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ABSTRACT

Intelligent predictive systems are showing a greater level of accuracy and effectiveness in early 
detection of critical diseases like cancer and liver and lung disease. Predictive models assist medical 
practitioners in identifying the diseases based on symptoms and health indicators like hormones, 
enzymes, age, bloodcounts, etc. This study proposes a framework to use classification models to 
accurately detect chronic liver disease by enhancing the prediction accuracy through cutting-edge 
analytics techniques. The article proposes an enhanced framework on the original study by Ramana 
et al. It uses evaluation measures like precision and balanced accuracy to choose the most efficient 
classification algorithm in India and USA patient datasets using various factors like enzymes, age, etc. 
Using Youden’s Index, individual thresholds for each model were identified to increase the power of 
sensitivity and specificity. A framework is proposed for highly accurate automated disease detection in 
the medical industry, and it helps in strategizing preventive measures for patients with liver diseases.
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BACKGROUND

Liver is the largest glandular organ of the human body, which weighs around three pounds (Li et al., 
2012). The liver performs different types of metabolic functions, like filtering blood, producing bile, 
assisting in fat digestion, making proteins for blood clotting, metabolising drugs, storing glucose 
and, most importantly, detoxifying harmful chemicals Singh et al. (2017). Malfunctioning of liver 
may cause liver disease and have serious health effects. The causes of liver disease are varied and 
can include consumption of contaminated food, inherited disorders, accumulation of excessive fat, 
hepatocytes damage due to infection by bacteria, viruses or fungi, and excessive consumption of 
alcohol or drugs Lin et al. (2010). Malnutrition, obesity leads to advanced stage of liver disease and 
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non-alcoholic fatty liver disease further leading to non-alcoholic steatohepatitis and cirrhosis for 
some cases as discussed by McClain et al. (2020). They have also discussed various causes and the 
methods for assessing malnutrition. A patient’s survival rate may increase by several times if the 
diagnosis of the liver disease is done at an early stage, but diagnosis requires various examination 
tests by expert physicians. However, these do not always assure the correct diagnosis Takkar et. al 
(2017), but liver function tests do significantly help in examining liver disorders. The key parameters 
in these tests include albumin, alkaline phosphatase, total proteins, alanine aminotransferase, aspartate 
aminotransferase, direct bilirubin, total bilirubin, gamma-glutamyl transferase, prothrombin time, 
triglycerides and platelet counts. Liver diseases are categorised into more than 100 types, and the 
disease can be acute or chronic. Some liver disease has successful treatments, while others do not.

Liver disease and prediction now increasingly depend on intelligent systems, which now play 
a significant role in the medical industry. Data mining algorithms, neural networks and statistical 
techniques are widely applied to liver examination data to evaluate illnesses. Predictive modelling is 
a broadly used intelligent technique for automated detection of multiple diseases. Machine learning 
calculations provide specialists with essential measurements, continuous information and progressive 
examination data about a patient’s illness, lab test results, preliminary clinical information, and 
family history. As identified by Jesty (2019) machine learning tasks in the field of medicine can be 
classified into categories namely (i) genomics which is the study of DNA, (ii) audio analysis that is 
interpretable pattern of digital audio recording, (iii) computer vision which extracts information from 
digital images and videos by running algorithms, (iv) natural language processing which process 
text for meaningful information and (v) health record regression that establishes relations between 
features. The guarantee for improving the detection and prediction of disease has increased interest in 
machine learning in the biomedical field and had improved the decision-making process by increasing 
its objectivity. Not only for liver but also for any disease the diagnosis involves many uncertainties 
in the information system and to handle them different types of intelligent techniques are used with 
a proposed model as shown used by P. and Acharjya (2020).

Classification algorithms are cost effective and can be implemented in different automated medical 
diagnosis tools. The aim of this study is to enhance the predictive models used in the original study 
by Ramana et al. (2011) to increase the accuracy and effectiveness of current models. The study 
focuses on two patient data sets (INDIA and USA), and we have applied various machine learning 
techniques like Logistic Regression, Naïve Bayes, kNN, SVC, Random Forest, Gradient Boosting 
Machine, C 5.0, Feedforward Neural Network, Model Averaged Neural Network, and Multivariate 
Adaptive Regression Spline. We have estimated the performance measures of these techniques from 
various perspectives, such as Balanced Accuracy, Precision, recall and F1 – Score, to propose an 
efficient classification algorithm for liver disease detection based on the levels of various enzymes, 
patient age and other factors. The best classification algorithm in terms of accuracy, precision, 
sensitivity, and specificity was identified by comparing the performance of each algorithm using 
the receiver operating characteristic (ROC) curve. This study aims to propose a framework to help 
medical practitioners and other concerned researchers to accurately diagnose liver using a broad 
set of evaluation parameters. The study findings will help medical practitioners to make better and 
accurate decisions in liver disease detection.

LITERATURE REVIEW

Accurate predictions of liver disease have been obtained implementing machine learning techniques 
by different researchers as a result of improvements in technology. The work done in analysing 
liver disease by machine learning are by way of analysis of images of MRI, CT or ultrasound scans, 
predicting mortality among hepatitis patients and by way of analysing numeric and binary data 
for diagnosis of liver disease. Machine learning can also be integrated with smart IoT devices for 
collecting patient’s data accurately and those IoT devices need to have proper security protection 
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where machine learning can be a solution, Mohanta (2021). Also, the IoT devices can be used to 
gather physiological signals of the patients for further processing, which is supported by machine 
learning techniques, Banerjee et al. (2020). The machine learning techniques can be solved by using 
Nature Inspired algorithms as discussed by Kauser et al. (2017). Arshad et al. (2018) used data mining 
techniques to detect liver disease caused by excessive alcoholism. They constructed a decision tree 
for the datasets and used it to generate the rules. The source of the data was University of California 
at Irvine (UCI) laboratory and based on it the training dataset was developed. Statistical techniques, 
data mining algorithms and neural networks have also been widely deployed on liver examination data 
to evaluating liver disease. For instance, a data classification technique was proposed by Rajeswari 
and Reena (2010) where their experimental result dealt with data classification obtained from FT 
Tree algorithm, KStar algorithm and Naive Bayes algorithm. Their experimental result showed 
Function Trees provide 97.10% of correct result. Similarly, a proposal was made for identification 
of liver disease based on 10 important patient attributes using a decision tree, Naïve Bayes, and NB 
Tree algorithms by Alfisahrin and Montaro (2013), who designed a model in the Weka tool. Their 
model gave maximum accuracy with NB Tree algorithm whereas the minimum computation time 
was given by Naïve Bayes algorithm.

The concept of using various classification techniques to assist doctors in determining disease 
quickly and efficiently was described by Jinet al. (2014), who compared and analysed various 
classifiers, such as Naïve Bayes, Decision Tree, Multi-Layer Perceptron and k-NN, based on several 
parameters, including specificity and sensitivity. The algorithms were again implemented with 
the Weka, and the UCI Repository was used for the collection of the dataset. The outcome of the 
experiment was better classification results in terms of precision from Naïve Bayes and better recall 
and sensitivity from Logistic Regression and Random Forest.A study by Ramana et al. (2011) on 
various classification algorithms based on different attributes was carried out on different types of 
liver datasets and the performance was evaluated. SVM, Back propagation and KNN performed 
better on the selected dataset. Mazaheri et al. (2015) applied different classification algorithms 
in liver tumour classifications or segmentations. Durai et al. (2019) predicted liver diseases using 
machine learning and found that some of the machine learning approaches were not viable for a 
large volume of data. They determined that the classification process did not require large volumes 
of data and that the cohesion that a classifier shares with a particular set of data should stand did not 
need to be viable for the rest of the training set. They identified that the data quantity, features, and 
quality presented a major challenge for the accuracy of machine learning. For Indian liver disease 
patients, a comparative analysis of machine learning techniques was conducted by Kuzhippallil et 
al. (2020) and they proposed a method for building a predictive model for liver disease using various 
supervised machine learning algorithms. To get the best attributes for prediction of the liver disease 
they applied a genetic algorithm in combination with XGBoost, thereby effectively utilising various 
performance metrics. Recent studies from machine learning shows prediction of road accidents and 
thereby developing a smart transportation system using different machine learning models have been 
used by Mohanta et al. (2021) where the highest mean accuracy was achieved from Decision Tree. 
Artificial bee colony and rough set hybridization technique was used by Acharjya et. al (2021) which 
was applied on a hepatitis dataset and the proposed model helps in detection of the disease accurately 
with an accuracy of 96.2%.

For detection of malignant liver and its treatment, computer aided diagnosis method was adopted 
by Khan et al. (2022). Baitharu and Pani (2016) presented a method for the medical diagnoses of liver 
by learning pattern through the collected data. They used six popular classifier algorithms namely J48, 
Naive Bayes, ANN, ZeroR, 1BK and VFI and found improved predictive performance of all classifiers 
except Naive Bayes. A comparative study was performed by Pathan et al. [14] where 100% accuracy 
was found with Random Forest algorithm. The parameters for the study were accuracy, error rate, 
precision, recall and F-measure. Vijayarani and Dhayanand (2015) demonstrated a predictive analysis 
of liver disorder using two classification algorithms and the comparison was done on execution time 
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and accuracy. The result showed minimum execution time for Naïve Bayes classifier and highest 
classification accuracy for SVM classifier. Singh and Pandey (2016) presented an approach for 
diagnosis of liver disease by deploying various classification methods. Experimental results showed 
that Support Vector Machine based approaches have the best diagnostic accuracy rates and the best 
predictive model was least squares support vector machine. Sug (2012) performed an experiment on 
the BUPA liver dataset. By way of duplication, he increased the instances of minor classes so that 
the disdaining property is compensated while generating algorithms for decision tree as the dataset 
is relatively small and is having high error rate. Over sampling technique was used by him for minor 
classes and the experiment result showed good results with C4.5 and CART which are decision tree 
algorithms. He recommended them for oversampling for the data set to generate decision trees. For 
diagnosis of liver fibrosis and cirrhosis, Geng et al. (2016) used transient elastography where specificity 
was found to be 88%, sensitivity to be of 81%. For optimization and deriving optimal solutions in 
healthcare industry the hybrid nature-inspired algorithms have been used by Kauser et. Al (2020).

Overall, various studies have aimed at developing better prediction models for liver disorder 
disease. The use of data mining algorithms by various researchers is providing a better solution to 
the issue.

RESEARCH GAP AND OBJECTIVES OF THE STUDY

In recent years, healthcare systems have started using modern and automated capabilities, like machine 
learning, data mining techniques and artificial intelligence, in their efforts to improve diagnosis and 
treatment. This has created a scope for providing excellent medical solutions for patients. Healthcare 
management is one area which is broadly using predictive analytics for different objectives, like disease 
detection, patient care, patient recovery and drug formulation, as discussed by Park et al. (2014).

Liver disease, despite being one of the commonest diseases in the world, remains difficult to 
detect at early stages (Lin et al., 2009; Faisal et al., 2018; Wu et al., 2017). It can be triggered by many 
factors, like smoking, consumption of alcohol in excess, ingestion of arsenic-contaminated drinking 
water, obesity, low immunity, and inheritance, and it can be identified by analysis of several different 
enzymes in blood (Schiff et al., 2017). An efficient classification algorithm could help detection of 
liver disease early given the necessary patient data. Several studies (Sorich et al., 2003; Lin et al., 
2009; Harper et al., 2005; Huang et al., 2009; Ramana et al., 2011; Wu et al., 2017; Faisal et al., 
2018) have used in different types of machine learning algorithms, like Random Forest, Support 
Vector Machine (SVM), Neural Network, K nearest neighbour, Naïve Bayes, and Decision Tree, for 
the prediction of liver disease from chemical and medical datasets.

The present research examines the prediction of the presence of liver disease based on two 
datasets: an Indian database (ILPD; Indian Liver Patient Dataset) and the American UCI repository 
(Liver Disorders Data Set). This work is an enhancement of the groundwork of Ramana et al. (2011) 
and focuses on optimising the model and enhancing the liver disease detection using a broad set of 
parameters. In this research, we proposed to enhance the power of the predictive models for detecting 
liver disease in patients. Our goal was to improve the machine learning model of the original work done 
by Ramana et al. (2011) using different health indicators, like age and enzyme details. The findings 
will help the medical industry to improvise and to reduce errors in the identification of diseases and 
to arrive at accurate proposals for cures.

The literature reviewed above has provided an in-depth review of the techniques involved in 
critical health care detection of diseases like liver disease. The present article has framed following 
objectives for examination using a 4-fold cross validation on two datasets (Indian and US patients):

1. 	 Predict and compare the accuracies of multiple machine learning models based on the original 
study by Ramana et al. (2011).

2. 	 Use Youden’s J Statistics to improve the classification models to yield the best prediction results.
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3. 	 Use feature engineering to remove the high correlation among factors affecting liver disease 
detection accuracy.

4. 	 Optimise feature selection for the best performing model.
5. 	 Use a grid search for model optimisation.

The findings will provide one of the primary analysis methods for understanding and predicting 
liver disease using a robust machine learning model.

METHODS

This study focuses on identifying a patient with liver disease based on selected attributes. We are 
proposing a classification model that is sufficiently capable to identify liver disease without any 
intervention from an expert doctor. This kind of model can be leveraged in the medical industry, 
where it will help medical practitioners to arrive at accurate diagnoses in a short time.

Data Description
In this study, liver disease detection has been optimised using different classification algorithms. 
The two liver patient datasets used in this study are samples from the Indian ILPD and the 
American Liver Disorders datasets collected from the UCI Machine Learning Repository. The 
attributes of Indian (INDIA) data set are age, gender, total bilirubin, direct bilirubin, alkaline 
phosphatase (alkphos), alanine aminotransferase (SGPT), aspartate aminotransferase (SGOT), 
total proteins, albumin and albumin and globulin Ratio (A/G ratio); these are shown in Table 
1. The attributes of the American (USA) data set are mean corpuscular volume (mcv), alkaline 
phosphatase (alkphos), alanine aminotransferase (SGPT), aspartate aminotransferase (SGOT), 
gamma-glutamyl transpeptidase (gammagt), and number of half-pint equivalents of alcoholic 
beverages consumed per day (drinks) and are provided in Table 2. The liver functional tests 
common to both data sets are alkphos, SGPT and SGOT. The USA data set contains 345 patient 
records, and the INDIA data set contains 583 patient records. Figure 1 demonstrates the label-
wise count distributions for the ratios of patients with disease vs without disease of 416:167 and 
145:200 for the INDIA and USA datasets, respectively. Figure 1 shows the relative frequencies 
of dependent variables for the INDIA and USA datasets.

Table 1. Data description of Indian liver patient’s dataset

Indian Data

Mean Std. Dev.

Age 44.75 16.18983

total bilirubin (TB) 3.299 6.209522

direct bilirubin (DB) 1.486 2.808498

alkaline phosphotase (alkphos) 290.6 242.938

alanine aminotransferase (SGPT) 80.71 182.6204

aspartate aminotransferase (SGOT) 109.9 288.9185

total proteins (TP) 6.483 1.085451

albumin (ALB) 3.142 0.795519

albumin and globulin Ratio (A.G.Ratio) 0.9471 0.3195921
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Proposed Framework for Study
We accomplished the task of the classification problem by following several steps, including 
data pre-processing, training machine learning model and tuning, to reach a conclusion. The 
INDIA/USA liver patient data were first collected from the UCI/UCLA repository and subjected 
to exploratory data analysis to investigate the presence of missing values and multi collinearity 
in the data. The missing values in the selected column (A.G. Ratio) were imputed to obtain the 
completeness of the data. Multicollinearity check was done in data before modelling. In the 
Indian data, variable transformations were done to counter its effect. A similar process was also 
followed for missing value handling, multi collinearity checks and feature engineering for the 
USA data before training the machine learning models. A variable selection process was then 
performed based on the relative importance of the variables in presence of dependent variable 
to make our model easier to understand and interpret. The data were then considered ready for 
application to the machine learning algorithms.

We performed repeated cross validations while training the different machine learning algorithms 
on the training data set. We then analysed the F1 scores of all the machine learning algorithms to 
select the optimal classifier. Figure 2 shows a flowchart of the entire process.

Table 2. Data description of USA liver patient’s dataset

USA Data

Mean Std. Dev.

mean corpuscular volume (mcv) 90.16 4.448096

alkaline phosphotase (alkphos) 69.87 18.34767

alanine aminotransferase (SGPT) 30.41 19.51231

aspartate aminotransferase(SGOT) 24.64 10.06449

gamma-glutamyltranspeptidase(gamma gt) 38.28 39.25462

alcoholic beverages drunk per day (drinks) 3.455 3.337835

Figure 1. Relative frequencies of dependent variable (1 represents patients with liver disease and 2 represents patients without 
liver disease)
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Missing Value Handling
The INDIA dataset was complicated by the issue of missing values, as indicated in Table 3. We used 
a random forest algorithm to fill in the missing values (Young, 2017). The Mice package (Buuren et 
al., 2011) in R is enabled with the option of missing value imputation using multiple algorithms like 
random forest, predictive mean matching, weighted predictive mean matching etc.

Random forest is one of the imputation methods built on the Mice framework (Shah et al., 2014). 
To deal with continuous missing values (variables), Mice with random forests assigns the missing 
values by applying random produces from independent normal distributions which are centred on 
the means predicted from random forests. The out-of-the-bag mean square of the error is used as an 
estimator of the residual variance (Young, 2017). USA dataset does not have any missing values as 
shown in the Table 4.

Figure 2. Process Flow

Table 3. Missing value counts of Indian liver patient’s dataset

Indian Data

Missing value

Age 0%

TB 0%

DB 0%

alkphos 0%

SGPT 0%

SGOT 0%

TP 0%

ALB 0%

A.G.Ratio 0.69%
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Feature Engineering and Correlation Analysis
This research finds high correlation (> 0.6) between variables SGOT and SGPT in both the datasets 
(Figure 3). We have also found DB and TB to be highly correlated (> 0.6) in the INDIA dataset. 
To mitigate the issue of high correlation, we created two new variables. In the USA dataset, we 
introduced a ratio between SGOT and SGPT, which is a significant parameter of identifying liver 
disease [30]. For the other two correlated variables direct bilirubin (DB) and total bilirubin (TB), 
we have computed indirect bilirubin (IB) by subtracting DB from TB, which is a common practice 
by pharmacists (Tietze, 2011). These feature additions removed the correlation from the data after 
removal of TB, SGOT and SGPT from their respective datasets.

Feature Selection
To extract useful insights from high volume data, statistical techniques are needed to reduce the noise 
or redundant data. Since, it is not necessary for every feature to be used to train a model. Models 
can be improved by only including uncorrelated and non-redundant attributes. That’s why feature 
selection is necessary. Not only does it help in faster training of the model, but it also reduces the 
complexity of the model, makes the model and results interpretation comparatively easy as well as 
overall improves the performance metrics.

Figure 3. Correlation analysis of Indian and USA dataset

Table 4. Missing value counts of USA liver patient’s dataset

USA Data

Missing value

mcv 0%

alkphos 0%

SGPT 0%

SGOT 0%

gamma gt 0%

drinks 0%
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We have used Boruta algorithm (Kursa et al., 2010), where the shadow features get created. The 
Boruta algorithm works as a wrapper built around the random forest classification algorithm. It tries 
to capture all the important features in the dataset with respect to a dependent (outcome) variable. 
Using the Boruta algorithm, we duplicated the dataset and shuffled the values in each column. We 
then ran random forest classifiers on the merged dataset to estimate the variable importance of each 
feature based on mean decrease accuracy measure. The maximum Z score (MZSA) among the shadow 
was calculated and we tagged the variables as ‘important’ (Figure 4 and 5) if they had notably higher 

Figure 4. Feature selection of Indian liver patient dataset

Figure 5. Feature selection of USA liver patient dataset
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importance than the MZSA. We repeated the same steps for predefined number of iterations until all 
features were tagged with one category.

For both the INDIA and USA liver data, the missing values were imputed, and the correlation 
was checked. If found, the variable was transformed, and when not found, the variable selection was 
done on the ROC curve using the Boruta algorithm.

Machine Learning Algorithms
After performing all the above procedures, we finalised our model formulation for model training.

Indian dataset:

Selector Age DB Alkphos IB SGOT SGPT Ratio~ _ _+ + + + 	 (1a)

USA dataset:

Selector mcv Alkphos gammagt drinks SGOT SGPT Ra~ _ _+ + + + ttio 	 (1b)

This study has considered following machine learning algorithms for modelling: Logistic 
Regression, Naïve Bayes, kNN, SVC, Random Forest, Gradient Boosting Machine, C 5.0, Feedforward 
Neural Network, Model Averaged Neural Network, and Multivariate Adaptive Regression Spline.

Performance Evaluation of Machine Learning Algorithm
This research uses classification models like Logistic Regression, Naïve Bayes, kNN, SVC, Random 
Forest, Gradient Boosting Machine, C 5.0, Feedforward Neural Network using BFGS optimization, 
Model Averaged Neural Network, and Multivariate Adaptive Regression Spline using 4 – fold cross 
validation (k = 4) and grid search parameters. Grid searches for a wide range of parameters have 
been used to gain maximum output from the models. However, given the size of the datasets, we 
were limited in the range of values for each parameter to avoid overfitting. For random forest, we 
have detected optimal number of trees for decision making in each case. For each of these models, 
we have set an initial cut-off value of 0.5. For the cut-off value, we have estimated true positive, 
true negative, false positive and false negative values, along with Kappa from the confusion matrix 
(Stehman, 1997). We have computed different parameters, namely Accuracy, Sensitivity, Specificity, 
Precision, Negative Predictive Value, Miss Rate, Fall-Out, False Discovery Rate, False Omission 
Rate, Threat Score, Balanced Accuracy, Informedness and F1 Score.

•	 Balanced Accuracy: Balanced accuracy is calculated as the mean of the proportion of correctly 
classified liver and non-liver patient points of each class individually.

•	 Informedness: Informedness measures how our model is informed about positive and negative 
predictions by considering both real positives (RP) and real negatives (RN).

•	 Threat Score (TS): The Threat Score (TS), or Critical Success Index (CSI), combines the 
fraction of predicted liver disease that is forecasted correctly and the fraction of ‘yes’ forecasts 
that were wrong into one score for low frequency events.

•	 False Discovery Rate: The false discovery rate (FDR) is the expected proportion of positives. 
In our case, the false discovery rate reflects the situation when the model predicted someone as 
a liver patient, but the patient does not actually have the disease.

•	 False Omission Rate: The false omission rate measures the proportion of false negatives which 
are incorrectly rejected. In our case, this indicates the number of wrongly rejected predictions 
termed as non-liver patients but when the patient is a liver patient.
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After achieving the values using the default classification threshold of 0.5, we tuned the model 
using Youden’s J Statistics or Youden’s Index [45] to achieve maximum Sensitivity and Specificity 
to maximise detection accuracy. This method helped the models to gain maximum Informedness in 
terms of probability of an informed decision.

RESULTS

The primary objective of this study was to accurately identify the presence of liver disease in a 
patient. The liver disease datasets INDIA and USA were taken from the UCI machine learning 
repository. These datasets reflect the presence or absence of liver disorder in patients based on the 
various medical test results per formed on the patients. The key features from the tests for the INDIA 
patients included age, total bilirubin, direct bilirubin, albumin and globulin ratio, alkaline phosphatase, 
albumin, alanine aminotransferase, aspartate aminotransferase and total proteins. For the USA dataset, 
the key features were the mean corpuscular volume, alkaline phosphatase, alaine aminotransferase, 
aspartate aminotransferase, gamma-glutamyl transeptidase and alcoholic beverages drunk per day. 
The INDIA dataset contains 583 samples belonging to two distinct classes (416 or 71.35% are cases 
of patients with liver disorder and 167 or 28.65% are healthy individuals). For USA, the sample size 
is 345, with 42% being patients with liver disorder.

The classification methods implemented in the study were Logistic Regression, Random Forest, 
K-Nearest Neighbour (KNN), Naïve Bayes, Support Vector Machine (SVM), Decision Tree C 5.0, 
Gradient Boosting Machine (GBM), Multivariate Adaptive Regression Spline (MARS) and Neural 
Network (Feedforward and Model Average). These approaches included a four – fold cross validation 
technique and optimisation of the models with Youden’s index. The experimental results in Table 5 and 
Table 6 confirmed that all the algorithms showed significant prediction performance improvements 
after tuning with Youden’s index. The study considers Balanced Accuracy as a better evaluation 
metric compared to Accuracy. Nevertheless, random forest, which was tuned for the optimal number 
of trees based on minimal OBB error, showed the best accuracy rates with the optimised cut-off value 
using Youden’s Index for both the INDIA and USA liver datasets. We have taken a range of 5 to 2000 
trees to grow the random forest to select the best random forest model. The Model Averaged Neural 
Network showed significant improvement for the results in the USA dataset, which was designed 
using 5input, 1 hidden and one output layer in its structure.

This study focused on a broad set of evaluation metrics for identification of the optimal 
classification algorithm, in contrast to previous studies made on liver disease identification (Ramana 
et al., 2011; Takkar et al., 2017), chronic disease classification (Jain et al., 2020) and heart disease 
prediction (Priyanga et al., 2018). Using Youden’s Index, we were able to increase the precision of 
the models significantly compared to values against a default threshold of 0.5. The use of Youden’s 
Index helped the models to increase the probability of an informed decision, thereby reducing the 
negative predictive value and false positive rate (Table 5 and 6). The numbers of false positives were 
significantly reduced and increased the precision of the models. In the INDIA data, almost all the 
model’s accuracy decreased, except for the random forest and support vector classification, where 
the accuracy increased after use of the cut-off value from the Youden’s Index.

DISCUSSION

This study introduced data engineering techniques which were applied to both the INDIA and USA 
liver datasets before applying machine learning algorithms. The missing values found in the INDIA 
dataset were imputed based on predicted values using the random forest technique. This eliminated 
the risk of losing information by removing records with missing values. This study also checked 
for high correlation among explanatory variables. To deal with this issue, we formulated new 
explanatory variables by conducting feature engineering on highly correlated independent variables. 
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The formulation of direct DB, indirect DB and the SGOT – SGPT ratio were on par with the medical 
literature values (Cohen et al., 1979; Tietze, 2011). This is one of the unique approaches followed 
by this study that was not present in the base study by Ramana et al. (2011), as well as in the other 
literature (Takkar et al., 2017; Singh et al., 2016).

In results, the Random Forest algorithm surpassed all other algorithms in terms of performance 
for both the datasets. Informedness saw a significant increase in SVC compared to all other models 
in the INDIA liver dataset. The approach using Youden’s index resulted in significant improvement 
of precision which also ensured effectiveness in identifying a patient with liver disease. However, this 
was found for the INDIA dataset only. For the USA dataset, we saw an improvement in the negative 
predictive value which helps in identifying healthy patients by reducing number of false negatives in 
identification. Overall, however, the balanced accuracy improved significantly for both datasets after 
the use of Youden’s index. Apart from the random forest, the C 5.0 and GBM showed significant 
accuracy in predictions. Informedness also increased in all the models with Youden’s index compared 
to the default threshold value 0.5.

However, this study is limited by the sample sizes for both the datasets. The prediction accuracy 
could vary if the sample size were to increase. The inclusion of other health indicators could also help 
the classification models to accurately identify liver disease in a patient. Studies based on different 
age groups as well as topologies could help to reveal the roles of different health indicators in liver 
disease detection. Future studies should focus on these areas to improve the accuracy of the models.

CONCLUSION

Our findings from the analysis answer the study’s research questions and help to achieve its goals, 
which are to accurately diagnose liver disease using a classification algorithm and to determine 
the algorithm parameters of measurement like sensitivity, accuracy, precision, kappa etc. The 
study findings will enable better decision making by medical practitioners and researchers in 
terms of liver disease detection. Predictive models will help patients in early diagnosis of liver-
related issues and disease. However, given the nature of the datasets available, care must be 
taken to avoid overfitting issues due to the use of advanced techniques and machine learning 
algorithms on clean and small-sized samples. Figures 6 and 7 show the AUC (area under the 
ROC curve) to be exactly 100%, which is pertinent to these samples. We propose machine 
learning models with an extensive set of parameters and tuning using cross validation, Youden’s 
index and algorithm-specific parameters to achieve the highest level of accuracy in liver disease 
prediction. Introduction of medically approved parameters in the predictions would help in better 

Figure 6. ROC Curve for default and optimal threshold for Indian Dataset
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understanding the model. Medical practitioners will be able to make an informed decision with the 
help of an intelligent detection system using predictive modelling. This will help to significantly 
reduce health hazards and events like deaths in liver disease diagnosis.
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