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ABSTRACT

This study proposed an eye responses-based mental workload (E-MWL) evaluation method in nuclear 
power plants (NPPs) when performing the task via a user interface control. The fuzzy theory was used 
to combine four eye response indices using the entropy weight method. Then, the E-MWL method was 
validated through experiments by comparison with the NASA-TLX rating and performance measures 
indices in two different tasks of the state-oriented procedure (SOP) in NPP. The correlation analysis 
results between the NASA-TLX and eye response indices showed that four eye response indices used 
in this study were correlated significantly with the NASA-TLX, indicating that these indices may 
develop the E-MWL method. The E-MWL score results indicated that it is highly correlated with 
NASA-TLX and performance measures indices in two different tasks of SOP in NPP. This has proved 
that E-MWL is an objective method suitable for evaluating and predicting human mental workload 
(MWL) for interface control task in NPPs.
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INTRODUCTION

The study of human mental workload (MWL) is not new; it has been discussed and researched since 
1960s (Kum et al., 2007). It is widely used in the study of human factors and ergonomics for industry 
fields due to both excessive and low level of MWL could decrease work performance (Nachreiner, 
1995). Increasing operators’ MWL, or overload, is one of the possible causes of information processing 
disruptions since the amount of information exceeds their processing capacity. In contrast, a low 
level of MWL can cause boredom and tend to make mistakes (Ryu & Myung, 2005). With the rapid 
development of science and technology, sophisticated industrial systems have progressed, in which 
operators often receive massive MWL task, especially for complex operating procedures in nuclear 
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power plants (NPPs) (Hsieh et al., 2015). Although there are many pieces of evidence to show that 
well-designed information automation can achieve suitable human operator MWL, analyses of 
various incidents indicate human errors as still a primary cause for more than 70% of accidents in 
NPPs (Isaac et al., 2002). Thus, enhancing the safety of NPPs based on the level of operators’ MWL 
is an additional significant concern and a permanent research topic.

MWL is also known as “cognitive workload,” considers perceptual and cognitive demands in 
particular, excluding other factors such as physical workload (Hwang et al., 2008). MWL could 
be defined as “the amount of mental work or effort necessary to perform a task in a given period 
of time” (Gao et al., 2013; Proctor & Van Zandt, 2018). It is induced not only due to the cognitive 
demands of the tasks but also by other factors, such as time demands, stress, fatigue and the number 
and complexity of assigned tasks (Sheridan & Stassen, 1979; Xie & Salvendy, 2000). Many studies 
have used subjective rating methods, such as the NASA-Task Load Index (NASA-TLX), subjective 
workload assessment technique (SWAT), workload profile (WP) method, etc., to evaluate the human 
MWL. The main advantages of subjective rating methods are that results are easy to implement, 
inexpensive, easily administered and they are provided directly by the operators. However, the 
disadvantage of this method is that rating results can be affected by characteristics of respondents and 
context surrounding (Dyer et al., 1976). Furthermore, the subjective workload cannot be collected 
in real time. Thus, developing the methods for measuring human MWL objectively with directly 
measured physiological signals is critical and helpful, especially for the industrial control system.

Currently, physiological measure methods are getting more and more attention due to rapid 
technology development. In contrast with subjective rating methods, physiological methods measure 
directly over time and can provide more accurate results due to using specialized equipment (Chuang et 
al., 2016). The basic principle of these methods is based on the response of the body to external sources 
of workload. They are collected directly and used as physical indices or to consider their correlation 
with MWL (De Waard, 1996). Some of the common psychophysiological methods to measure MWL 
are cardiopulmonary activity, eye-based measures, speech activity, brain activity and galvanic skin 
response. Eye response indices have been used to reflect the temporal distribution workload levels 
in HCI control task. However, most of the studies focus on the relationship of eye response indices 
to MWL without any research suggesting a method of combining them into a quantitative workload 
measurement value. Therefore, the main objective of this study was to develop an eye responses-based 
mental workload (E-MWL) evaluation method in the task of searching and processing of information 
in user interface control. The fuzzy comprehensive evaluation and entropy method were proposed to 
develop the E-MWL method based on the combination of eye response data.

The remainder of this paper is organized as follows: First, we give an overview of eye indices-
related measures of human MWL and fuzzy comprehensive evaluation method. Then, we present the 
process of suggesting the E-MWL method. The next section presents the validation of the suggested 
measure through experiments. Finally, we discuss the results and closes with a conclusion. This 
proposed method might be applied to measure a human operator’s MWL in the user interface control 
tasks in NPPs. From this, the manager can organize the human resources for each specific task to 
maintain suitable MWL as well as to improve the operator’s work performance.

RELATED WORK

In the task of monitoring and operating the industrial system via a user interface, eye response 
measurement is one of the most objective and useful measurement methods for evaluating operators’ 
MWL and the quality of interface designs (Rosch & Vogel-Walcutt, 2013). Various eye response 
parameters have been used to measure MWL, including Pupil diameter (dilation, size), blink rate, 
fixation, etc., have previously researched and confirmed as useful estimates of the human MWL. Pupil 
diameter has often been observed and evaluated in human factors study. It has been found to increase 
with increasing MWL as well as with a greater degree of difficulty of a task (Batmaz & Ozturk, 2008; 
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Hampson et al., 2010; Wierda et al., 2012). Iqbal et al. (2004) also concluded that pupil size to be 
“the most promising single measure of MWL”. Recently, many studies have used pupil diameter as 
a factor to evaluate MWL levels in interactive tasks with user control interfaces. Gao et al. (2013) 
found that pupil diameter in high complexity emergency operation procedures (EOP) is larger than 
in a low complexity EOP in NPP operation. Yan et al. (2017) also used this index to evaluate the 
interface design of NPP based on the searching task in EOP; however, no significant difference in pupil 
diameter was found in their study. Pupil diameter also applied to many other fields such as aviation, 
marine, driving, etc (Orlandi & Brooks, 2018; Philippe et al., 2016; Tran et al., 2017). However, 
although pupil diameter is useful to reflect temporal distribution workload levels in operating task, it 
is small and easily drowns in the large changes due to variation in light intensity of the surrounding 
environment or varying brightness of the screen may easily introduce artifacts into the data.

Pupil diameter usually combines with blink indices, fixation, saccadic and dwell time to estimate 
the human MWL of different tasks (Brookings et al., 1996; Van Orden et al., 2000). The eye blink is 
believed to be an indicator of both fatigue and workload. Numerous workload studies have considered 
blink rate (or blink frequency), duration and amplitude. Among them, blink rate has been observed 
to decline with greater workload due to processing visual stimuli, however, it has been observed to 
increase with increased load resulting from memory tasks (Wilson et al., 2004) and the connection 
between blink rate and workload seems tenuous (Castor et al., 2003). Several studies associate the 
rate of blinks with MWL; however, many studies on the relationship between blink rate and MWL 
showed the conflicting results. Specifically, there are some researchers failed to find a significant 
relationship between blink rate and MWL (Casali & Wierwille, 1983; Veltman & Gaillard, 1998). This 
is due to the results related to blink rate were mixed, with sometimes increasing rates and sometimes 
decreasing rates depending on the visual demands (Kramer, 1991). However, most studies have 
found that an increase in blink rate is associated with a decrease in task demands, particularly visual 
demands of tasks (Gao et al., 2013; Tran et al., 2017; Wilson, 2002; Yan et al., 2017). Hwang et al. 
(2008) also used eye blink rate and duration as measures of MWL in a simulated reactor shutdown 
task in NPPs, and they indicated that most of the participants’ eye blink duration was shorter and eye 
blink rate was less during the high task complexity than the low task.

Eye fixations are eye movements that stabilize the retina over a stationary object of interest and 
calculated by an event-detection algorithm. Fixations are then counted in the selected space, time, or 
portion of data. Among fixation indices, fixation rate is found that it is correlated to task complexity, 
and it can be used as the MWL measurement (Di Nocera et al., 2007; Van Orden et al., 2000). 
Fixation duration is also frequently used to assess MWL. It is concluded to increase with an increase 
in cognitive workload (Recarte & Nunes, 2000). Recently, several studies used fixation analysis in 
MWL evaluation and these indices often show high reliability (Ahlstrom & Friedman-Berg, 2006; Di 
Stasi et al., 2013; Yan et al., 2017). Similar to fixations, saccades have also been used as an indicator 
relative to MWL. Saccades, defined as ballistic eye movements that occur on very short timescales 
between fixations (Sibert & Jacob, 2000). Saccades rate increases when task difficulty, MWL or 
fatigue decreases (Nakayama et al., 2002). This conclusion is confirmed by Pan et al. (2004), who 
found a difference in saccades rate between two types of web page interface. In general, saccades 
rate almost identical to the fixation rate.

The fuzzy comprehensive evaluation method is to quantitatively identify the grade of each 
factor from the factor layer to the target layer. Compared with other methods such as the data-
driven artificial neutral network (Kankal & Yüksek, 2012), statistical method (Takuska-Węgrzyn, 
2008), support vector machine (Zhou et al., 2012), principal component analysis (Balas et al., 
2010) and others, fuzzy theory can better manage vagueness or information full of uncertainties. 
This method is developed based on the fuzzy set theory introduced in the 1960s (Zadeh, 1965). 
It is very useful in the management and application stage after evaluation as it is of great 
importance for decision-makers to correctly understand the evaluation results. Recently, a lot 
of research has used fuzzy theory as a popular method for comprehensive evaluation method 
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in many fields. Wang et al. (2015) used the fuzzy comprehensive evaluation model to assess 
operational ocean observing equipment based on 17 typical instruments in waves, water levels 
and winds in China. Asadzadeh et al. (2013) adopted fuzzy comprehensive model to analyze the 
integrated health, safety, environmental and ergonomics. The fuzzy theory was selected for the 
assessment of HCI designs (Chen et al., 2019). Therefore, the fuzzy comprehensive evaluation 
method has been widely applied in the application of multi-criteria comprehensive evaluation 
as a scientific quantitative evaluation means.

DEVELOPMENT OF E-MWL METHOD

Suggestion of E-MWL Method
In this study, the fuzzy theory was adopted for the combination of eye response indices using 
real measurement data, and their weights were given using the entropy method. The theory 
of fuzzy sets was introduced in the 1960s (Zadeh, 1965). It has now become an effective 
comprehensive evaluation tool based on multi-factor evaluation. Fuzzy theory has been 
successfully used in various domains related to environmental assessment (Xie et al., 2017), 
manufacturing (Chu et al., 2014), safety engineering (Jiang et al., 2012; Kang et al., 2016), 
engineering design (Jiao et al., 2016)., etc. Almost results of these studies showed that the 
sensitivity of fuzzy method is high due to pre-determined weights and decreased fuzziness by 
establishing membership functions (Li et al., 2013).

Human MWL is affected by many factors such as time demands, stress, complexity of tasks, 
working environment and their physiology. Physiological signal such as eye response were employed 
in this work as they are generally involuntary and represent objective data points. They have special 
characteristics, such as nonlinear, interactive, and fuzzy correlations, which are suitable for evaluating 
multi-factor by fuzzy theory. The detailed steps in the method are as follows:

Step 1: Establish the original variable matrix of eye response data A.

With m eye response indices and n participants form an original data. The matrix A can be 
expressed as Eq. (1):

A a
ij n m

= 

 × 	 (1)

where a
ij

 is the jth evaluating indices value of participant i.

Step 2: Normalization of the eye response data.

Due to the large differences in the dimensions, sizes, and evaluation standards of the indices, 
the comparability of these indices is poor. Therefore, these indices need to be normalized to achieve 
good comparability. Normalization data is determined by Eq. (2):

R r
ij n m

= 

 × 	 (2)

where, r
ij

 is the data of the jth eye response indices value of participant i, and r
ij
∈ 


0 1, . Between 

these indices, to which the bigger value is higher MWL, we get Eq. (3):
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In contrast, to which the bigger values are lower MWL, we get Eq. (4):
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Step 3: Establish a level and score of E-MWL.

To establish the score for E-MWL, the MWL level is distinguished as 5 degrees, hence, the 
evaluating score set can be defined as:

S very low low normal high very= 

 =20 40 60 80 100         [ , , , ,   high 	 (5)

Step 4: Determine a weights vector.

The weight design of evaluation indices is one of the critical parts in the fuzzy evaluation 
method, as it would directly impact the evaluation results. In this study, the entropy method (Shannon, 
1948) was used to calculate the weights of pupil diameter, blink rate, fixation rate and saccade rate. 
Basically, the entropy method is based on the actual data via the mathematical method to get the 
index weight. This method will balance the relationship between evaluation indices by similarity to 
an ideal solution based on considering adequately the information of values all the evaluation indices 
(Zou et al., 2006). Therefore, it can adjust the existing problems compared to the subjective weighting 
method. The entropy method has been widely used to calculate the weight of evaluation indices in 
engineering (Chen & Hao, 2011; Wang & Lee, 2009; Zou et al., 2006).

The eye response indices weights vector is determined as in Eq. (6):

w w w w w
m

= ( )1 2 3
, , ,... 	 (6)

where the weight of ith indices could be defined as:
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Step 5: Establish a fuzzy relationship matrix.

The fuzzy relationship matrix is defined by Eq. (9):

F f
ij m

= 

 ×5 	 (9)

where, f
ij

 represents the fuzzy membership of the jth evaluating indices value of participant i.
The triangular distribution function was selected to develop the fuzzy set function based on eye 

response evaluation criteria and ranks.

Step 6: E-MWL score can be calculated by Eq. (10):

C B S
T

= 

 ×



 	 (10)

where, B matrix can be calculated by multiplying weight vector and fuzzy relationship matrix in 
Eq. (11):

B w F= ×[ ] [ ] 	 (11)

Selection of Eye Response Indices
Eye response data could be selected to develop the quantitative operator MWL measurement for NPPs 
in the task of searching and processing of information in user interface control for the following reasons: 
(1) previous studies based on tasks in NPPs reported that the eye response measures are sensitive to 
variations of MWL in applied settings regarding arousal in visual search performance. (2) many eye 
response indices show high reliability when applied to MWL assessments in the industrial control 
interface. (3) currently, eye-tracking devices are becoming more and more popular. In addition, many 
low-cost eye-tracking devices have also been identified that it is suitable for detecting and measuring 
changes in the cognitive load of the operator (Čegovnik et al., 2018). Therefore, this study used four 
eye response indices to develop the E-MWL include pupil diameter, blink rate, fixation rate and 
saccade rate. Pupil diameter unit has been collected by mm; the average blink rate has been defined 
as a number of blinks per second. Fixation rate is the number of fixations divided by second, and the 
saccade rate has been measured as the number of saccades per second.

The evaluation criteria was proposed based on the basis of eye response indices in previous studies 
(Bentivoglio et al., 1997; Guillon et al., 2016; Nyström et al., 2016; Peshkovskaya et al., 2017; Wang 
et al., 2011; Wyatt, 1995), as well as suggestions from some experts who are specialized in human 
factors. The evaluation criteria and ranks show in Table 1.

EXPERIMENTAL VALIDATION OF E-MWL

This experiment was conducted to confirm whether the proposed MWL measurement method based 
on the combination of eye response indices can evaluate the human MWL and whether it is superior 
to existing methods. To accomplish this, the correlation between performance measures method and 
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subjective rating method with E-MWL were tested in two tasks of operation with different complexity. 
The statistical analysis was conducted using SPSS software, version 20. In all cases, α level of 0.05 
was used to determine statistical significance.

Selection of Measures Method
Performance Measures Method
The human MWL can be evaluated by performance measures, physiological measures, and subjective 
ratings (Tsang & Vidulich, 2006). Performance can be defined as the effectiveness in accomplishing 
a particular task. This method involves the collection of data from one or more subjects performing 
the task or tasks of interest using primary task performance and secondary task performance. In most 
investigations, the primary task performance will always be of interest as its generalization to the 
in-service performance is central to the study while the performance of the secondary task itself may 
have no practical importance. However, primary tasks are not very sensitive to changes of workload, 
especially when operators have spare capability to increase their effort level (Choi et al., 2018). The 
measure of secondary task provides a more sensitive measurement of operator capacity compared to 
the measure of primary task. However, it has the drawback that the measurement itself contaminates 
human performance by interfering with primary tasks. In addition, it is difficult to find a secondary 
task that matches primary tasks (Wu & Li, 2013).

In this study, operation time (second) and the number of errors were used as performance 
measures to validate the E-MWL because of following reasons: (1) operation time and the number of 
errors of operators data cannot fake the results or guess randomly due to the video playback feature 
collecting. (2) operation time and the number of errors are two important criterions of NPPs operating 
procedures. (3) numerous studies have been applied two indices to measure MWL in NPP (Gao et 
al., 2013; Hwang et al., 2008; Jou et al., 2009; Yan et al., 2017). The number of error was defined as 
the incorrect operations while performing the task and operation time was defined as the time that 
participant spend on each task of experiment. They were collected using video playback feature and 
were decided by experts

Subjective Ratings Method
Although subjective rating methods have some limitations, they are considered the easiest method, 
most convenient, least time consuming, and the least expensive form of evaluating MWL. In this study, 
the subjective rating method such as the NASA-TLX was used to evaluate the participants’ MWL. 
This method is the most widely used to measure MWL of HCI in many industrial domains such as 
automobile (Lehrer et al., 2010; Tran et al., 2017; Yan et al., 2019), NPPs (Jou et al., 2009; Naderpour 
et al., 2016; Yan et al., 2017) and others. NASA-TLX is calculated in the range from 0 (very low) 
to 100 (very high) workload based on six dimensions and their weightings. With this method, the 
participant provides ratings for a task on six dimensions of workload include mental demand, physical 

Table 1. The eye response evaluation criteria and ranks

Indices
Evaluation criteria

Very low Low Normal High Very high

Pupil diameter 2.5 3 3.5 4 4.5

Blink rate 1.25 1.0 0.75 0.5 0.25

Fixation rate 0.50 1.0 1.5 2.0 2.5

Saccade rate 2.0 1.55 1.1 0.65 0.2
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demand, temporal demand, own performance, effort and frustration. Each of dimensions is on a scale 
of 0 to 100 and their weightings are obtained by fifteen pairwise comparisons of the dimensions.

Participants
In this study, the validation of E-MWL method was conducted with participants who were trained 
for the specific task due to the difficulty of accessing the experts in NPPs. Thirty-two postgraduate 
engineering students with an age of 25 ± 3.8 years (M ± SD) were invited to participate in our 
experiment. Regarding the confirmation of the applied extension of the evaluation results in other 
future studies, the background information of all the participants, such as age, level of education, and 
authorization for data collection, was recorded as shown in Table 2. In addition, all participants had 
good vision ability, right-handed and good health on the day of the experiment. The experimental 
steps were supervised by experienced experts in the field of human factors and NPPs technology.

Equipment
State Oriented Procedure (SOP) System
The SOP was developed by French institutes (France) around 1980 based on the limitations of the 
Event Oriented Procedures in the traditional NPPs. After the Three Miles Island accident in 1979, 
the EOP limitations were apparent. Since then, accidental operating procedures have been extensively 
studied worldwide. The application of a digital SOP has significantly changed the logic of the operator 
in handling an accident and the information display pattern in the main control room. Namely, when 
the SOP system is used, operators have to search and utilize information related to the state parameter, 
system function, equipment, and procedures (Yang, 2010).

The principle of SOP is based on implicit assumptions in order to reflect actual events better. 
Specifically, it holds that: (1) events that happen can be none of the predefined events, but a 
combination of different events; (2) events can happen in a different way from what the event 
analysis predicts because of the impact of other events, device errors, operation errors, and other 
related factors; and lastly, (3) the procedure of incidental operating has to be a tool for operators can 
be diagnosed and identified complex events by providing diagnostic criteria for direct measurement 
on a continuous or iterative basis at a minimum rate. The safety procedures and injection procedures 
of the existing SOPs can be divided into three categories: digital operation procedures, hard disk 
operating procedures, and dynamic devices. The digital operation procedures and some of the hard 

Table 2. Demographic profile of participants

Characteristics Number

Gender
Female 8

Male 24

Age

23 or under 12

24-25 11

26 or older 9

Education level

Master student 26

Ph.D student 5

Postdoctoral 1

Vision
Normal vision 23

Wear glasses 9
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disk operating procedures are mixed and arranged in the digital protocol interface, and the display 
information of dynamic devices are arranged in the screen of special procedures.

The SOP procedures included all plant conditions from the normal power operation to the 
shutdown, namely hot shutdown, intermediate shutdown, cold shutdown, maintenance shutdown, 
and refueling shutdown. The interface used in this study is the interface of SOP procedure, which 
is used in NPP in China, Figure 1. The interface displays system, its different components and the 
information necessary to monitor the system state.

Eye Tracking System
The eye response data of participants were recorded by the iView X head-mounted eye-tracking 
device (SMI, Germany) at a sampling rate of 50 Hz, pupil/corneal reflection of less than 0.1°, and 
gaze position accuracy in the range 0.5°-1.0°. Calibration of the eye tracker was performed for each 
participant at the beginning of the experiment using the five-point method. The fixation rate was 
collected within the fixation length that varied from 80 ms to 900 ms, a filter depth of 80 ms, and a 
saccade length of 20 pixels. The area of interest was defined as the screen of the system interface. 
During the experiment, first, the raw eye-tracking data were recorded, and then, the data were analyzed 
by BeGaze software (version 3.0.169). The experimental environment and eye-tracking equipment 
procedure are shown in Figure 2.

Experimental Task
In the experiment, two operating procedures in the SOP system were used to validate the proposed 
E-MWL method. Due to MWL is expected to increase in proportion to the increase of a task’s 
complexity [49], the participants have been asked to execute two tasks of operation with low- and high-

Figure 1. The interfaces of RCE (a, b) and SI-CHK (b, d) of SOP system in NPPs
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workload levels, such as the partial isolation of a steam  generator without radioactivity (abbreviated 
as RCE) procedure and the safety injection sequence checkup (abbreviated as SI-CHK), respectively. 
The two procedures differed in the complexity and operation time were proposed by experts who are 
specialized in NPP technology: the RCE procedure had 28 steps, while the SI-CHK procedure had 
21 steps, which are presented in Table 3.

Experimental Procedure
All the participants received about one hour of training on the SOP system before the experiment. 
They were also taught how to use the iView X head mounted eye-tracking device and how to 
complete the questionnaire of NASA-TLX method. The experiment was conducted in a quiet 
room with full light by fluorescent lighting (neon lights). The experiment procedure was as 

Table 3. The RCE and SI-CHK operation procedures

RCE operation description SI-CHK operation description

1 Close VVP 130VV 1 Confirm SI by RPA 058TO and RPB 058TO

2 Close VVP 001VV by normal way 2 Note the time of SI in the RMC

3 Close VVP 127VV (TAFP steam) 3 Confirm CIA by RPA 062TO and RPB 062TO

4 Set GCT 131VV on EXT and AUTO 4 Confirm RIS 001PO and 002PO IS

5 Confirm the steam isolation by VVP 001TO 
and 002TO 5 Confirm RIS 077VP and 078VP open

… …. … ….

25 Close VVP 142VV 18 Confirm RIS 032VP,033VP,034VP and 035VP open

26 Close APG 006VL 19 Confirm RIS 061VP and 062VP open

27 Ask to implement RFLL sheet N° LL025 
(Steam isolation for non-radioactive SG) 20 Verify SI memories of diesel reloading by LHA 021KS 

and LHB 021KS

28 Inform US and OP1 of the partial isolation 
of SG 3 21 Verify the arming of recirculation memory by RPA 369KS 

and RPB 369KS

Figure 2. IView X head mounted eye-tracking device and data analysis software
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follows. (1) Each participant received the RCE and SI-CHK procedure and practiced to complete 
them without the iView X head mounted eye-tracking. The practice step ended when participant 
understood and operated proficiency procedures. To improve the reliability of the results, each 
participant was interviewed by an expert to ensure that he was ready for the experiment. After 
that, the participant took a 10 min rest. (2) Each participant was provided eye-tracking device and 
performed calibration. Then, the participant rested his eyes on a mild blue of the blank screen 
for 1 min and started the RCE or SI-CHK task in randomized order. (3) After the first task, the 
participant completed NASA-TLX questionnaire, and then rested for 15 min before starting on 
task 2. In order to ensure the reliability of evaluation results, all participants were not provided 
the information about the purpose of the experiment, and they were required to complete the 
experiment seriously.

Experimental Results
Significant Differences in Two Workload Levels
In this study, Paired t-Test was used to test the difference between NASA-TLX score, performance and 
eye response indices at two tasks. All the data from the experiment followed approximately normal 
distribution and there was no significant outliers in the differences between the two related analysis 
groups. The descriptive statistics are presented in Table 4. At α of 0.05, the result of NASA-TLX score 
showed that there was a statistically significant difference in task complexity (t = -4.02; p < 0.01). 
Performance measures results also showed that average operation time of two task is significantly 
different (t = -24.6; p < 0.01). However, the number of error was not significant different (t = -1.06; 
p = 0.148). The eye response data of all the participants of the two tasks are also given in Table 3. 
The results of paired t-Test indicate that there are significant differences in the average pupil diameter 
(t = −6.87, p <0.01), blink rate (t = 3.69, p <0.01), fixation rate (t = -2.37, p =0.012) and saccadic 
rate (t = 3.41, p <0.01).

Correlation Between the NASA-TLX and Eye Response Indices
Correlation analysis was conducted to consider the relationship between the NASA-TLX score 
and eye response indices as showed in Tables 5 and 6. The results showed that most eye response 
indices in this study are correlated significantly with the NASA-TLX. Specifically, the score of 
NASA-TLX and blink rate were positively correlated in two tasks. The statistics also revealed 
that the NASA-TLX score is correlated significantly with the saccadic rate in the SI-CHK task. 
In addition, the higher score of NASA-TLX was also associated with the higher pupil dilation 
and fixation rate. The results indicated that four eye responses indices used in this study may 
be used to evaluate MWL.

Table 4. t-Test of NASA-TLX score, performance and eye response indices between two workload levels

Method Low (RCE procedure) 
(M ± SD)

High (SI-CHK procedure) 
(M ± SD) p-value

NASA-TLX score 50.5±7.9 58.6± 6.4 <0.01

Operation time (s) 202.6±24.2 431.9±46.6 <0.01

Number of errors 2.8±1.7 3.3±1.5 0.148

Pupil diameter (mm) 2.76± 0.32 3.26±0.24 <0.01

Blink rate (blinks/s) 0.45± 0.07 0.35± 0.12 <0.01

Fixation rate (fixation/s) 1.37± 0.58 1.82± 0.86 0.012

Saccade rate (saccade/s) 0.93± 0.44 0.65± 0.20 <0.01
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E-MWL Evaluation Score

Based on the Eq. (6)-(8), the eye response indices weights of low W
1( )  and high W

2( )  workload 
levels were established as Eq. 12 and Eq. 13, respectively:

W
1

0 239 0 352 0 212 0 197= 

. . . .      	 (12)

W
2

0 203 0 362 0 217 0 218= 

. . . .      	 (13)

Table 6. Correlation between NASA-TLX and eye response indices in SI-CHK task

NASA-TLX Pupil 
diameter

Blink 
rate

Fixation 
rate

Saccade 
rate

NASA-TLX
Pearson’s r 1

Sig. (2-tailed)

Pupil diameter
Pearson’s r .720** 1

Sig. (2-tailed) .000

Blink rate
Pearson’s r -.868** -.511** 1

Sig. (2-tailed) .000 .003

Fixation rate
Pearson’s r .525** .336 -.433* 1

Sig. (2-tailed) .002 .060 .013

Saccade rate
Pearson’s r -.593** -.567** .613** -.403* 1

Sig. (2-tailed) .000 .001 .000 .022

*Correlation is significant at the 0.01 level (2-tailed).
**Correlation is significant at the 0.05 level (2-tailed).

Table 5. Correlation between NASA-TLX and eye response indices in RCE task

NASA-TLX Pupil 
diameter

Blink 
rate

Fixation 
rate

Saccade 
rate

NASA-TLX
Pearson’s r 1

Sig. (2-tailed)

Pupil diameter
Pearson’s r .705** 1

Sig. (2-tailed) .000

Blink rate
Pearson’s r -.602** -.379* 1

Sig. (2-tailed) .000 .033

Fixation rate
Pearson’s r .600** .540** -.424* 1

Sig. (2-tailed) .000 .001 .016

Saccade rate
Pearson’s r -.266 -.169 .224 -.407* 1

Sig. (2-tailed) .141 .356 .217 .021

*Correlation is significant at the 0.01 level (2-tailed).
**Correlation is significant at the 0.05 level (2-tailed).
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The fuzzy membership matrix F of all participants was obtained using the Eq. (9). For example, 
with the eye response data of 1st participant in high workload level (SI-CHK task), pupil diameter, 
blink rate, fixation rate and saccade rate were 2.92 mm, 0.39 count/s, 0.82 count/s and 0.47 count/s, 
respectively. So, the Fst

1
 shows in Eq.(14):

Fst
1

0 142 0 858 0 0 0

0 0 0 0 1

0 360 0 640 0 0 0

0 0 0 0 601 0 399

=













. .

. .

. .













	 (14)

E-MWL score of 1st participant was calculated by Eq.14, 15:

B W F
st st1 1 1

0 1068 0 3131 0 0 1307 0 4494= × = [ . . . . ]        	 (15)

C B S
st st

T
1 1

70 05= × = . 	 (16)

Similarly, the E-MWL score of all participants of two workload levels is plotted in Figure 3.

Validation of E-MWL Method

•	 Comparison of E-MWL with NASA-TLX.

The correlation analysis (Pearson’s correlation) was conducted to investigate the degree of 
correlation between two variables. The purpose of this step was to validate whether the suggested 

Figure 3. The E-MWL score of all participants in low workload (RCE task) and high workload level (SI-CHK task)
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E-MWL can measure an operators’ MWL. Figure 4 shows the results of a correlation analysis between 
NASA-TLX and E-MWL scores. Pearson’s correlation coefficient between NASA-TLX score and 
E-MWL is 0.685 (Figure 4a) and 0.752 (Figure 4b) for low and high workload levels, respectively. 
The results indicated that the correlation between E-MWL and NASA-TLX in high workload is 
stronger than that between the E-MWL and NASA-TLX in low workload level.

•	 Comparison of NASA-TLX score and E-MWL with the performance measure indices.

The correlation between NASA-TLX score and the performance measures and that between 
E-MWL and the performance measures in two workload levels are presented in Figure 5, 6. In the 
low workload level (Figure 5), the NASA-TLX has a slightly stronger relationship with the operating 
time than that of the E-MWL; however, the degree of the gap is small. In contrast, the correlation 

Figure 4. Correlation between E-MWL and NASA-TLX score of low (a) and high (b) workload level
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between E-MWL and the number of errors is stronger than that between the NASA-TLX. The analysis 
data of high workload level shows that E-MWL has a higher correlation with performance measures 
data than the NASA-TLX score (Figure 6). In addition, the correlation between NASA-TLX score 
and operation time have an abnormal data deviate from the trend line is greater than the correlation 
between E-MWL score and the operation time.

DISCUSSION

In this study, the operators’ MWL was calculated by fuzzy theory based on the combination of eye 
response indices. The NASA-TLX scores showed a significant correlation with the different levels of 
MWL. The operation time and the number of errors also increased as the task complexity increased 
from easy to difficult. However, no significant difference was found in number of errors. It may be 
possible to explain this result from the perspective of short operation tasks. A number of previous 
studies have also concluded that the number of errors is often not sensitive to workload in a short 
experimental time. The eye response results indicated that pupil diameter increases with the task 
complexity. Also, there was also a significant difference between the two tasks in blink rate and 
saccadic rate. This can be attributed to the need for increase processing due to higher workload in 
the SI-CHK task. The SI-CHK procedure has many operating steps on many different interfaces so 
operators need to broaden their search to locate and set the required parameters. This result indicates 
that two tasks used in this experiment could distinguish the different levels of MWL. In addition, the 
correlation analysis results between the NASA-TLX and eye response indices showed that four eye 
response indices used in this study were correlated significantly with the NASA-TLX, indicating that 
these indices may assess and develop the objective MWL evaluation method.

Figure 5. Correlation between NASA-TLX score and performance measures (a, c), E-MWL and performance measures (b, d) in 
low workload level (RCE task)



International Journal of Technology and Human Interaction
Volume 18 • Issue 1

16

E-MWL was developed to measure operators’ MWL, and it was validated through experiments 
by comparison with NASA-TLX and work performance, which has been widely used in NPPs field. 
The result of the proposed method is the combination with four eye responses indices thanks to the 
predetermined weights and decreased fuzziness by establishing membership functions. Therefore, 
this value can ensure reliability without the usual statistical analysis. The correlation analysis results 
between E-MWL score and NASA-TLX score indicated that Pearson’s correlation coefficient is highly 
correlated, thus, E-MWL can be considered as a tool for measuring the quantity of MWL. The positive 
correlation between E-MWL data and the NASA-TLX score, indicating that this method reflects the 
individual’s subjective sense of MWL in experimental tasks. In addition, the correlation between the 
E-MWL and NASA-TLX in high workload level is stronger than that in low workload level, it means 
that this method is suitable for applying MWL evaluation in high task complexity, and that changes 
in the complexity of task have a significant influence on subjective ratings.

The validity of the proposed method has been also tested by the correlation between E-MWL 
and performance measures and that between NASA-TLX and the performance measures in two 
different tasks. The analysis data of two workload levels show that operation time of performance 
measures has a slightly higher correlation than the error rate. The reason may be due to error rate is 
often not sensitive to workload in a short task time as well as in the laboratory environment (Hwang 
et al., 2008; Lanzetta et al., 1987; Yan et al., 2017). In addition, the data that unusually deviate from 
the trend line of NASA-TLX more than the E-MWL method. This is due to the subjectivity with 
which the participants assessed the workload themselves by NASA-TLX method. Even if one had felt 
uncomfortable, they might have rated it as a low MWL (Choi et al., 2018). Moreover, most subjective 
rating measures imply (if they do not explicitly state) it is MWL which is being measured and the 
effects of physical work associated are not considered.

Figure 6. Correlation between NASA-TLX score and performance measures (a, c), E-MWL and performance measures (b, d) in 
high workload level (SI-CHK task)
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Based on the analysis results, the data of eye response indices can be combined to produce reliable 
objective MWL in interface control, and the proposed E-MWL is suitable for assessing the objective 
MWL. Moreover, by comparing the correlation of E-MWL with NASA-TLX, performance measures 
and eye response indices, E-MWL was shown to be an appropriate objective index for evaluating and 
predicting operator’s MWL. It is of great importance for decision-makers to correctly understand the 
levels of MWL, and it will be difficult for people who are not acquainted with professional knowledge. 
Thus, evaluation of operators’ MWL objectively with directly measured physiological signals will help 
the managers to organize the human resources for each task to sustain the appropriate MWL as well 
as to improve the work performance. However, although physiological signal measurements have the 
capability to provide us with invaluable information that is just not possible with traditional methods, 
a major disadvantage is that different people may have different habits and emotional experiences. 
Thus, it is pertinent that other explicit measures, such as self-report questionnaires or think aloud, 
be used in conjunction with the physiological response measures.

CONCLUSION

This study develops an objective MWL evaluation method based on eye response data when operating 
the NPP system via a user interface control, and it was validated through experiments by comparison 
with the NASA-TLX rating and performance measures method. The proposed E-MWL method was 
demonstrated to be suitable for evaluating human MWL due to the high correlation with NASA-TLX. 
By comparing the correlation of E-MWL with the performance measures and that of NASA-TLX 
with the performance measures data, E-MWL was shown to be suitable for evaluating MWL. This 
method can be applied to develop an objective evaluation method in the actual work environment 
to evaluate and compare the effectiveness of different interface designs in NPPs. From this, the 
developers can allocate human resources for each task to sustain the consistent MWL as well as to 
improve the interface designs in the system.

However, the proposed E-MWL method has some limitations need to be further investigated. 
Firstly, this method was validated by students after being trained and practiced. Although they had 
the knowledge and skills for completing the tasks in the experiment, experience and their psychology 
might be very different from the experts. Thus, it is necessary to have validation experiments with 
professional operators or experts. Secondly, E-MWL method was validated through experiment by 
two tasks with different workload level. However, it is necessary to validate with other experiments 
with different tasks to confirm the reliability of the proposed method.
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