate of each AP with the transmission delay 
between AP and cloudlet to select the optimal AP, so as to significantly reduce the delay and 
the cost of heterogeneous cloudlet deployment.

·	 Extensive experimentation and evaluation are conducted to verify the performance of the proposed 
algorithm, and the simulation results demonstrate that the IHA and designed model are more 
effective than HA.

The rest of this paper is organized as follows. Related work is introduced in Section 2. Section 
3 presents model and problem formulation. Section 4 introduce the details of proposed algorithm. 
Section 5 displays experimental analysis. In the end, conclusion is shown in Section 6.

RELATED WORK

Most of the existing research focuses on cloudlet resource allocation, virtual machine migration 
and cloudlet deployment with time delay as the optimization goal based on MEC scenarios (Dolui 
et al., 2020). Mukherjee et al., (2019) studied how mobile users can select suitable cloudlet for task 
offloading in multiple cloudlet environments, the energy consumption and time delay are used as 
optimization goals, meanwhile, an optimal cloudlet selection strategy was proposed that can reduce 
power consumption and latency. Zhang et al., (2018) regarded the cloud task scheduling problem as 
a multiple direct acyclic graph scheduling problem, and the proposed scheduling strategy focused 
on the QoS of user resource demands and the cost of the cloudlet service providers. Fei et al., (2018) 
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proposed a multi-objective optimization model that considers security level, cloudlet access costs, 
and energy consumption. Sun et al., (2019) discussed the migration of cloudlet, of which objective 
is how to choose a suitable destination for cloudlet deployment. To select the optimal location of 
cloudlet placement, Shen et al., (2019) discussed the problem of minimizing the number of cloudlet 
deployments and proposed an energy-saving cloudlet migration method to effectively reduce the 
number of cloudlets. Yang et al., (2019) discussed the problem of cloudlet placement on the network 
and assign each requested task to cloudlets and public clouds to minimize the total energy consumption 
without violating the delay requirements of each task, a decomposition algorithm is proposed to solve 
the NP-hard problem. Verbelen et al., (2014) introduced a cloudlet architecture that is placed with 
wireless APs, and can also share resources between each other for cloudlet to offload. By adaptively 
configuring and outsourcing application components, a more fine-grained method is proposed to 
optimize the platform’s applications based on mobile device functions and the available resources 
of cloudlet.

As an infrastructure, cloudlet can be deployed in different existing wireless network scenarios. Liu 
et al., (2019) aimed at the cloudlet placement model and optimization problem of WMAN, a cloudlet 
placement algorithm based on spectral clustering is designed. The algorithm takes into account the 
influence of factors such as the number of APs, the connection status between APs, the arrival rate 
of user requests of access points, and aims to optimize the access delay of mobile users offloading 
tasks to cloudlet, which has a good application prospect for the cloudlet of large-scale WMAN based 
on MEC. With the accelerating development of location-based services in mobile networks, Wei et 
al., (2020) proposed a service cache selection algorithm based on back-propagation neural network 
and users’ mobility, and the proposed algorithm predicts the user’s target location, the service 
request is thus forwarded to the appropriate target location through the service allocation algorithm 
to maximize the number of users of the local edge cloud service and reduce invalid service requests. 
Zhao et al., (2018) discussed cloudlet deployment for wireless optical networks and the Karush-Kuhn-
Tucker is proposed to optimize this problem. However, it did not address the mobility of users and 
virtual machines. Zhang et al., (2019) studied the dynamic service placement of VR group games 
in a distributed MEC environment. In using the model predictive control framework to build online 
algorithms, and focused on designing approximate algorithms on each predictive window by solving 
a series of binary optimizations based on α-expanding through graphics-theoretical minimum shear 
to solve the problem and proved the performance guarantee of the boundary through this method. 
Mondal et al., (2019a) discussed the cloudlet deployment to support VR, and the service operation 
cost is used as optimal objective.

Although the issues regarding the location of the cloudlet deployment, user end-to-end delay, and 
user resource allocation have been well resolved, all the existing studies have adapted homogeneous 
cloudlet assumption and the cost of cloudlet deployment is ignored. The budget of infrastructure 
service provider is limited, it is a crucial issue for service providers to reduce the cost of cloudlet 
deployment. Accordingly, Raei et al., (2019) used simulated degradation algorithm to solve the 
problem of cost-aware cloudlet resource allocation and a mixed integer nonlinear programming 
model is proposed to optimize the cost of cloudlet deployment for static network planning. Fan et 
al., (2019) proposed cost-aware cloudlet placement strategy in the MEC, where cloudlet cost and 
average end-to-end latency are considered. A Lagrangian heuristic algorithm was developed to solve 
this problem. After placing the cloudlet on the network, a workload distribution scheme was designed 
by considering user mobility to minimize the E2E delay between the user and cloudlet. Wang et al., 
(2020) weighed the total network latency and the cost of cloudlet deployment in SDN-based IoT to 
minimize the total cost of the cloudlet network, and a fault-tolerant cloudlet deployment scheme is 
proposed, and then, a binary-based differential evolution cuckoo search algorithm is developed to 
optimize the cost of cloudlet deployment and network delay. Mondal et al., (2019b) focused on the 
static cloudlet network planning problem, and proposed a hybrid cost optimization framework for 
the optimal placement for the existing passive optical access network, and develop a mixed integer 
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nonlinear procedure to determine the cloudlet placement location. However, these studies do not 
address the mobility of users and the heterogeneity of cloudlets in WMAN.

Considering the heterogeneity of cloudlets in the IoT environment, Yao et al., (2017) used a 
low-complexity heuristic algorithm to study how to deploy servers in a cost-effective way without 
violating the predetermined quality of service, on the one hand, it do not address the average delay of 
APs transmitting user requests and the resource requirements of user task requests, on the other hand, 
the method of selecting an optimal AP for cloudlet deployment is sorted according to the degree of 
wireless APs, however, APs with heavier workloads are not necessarily the closest to the users they 
serve, which will result in higher user tolerance latency. Therefore, in this paper, the contact probability 
of users with the wireless AP and the transmission delay between the user offloading task request to 
the cloudlet are considered to calculate the average network delay of the APs, and sort the APs by the 
average network delay. From all the above literature, the authors notice that most of existing studies 
are with homogeneous cloudlet assumption in WMAN, and the existing cost-aware heterogeneous 
cloudlet deployment models need to be improved and suitable for small network areas. Therefore, 
this paper studies how to provide heterogeneous cloudlet placement strategies with different service 
levels according to the different resource demands of users in a WMAN scenario.

MODEL AND PROBLEM FORMULATION

System Model
As shown in Figure 1, the entire system consists of four roles, including APs, cloudlets, users, and 
the set of links. A WMAN is thus defined as a connected and undirected graphG V S U E= ∪ ∪{ },  , 
whereV v v v v

m
= { }1 2 3

, ,  , ... , represents m APs in WMAN, each AP covers an area with other APs 
and can communicate with other APs directly or through multi-hop in (Liu, 2019; Dolui et al., 2020). 
For users,U u u u u

n
= { }1 2 3

, ,  , ... ,  denotes the set of n mobile users which randomly roam in the 
area covered by APs, and mobile users have time-varying locations and resource demands towards 
APs located at cloudlets, which lead to different request rates for APs connected to the user. 
Accordingly, the user task request of each AP may be unpredictable, especially when the user moves 
within a period of time. Therefore, it is assumed that each AP point has a task flow that can be 
offloaded and arrives at the system randomly and obeys Poisson distribution in (Liu; 2019), meanwhile, 
it is assumed that the user request rate of APv

i
is r

i
, which can be can be accurately estimated by 

fitting method in (Luo et al; 2019).
Therefore, it is assumed that R

k
 at each APv

k
 represents the number of user requests. Let the 

number of tasks that APv
k

 has received from the user u
i
beN

ik
, as shown in Figure 2, N R p

11 1 11
= ∗

denotes the number of tasks that APv
1

 has received from the useru
1
, accordingly, N R p

m m1 1 1
= ∗  

denotes the number of tasks that AP   has received from  u
m

. The number of task requests of all users 
that associate with APv

j
received by v

j
 can be captured as Equation (1):

N v
j

R p j V
i iji U

( )= ∗ ∀ ∈
∈∑  ,  	 (1)
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S represents a group of potential locations of cloudlets and E denotes each link between two APs 
in V or between an AP and a potential location in S. F f f f f

k
= { }1 2 3

, , ,   ... , , 1 £ £k S  represents 
the set of cloudlet servers. In order to reduce the transmission latency between mobile devices and 
the remote cloud, the ideal location for cloudlet shall be a network location that is one hop away from 
the mobile device such as cellular base station or Wi-Fi AP. Accordingly, It is assumed that the 
deployment location of the cloudlet is the same as APs, and k cloudlets need to be deployed to k 
different potential locations in the set S. Different users have different resource demands, dm

i
 refers 

to user resource demands for useru U
i
Î , the user’s total resource demand shall not exceed the 

resource capacity provided by the server f
i
. The deployment cost and resource capacity of the server 

Figure 2. An example of the number of user tasks received by AP

Figure 1. Cloudlet deployment for MEC
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are denoted by W
k

andr
k

respectively. It is assumed that the servers are heterogeneous, f f
i j
¹ ,W W

i j
¹ , 

and different cloudlet servers have different costs and resource capacities in (Yao et al; 2017).
For each link v v

i j
,  ( ) in E, define the latency of transmitting a user request between two endpoints 

(APs)v
i
 and v

j
as the shortest path value between the two points, d

i j
denotes the latency of transmitting 

user requests between v
i
 and a cloudlet located at APv

j
. When the user u

i
 request is transmitted to 

the nearest AP v
i
 through the wireless network, the request delay can be considered as 0, otherwise, 

the user u
i
 request is transmitted to a cloudlet AP f

j
deployed at v

j
in a multi-hop manner, the 

transmission latency cannot be ignored. The definitions of the main symbols used in this paper are 
shown in Table 1.

Table 1. Symbol Definition

Symbols Definition

G V S U E= ∪ ∪{ },  APs set, potential cloudlet locations set and the mobile users set.

m V E n U= ∈ =, , =  The number of APs in V, the number of links in E, and the number of users in U.

R
j

User request collection of APv
j

.

r
i

User request rate in APv
i

.

p
ik

Contact probability between user u
i

 and APv
k

.

N
ik

The number of tasks that AP v
k

 receives from useru
i

.

dm
i

The resource demand of useru
i

.

d e( ) Link delay between APs.

T
r

Delay tolerance of useru
r

.

d
i j

Transmission delay between AP v
j

 andv
i

.

D
i j

The latency of useru
i

 offloading tasks to a cloudlet located atv
j

.

D
j

The average delay of AP v
j

 transmitting user requests.

W
k

The deployment cost of cloudlet server f
k

.

r
k

Resource capacity of cloudlet server f
k

.

P
tol

The total cost of cloudlet servers.
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Problem Statement
The key to the problem is how to place the cloudlet server to minimize the deployment cost of k 
heterogeneous cloudlet servers. Meanwhile, the average delay for each AP to transmit user requests 
shall not exceed the tolerable delay for users. The total resource demands for users’ request transmitted 
by each AP does not exceed the provisioned resource capacity. The cost-aware heterogeneous cloudlet 
deployment problem can be mathematically described as follows.

The cost-aware heterogeneous cloudlet deployment problem can be formulated as an ILP. For 
v k
j
Î [ , ]1   andv S

i
Î [ , ]1  , where b

i j
= 1  if cloudlet f

j
is deployed at APv

i , bi j = 0 otherwise. 
j
i j
= 1 , if the task request of useru

i
 is offloaded to a cloudlet located at v

j
 and j

i j
= 0 , otherwise. 

The number of tasks of user u
i
received by AP v

k
 is closely related to the contact probability q

ik
 

between the user u
i
 and APv

k
, N

ik
is calculated as Equation (2):

N R p i U k V
ik k ik
= ∀ ∈ ∀ ∈* , ,  	 (2)

Where

p i U
ikk V
= ∀ ∈

∈∑ 1,    	

Therefore, the number of task requests of all users that associate with APv
j
received byv

j
 

N
iji U∈∑ . D

i j
 represents the delay for user u

i
 offloading to the cloudlet located at v

i
, which is 

expressed as Equation (3):

D N d j S i U
i j ikk V kj ij
= ∗ ∗ ∀ ∈ ∀ ∈

∈∑ j  ,     , 	 (3)

The average delay of AP v
j
 transmitting user requests be expressed as Equation (4):

D
D

N
j S

j

ij i ji U

iji U

=
∗

∀ ∈∈

∈

∑
∑

j
 , 	 (4)

The objective of cost-aware heterogeneous cloudlet deployment problem is to minimize the cost 
of cloudlet deployment, which is described as Equation (5):

Minimize: P W
tol kk Fj V jk
= ∗

∈∈ ∑∑ b 	 (5)

subject to the following constraints:

 
i j  

        
j =

0

1

,

,

otherwise

if task request of user u is offloadei dd to a cloudlet located at AP vj        �{ 	 (6)
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b
ij otherwise

if cloudlet server f is deployed to APk= 0
1
,
,
 
          vi{ 	 (7)

b
i jj

S
K

=∑ = ∀ ≤ ≤
1

1,   1 i 	 (8)

b
iji

F
j S= ∀ ∈

=∑ 1
1

,  	 (9)

ϕ β
ij ik ii U kk F jk
p dm r j S∗ ∗ ≤ ∗ ∀ ∈

∈ ∈∑ ∑ ,    	 (10)

jij iji U

iji U
i

D

N
T j S

∗
≤ ∀ ∈∈

∈

∑
∑

 ,    	 (11)

Where constraint(8) ensures that each of the k cloudlet servers can only be deployed to one 
potential location from the set S, and constraint(9) ensures that each potential access point in set V 
should deploy one cloudlet server selected from set F. In order to avoid resource overload of cloudlet 
servers, constraint (10) ensures that the total resource demand from related users cannot exceed the 
provisioned resource capacity. To ensure users’ QoS, depending on the cloudlet relationship, constraint 
(11) ensures that the average delay for each AP transmit user requests to cloudlet does not exceed 
the given user delay tolerance.

ALGORITHM DESIGN

Based on (Yao et al; 2017), the proposed algorithm combines the user request rate of each AP with 
the transmission delay between AP and cloudlet, sorts APs by calculating the average network latency, 
and selects an optimal location for cloudlet deployment. In this paper, the problem of minimizing the 
cost of heterogeneous cloudlet deployment in WMAN is divided into three sub-questions, including 
cloudlet server selection (lines 1-4 of Algorithm 1), cloudlet server deployment(lines 5-11 of Algorithm 
1) and the QoS of users(lines12-27 of Algorithm 1).

For the server selection problem, the greedy strategy with the smallest unit resource cost is 
adopted, regarding the question of how many servers to select, user mobility and contact probability 
p
ik

can be taken into to select resource capacity of cloudlet servers that needs to meet the total resource 
demand generated by related users contacting the AP j

ij ik ii U
p dm∗ ∗

∈∑ . Therefore, first select a 
resource capacity of a cloudlet server is greater than the total resource demand generated by users 
contacted by AP (line 2of Algorithm 1).

For the cloudlet server deployment, aiming at the problem of selecting an optimal AP, the mobility 
of mobile users is taken into account in this paper. Because of different user request arrival rate of 
APs and the shortest data transmission delay between APs, it is necessary to combine the user request 
arrival rate of APs r

i
 and the shortest data transmission delay between APs d

i j
to calculate the average 

access delay of each AP in (Liu, 2019), which can balance the workload of APs, user density and 
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transmission cost between APs. Then sort the APs according to their average access delay to determine 
an optimal AP for cloudlet deployment (line 6 of Algorithm 1), m is the number of APs connected 
to APv

j
. The method of selecting an optimal AP is formulated as Equation (12):

A
d

m
j V

j

i iji

m

= ∀ ∈=∑ r
1   	 (12)

To ensure QoS of users, the average delay for each AP to transmit user requests to cloudlet does 
not exceed the given user delay tolerance, D ar

j j
£  (line 15 of Algorithm 1).The total resource 

demand from related users cannot exceed the resource capacity provided by the server
j
iji U ik i i
p dm capacity

∈∑ ∗ ∗ ≤  (line 16 of Algorithm 1), a two-layer loop is adopted to select the 
cloudlet server with the lowest deployment cost from the candidate subset (lines 8-23 of Algorithm 
1). If bothD ar

j j
£  and j

iji U ik i i
p dm capacity

∈∑ ∗ ∗ ≤  are satisfied, the subset is marked as the 
final choice. After exiting the loop, the number of servers with the lowest cost is obtained.

Algorithm 1

Computational Complexity Analysis
It can be seen from Algorithm 1 that the maximum number of iterations of IHA is similar to that in 
(Yao et al., 2017), of which number of iterations is O ( subset s N

i
* * ), subset represents the 

candidate subset of all servers. A set of candidate subsets of cloudlet servers can be defined ass
i
. 

s
i

 cannot exceed m  APs, and a subset of candidate servers can be obtained in advance. Therefore, 
Algorithm 1 has polynomial time complexity.

Table 2 continued on next page

Table 2. Improved heuristic algorithm (IHA)

Improved Heuristic Algorithm(IHA)

Input: G V S U E=  ∪ ∪{ }, , r
k

, R
k

, d
ij

, dm
i

, T
r

, W
k

, r
i

Output:P
tol

       1: /Cloudlet Server Selection/

        2: subset Find all server subsets that meets the user’s demands

       3: Sort subset in increasing order of cost

       4: Sort subset in decreasing order of resource capacity

       5: /Cloudlet Server Deployment/

6: L
AP

 Sort AP in descending order by A
j

7: P
tol

=max
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Improved Heuristic Algorithm(IHA)

8: for all s subset
i
Î  do

9: j '
i j
= { }0 ;b '

i j
= { }0 ;P

tol
' =0 ;

10: for all k S
i

Î , j L
AP

Î  do

11: b '
jk
= 1  ; P W

tol k
+ =

     12: /The QoS of Users/

13: for all i UÎ do

14: ar T flag
i r i
= =;  0 ;D

D

Nj

ij iji U

iji U

=
∗

∈

∈

∑
∑

j

15: if D ar
j j
£ then

16: if j
iji U ik i i
p dm capacity

∈∑ ∗ ∗ ≤ then

     17: end if

     18: end if

19: if flag
i
== 1 then

20: Update the resource capacity of v
j

     21: end if

     22: end for

     23: end for

24: if P P
tol tol

£ ' then

25: P P
tol tol

= ' ; j j
ij ij
= ' ;

     26: end if

     27: end for

Table 2 continued



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

12

Experiment and Analysis

In the existing research, there is no algorithm to directly solve this problem, the authors compare the 
performance between the IHA and HA from four aspects under different network scales, including 
the number of users, the number of servers, the maximum resource demand of users, the maximum 
resource capacity of cloudlet servers. The authors are the first to design a complete cost-aware 
heterogeneous cloudlet server model, which comprehensively consist of user mobility, cloudlet 
heterogeneity, number of user requests, and the average delay for AP to transmit user requests is 
calculated to ensure user QoS.

Experimental Settings
All the experimental settings are the same as those in (Liu, 2019; Yao et al., 2017). Barabasi-Albert 
model in the Networkx package in Python3.7 is used to generate the random network G= (V
È ÈS U E, ), each direct link d(e) is generated in [5ms, 50ms]. To construct a network transmission 
delay matrix between APsd

ij
, the Floyd algorithm is used to calculate the shortest delay between 

each pair of wireless APs. The parameter values in the simulations are set as Table 3. It can be seen 
that these parameters are adjustable and scalable. The number of cloudlet servers is half of the number 
of wireless APs. We first studied the performance and scalability of the improved algorithm on solving 
the new model by transforming the number of cloudlet servers from 5 to 50 and the number of users 
from 5 to 50. Then, we evaluate the performance of improved algorithm by varying cloudlet capacities 
from 10 to 80 and tolerable service access delay. HA-MUAD is used to represent the minimum user 
access delay by HA, IHA-AMURD is used to represent the average minimum user request delay 
solved by IHA, P(AMURD /MUAD) represents the percentage of the average minimum user request 
delay by IHA is less than the minimum user access delay by HA, and P(HA-P

tol
/ IHA-P

tol
 ) represents 

the percentage of the deployment cost P
tol

 by HA that is less than the deployment cost P
tol

 by IHA.

Table 3. The experimental parameter settings

              Notations   Parameter Settings Values

Resource capacity of a server f
k

. r
k

[10, 500]

Resource demand of a useru
i

. dm
i

[1, 50]

Delay tolerance of useru
r

(ms). T
r

[10, 500]

User request collection of APv
k

. R
k

[50, 500]

Link delay between APs. d(e) [5, 50]
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Effect of Number of Users On Delay and Cost
In this section, the number of cloudlet serversserver k( )  is set to 10 and the number of APs is set to 
20. The authors analyze the effect of the number of users on user delay by setting the number of users 
user n( ) [ , ]Î 10 50 . As shown in Table 4 and Figure 3, when the value of user n( ) is 10, 20,30,40 
and50 respectively, the IHA-AMURD is 7.47%, 38.21%, 56.86%, 59.56% and 81.20% less than HA-
MUAD respectively. The lower limit of T

i
 of IHA is thus less than the lower limit of T

i
 of HA. 

Because user mobility, cloudlet heterogeneity, number of user requests, and the average delay for AP 
to transmit user requests are comprehensively considered to ensure users’ QoS. Consequently, when 
the number of users increases from 10 to 50, the minimum average delay for each AP transmitting 
user requests gradually decreases. Therefore, as against HA, the new model and the IHA are close 
to the optimal solution for different numbers of users, of which the minimum average delay of AP 
transmitting user requests is relatively low.

Table 4. The relationship between the number of users and delay

Variables HA IHA Percentage

user n( ) MUAD (ms) T
i

(ms) AMURD (ms) T
i

(ms) P(AMURD /MUAD)

10 41.89 [60, 100] 38.76 [50, 100] 7.47%

20 40.43 [60, 100] 24.98 [40, 100] 38.21%

30 40.43 [60, 100] 17.44 [30, 100] 56.86%

40 40.43 [60, 100] 16.35 [30, 100] 59.56%

50 40.43 [60, 100] 7.60 [30, 100] 81.20%

Figure 3. Delay on different number of users
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It can be seen from Table 5 and Figure 4 that the number of users user n( )  increased from 10 
to 50, and the cost by IHA was lower than the cost by HA, indicating that the better performance of 
IHA and the new model. when the value of user n( ) is 10, 20,30,40 and50 respectively, the deployment 
cost by IHA is 12.40%, 8.25%, 31.32%, 19.95% and 5.30% less than the cost by HA respectively. 
Meanwhile, compared with HA, IHA only needs less resource capacityr

k
 to meet the user’s task 

requirements. Therefore, the lower and upper limit of r
k

 of IHA is less than the lower limit of r
k

 of 
HA. Although when user n( ) =50, r

k
∈ 


300 400, in IHA, since the designed model considers the 

contact probability between users and wireless APs, the deployment cost by IHA was lower than the 
cost by HA. The above experimental results show that IHA and designed model is more effective 
than HA.

Table 5. The relationship between the number of users and cost

Variables HA IHA Percentage

user n( ) r
k

P
tol

r
k

P
tol

P(HA-P
tol

/ IHA-P
tol

 )

10 [50, 150] 1814 [30, 130] 1589 12.40%

20 [100, 200] 4049 [50, 150] 3715 8.25%

30 [150, 250] 6385 [100, 200] 4385 31.32%

40 [200, 300] 10027 [170, 270] 8027 19.95%

50 [250, 350] 14215 [300, 400] 13462 5.30%

Figure 4. Deployment cost on different number of users
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Effect of Number of cloudlets On Delay and Cost
In this section, the user n( )  and APs are set to 20 and 15 respectively. As shown in Table 6, adjust 
server k( )  from 4 to 12. In a group of experiments, the cloudlet servers cannot meet the user’s resource 
demands when the number of cloudlet servers is less than 4, and no feasible solution can be found. 
Therefore, the number of cloudlet servers is set to be greater than or equal to 4. Similarly, it can be 
seen from Figure 5 that the number of cloudlet servers increases from 4 to 12, the IHA-AMURD 
gradually decreases. Because as the the number of cloudlets increases, the cloudlet server is already 
sufficient and stable to meet users’ resource demands, and there is no need to further include more 
candidate servers.

It can be seen from Table 7 and Figure 6 that the number of cloudlet servers server k( )  has 
increased from 4 to 12. The lower and upper limit of r

k
 of IHA is greater than the lower and upper 

limit of T
i
 of HA, however, when the value of server k( ) is 4, 6, 8, 10 and12 respectively, the cost 

Table 6. The relationship between the number of cloudlets and delay

  Variables HA IHA Percentage

server k( ) MUAD (ms) T
i

(ms) AMURD (ms) T
i

(ms) P(AMURD /MUAD)

4 32.28 [50, 100] 14.96 [30, 100] 53.66%

6 32.28 [50, 100] 16.73 [30, 100] 48.17%

8 32.28 [50, 100] 14.12 [30, 100] 56.26%

10 32.28 [50, 100] 17.99 [30, 100] 44.27%

12 32.28 [50, 100] 15.24 [30, 100] 52.79%

Figure 5. Delay on different number of cloudlets
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by IHA is 14.70%, 20.41%, 26.59%, 26.80% and 26.52% less than the cost by HA respectively. The 
resource capacity of each cloudlet server is proportional to the cost of the cloudlet server, meanwhile, 
when the number of cloudlet servers increases from 4 to 12, the deployment cost by IHA gradually 
decreases. Therefore, it can be proved that the higher performance of new model and the improved 
IHA, which can optimize the resource capacity of the cloudlet server while reducing the total cost 
of the cloudlet server.

Effect of the Maximum Resource Capacity of Cloudlets on Delay and Cost
The number of users, APs and cloudlet servers are set to 50, 20, and 10 respectively. As shown in 
Table 8 and Figure 7, with larger resource capacity, less cloudlet servers should be deployed to satisfy 
users’ task requirements. when the value of r

k
is 200, 250,300,350 and 400 respectively, the cost by 

IHA is 76.30%, 67.25%, 78.60%, 72.08% and 76.30% less than the cost by HA respectively. Meanwhile, 

Table 7. The relationship between the number of cloudlets and cost

Variables HA IHA Percentage

server k( ) r
k

P
tol

r
k

P
tol

P(HA-P
tol

/ IHA-P
tol

 )

4 [100,200] 1313 [150,250] 1120 14.70%

6 [100,200] 1303 [150,250] 1037 20.41%

8 [100,200] 1350 [150,250] 991 26.59%

10 [100,200] 1336 [150,250] 978 26.80%

12 [100,200] 1331 [150,250] 978 26.52%

Figure 6. Deployment cost on different number of cloudlets



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

17

the upper and lower limit of T
i
∈ 


20,50  of IHA is lower than the upper and lower limit of 

T
i
∈ 


50,  500  of HA. Therefore, the new model and the improved algorithm can be effectively 

applied to reduce the user tolerance delay while ensuring users’ QoS.

As shown in Table 9 and Figure 8, for HA, when user n( ) is 50 and r
k

 is 200, While ensuring 
the user QoS under the same capacity of the cloudlet server, the cloudlet servers handling more user 
resource demands can reduce cost and task waiting latency in a certain, therefore, the deployment 
cost shows as a decreasing function. For HA, the feasible and optimal solution can be found when 
the user resource demanddm

i
∈ 


1 10, . However, for IHA,dm

i
∈ 


1 15, , the feasible and optimal 

solutions can be found. Similarly, the upper limit of dm
i
 of IHA is greater than that of HA when r

k

increases from 200 to 500. Nevertheless, the high efficiency of the proposed Algorithm by it 
outperforms the HA in solving user delay and deployment cost.

Table 8. The relationship between the maximum resource capacity of cloudlets and delay

Variables HA IHA Percentage

r
k

MUAD (ms) T
i

(ms) AMURD (ms) T
i

(ms) P(AMURD/MUAD)

200 40.43 [50, 500] 9.58 [20, 50] 76.30%

250 40.43 [50, 500] 13.24 [20, 50] 67.25%

300 40.43 [50, 500] 8.65 [20, 50] 78.60%

350 40.43 [50, 500] 11.29 [20, 50] 72.08%

400 40.43 [50, 500] 9.58 [20, 50] 76.30%

450 40.43 [50, 500] 8.66 [20, 50] 78.58%

500 40.43 [50, 500] 8.66 [20, 50] 78.58%

Figure 7. Delay on different maximum resource capacity of cloudlets
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Effect of the Maximum Resource Demand of Users on Cost and Delay
As shown in Table 10 and Figure 9, this chapter evaluates the impact of the maximum resource 
demands of users on cost and delay. The fixed minimum user resource demand dm

i
is 10, and the 

number ofuser n( ) , APs andserver k( )  is 50, 20 and 10 respectively. When the maximum resource 
demand is increased from 10 to 80, the IHA-AMURD gradually decreases, which is lower than HA-
MUAD. Consequently, the experimental results show that IHA is more effective than HA.

As shown in Table 11 and Figure 10, when the resource capacity of users is 20 and 40 respectively, 
there is no difference between the deployment cost in HA and IHA respectively. Therefore, H0 
hypothesis is used to analyze the difference between the deployment cost of cloudlet servers of HA 
and IHA, and then, one-way Analysis of Variance (ANOVA) is applied to analyze the efficiency of 
the IHA algorithm by calculating the difference between the cost by IHA and the cost by HA. In 

Table 9. The relationship between the maximum resource capacity of cloudlets and cost

Variables HA IHA

r
k

dm
i

P
tol

dm
i

P
tol

200 [1, 10] 6215 [1, 15] 6215

250 [1, 15] 5966 [1, 20] 9925

300 [1, 15] 5017 [1, 30] 7775

350 [1, 15] 5028 [1, 30] 6143

400 [1, 15] 4721 [1, 30] 5552

450 [1, 15] 4396 [1, 30] 5323

500 [1, 15] 4036 [1, 30] 4660

Figure 8. Deployment cost on different maximum resource capacity of cloudlets
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one-way ANOVA, the significance level α is set to 0.1, after calculating, P-value is 0.993019. 
Mathematically, H0 hypothesism m

1 2
= , the alternative hypothesis H1:m m

1 2
¹  . Since p-value: 

0.993019 > α: 0.1, H0 is accepted, which demonstrates the difference between the deployment cost 
of HA and IHA is not big enough to be statistically significant. However, the deployment cost of 
cloudlet subject to the resource demand of users and resource capacity of cloudlet servers. The value 
range of the resource capacity of the IHA server is not only smaller than the value range of the HA 
resource capacity, but also can meet user requests with a lower deployment cost. Overall, IHA and 
the improved model have higher performance than those of HA.

Table 10. The relationship between the maximum user resource demand and delay

Variables HA IHA Percentage

dm
i

MUAD (ms) T
i

(ms) AMURD (ms) T
i

(ms) P(AMURD /
MUAD)

10 40.43 [50, 500] 10.87 [20, 50] 73.11%

20 40.43 [50, 500] 10.32 [20, 50] 74.47%

30 40.43 [50, 500] 11.35 [20, 50] 71.93%

40 40.43 [50, 500] 10.32 [20, 50] 74.47%

50 40.43 [50, 500] 7.60 [20, 50] 81.20%

60 40.43 [50, 500] 11.35 [20, 50] 71.93%

70 40.43 [50, 500] 10.87 [20, 50] 73.11%

80 40.43 [50, 500] 13.24 [20, 50] 67.25%

Figure 9. Delay on different maximum resource demand of users
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Conclusion

In this paper, the authors design a new and more comprehensive cost-aware heterogeneous cloudlet 
deployment model by introducing the number of user task requests and the average delay of APs 
transmitting user task requests, which is designed to improve the QoS of end users and reduce the 
cost of cloudlet deployment. Meanwhile, the authors develop the IHA with the method of selecting 
an optimal AP for cloudlet deployment and ensuring the QoS of users, the latency and the cost of 
heterogeneous cloudlet deployment are significantly reduced. The experimental results verify the 

Table 11. The relationship between the maximum resource demand of users and cost

Variables HA IHA

dm
i

r
k

P
tol

r
k

P
tol

10 [10, 200] 2244 [10, 200] 2201

20 [10, 250] 4038 [10, 230] 4038

30 [10, 300] 4931 [10, 250] 4402

40 [50, 500] 5464 [50, 500] 5464

50 [50, 500] 7454 [50, 500] 7735

60 [50, 500] 10184 [50, 500] 11192

70 [450, 500] 14982 [50, 500] 14691

80 [450, 500] 15316 [50, 500] 15067

Figure 10. Deployment cost on different maximum resource demand of users
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high efficiency and high performance of the model designed and the improved heuristic algorithm. 
In the future, we will optimize the deployment cost and network delay of cloudlet in WMAN, and 
use the number of servers deployed by wireless AP nodes and user resource capacity as constraints 
to optimize the heterogeneous cloudlet deployment model.
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