
DOI: 10.4018/IJITWE.304048

International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

ABSTRACT

Blockchain-enabled smart contracts are subjected to several issues leading to vigorous attacks such as 
the decentralized autonomous organization (DAO) and the ParitySig bug on the Ethereum platform 
with disastrous consequences. Several solutions have been proposed. However, new threats are 
identified as technology evolves and new solutions are produced, while some older threats remain 
unsolved. Thus, the need to fill the gap with a more comprehensive survey on existing issues and 
solutions for researchers and practitioners arises. The resulting updated database will become an 
essential means for choosing a particular solution for a specific subject. In this review, the authors 
embrace mainly codifying security privacy and performance issues and their respective solutions. 
Each problem is attached to its corresponding solutions when they exist. A summary of the threats 
and solutions is provided as well as the relationship between threat importance and the given answers. 
They finally enumerate some directives for future works.

Keywords
Blockchain, Codifying, Concerns, Intelligent Agreement, Performance, Privacy, Safeness, Solving

INTRODUCTION

Transactions are subject to risks and high transaction fees in the real world, especially when third 
parties are involved. The creation of blockchain technology brought the light of hope to this issue. 
The Blockchain is a decentralized ledger that allows secure transactions at a low cost (Nakamoto, 
2008). At first, its application was related to the finance domain using the Bitcoin currency but has 
been extended lately to several sectors, including the contract domain, giving rise to a new intelligent 
contract era. Smart contracts based on Blockchain are a set of codes that enforce contract execution. 
Their correctness is essential to ensure trust in blockchain-based systems (Alexandre et al., 2018).

The contracts are presented as programs running on blockchain platforms, such as the Ethereum 
Virtual Machine (EVM). They interact through well-defined interfaces where no third parties are 
involved in the financial transaction’s completion in a distributed environment. However, attackers can 

Smart Contracts Security 
Threats and Solutions
Senou Mahugnon Rosaire, Institute of Mathematics and Physics, University of Abomey-Calavi, Benin*

Degila Jules, Institute of Mathematics and Physics, University of Abomey-Calavi, Benin

 https://orcid.org/0000-0003-4688-9178

https://orcid.org/0000-0003-4688-9178


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

2

exploit security vulnerabilities from the interfaces as they provide favorable malicious deeds (Yu et 
al., 2019). Blockchain technology has an immutability property that does not simplify bug fixing in a 
smart contract. One of the main reasons is that a deployed smart contract is not modified directly when 
bugs are found. It involves assets and different parties that need to be considered carefully. A novel 
version of the contract is created and deployed to fix bugs. However, data on the previous contract is 
not automatically sent to the new contract. Manual intervention is required to initiate the new contract 
with the earlier data, which is very clumsy (Shuai et al., 2019). Several smart contract vulnerabilities 
have been noticed; a breach of trust in the underlying blockchain technology was revealed (Evgeniy, 
2018). Two of the most notorious security breaches are the infamous Decentralized Autonomous 
Organization (DAO) exploit, which has led to a considerable loss of more than $50 million, and the 
ParitySig attack, where $169 million is locked forever (Yuepeng et al., 2019; Franklin et al., 2019).

These incidents shed more light on the importance of securing smart contracts, and the user 
community started to pay more attention to them. Therefore, programmers are forced to ensure that 
smart contract codes are challenged from security perspectives before deployment. Consequently, 
smart contract issues have been hot topics among researchers (Wang et al., 2018). The frequent threats 
in the literature are related to codifying, security privacy and performance aspects, smart contract life 
cycle, and the blockchain architecture layers (Maher & Aad Van, 2017; Zibin et al., 2019; Huashan et 
al., 2020). Several contract analysis tools have been developed in the past few years to address these 
concerns and consist of an important database that needs to be continuously updated. Indeed, such 
a document is a powerful tool to help and guide blockchain practitioners and researchers. As most 
difficult issues are tackled, it is a severe option to ensure minimum security on the blockchain smart 
contract. However, threats have been discovered. Previous tools become obsolete against new threats, 
and security is therefore not assured. This situation becomes a concern and would lead Blockchain 
and smart contract users to conduct dense and thorough research to ensure smart contract safety. Also, 
as some issues are yet to be tackled, and some have received more attention than others, it becomes 
relevant to bring to their knowledge a clear vision of smart contract security for a better tool choice.

Thus, we provide this review to combine several smart contract problems with their respective 
solutions as much as possible. This article surveys the literature of smart contract issues from 2014 to 
2021 as they apply to codify, security, privacy, and performance domain. Solutions related to issues 
are classified accordingly, while suggestions for likely research directions are presented.

Our contributions from this work are described as follows:
Identifying new vulnerabilities concerning codifying, security, privacy, and performance issues.
Identifying newly developed solutions against vulnerabilities.
Creating a new database that can serve as a guideline in the smart contract security domain with 

insights on future directions to help researchers, students, and practitioners.
Section 2 talks about the problem statement and objectives in the rest of the paper. Section 3 

presents Blockchain and smart contracts. Then, section 4 tackles the research methodology, while 
section 5 shows the results obtained. After that, the discussion of the results is conducted in section 
6, and section 7 presents research perspectives. Finally, section 8 concludes the paper.

PROBLEM STATEMENT AND OBJECTIVES

Several blockchain-enabled smart contract issues have been noticed, and solutions have been provided 
accordingly. Researchers combined the solutions to produce a literature review document related to 
the topic. However, the rapid growth of threats and solutions makes the previous database obsolete. 
Indeed, when referencing the existing database, only old bugs and related solutions are found. This 
results in a waste of time, leading to conducting more studies. As of this writing, as far as we know, 
only one database related to codifying, security, privacy, and performance was created in 2017, which 
is indeed outdated due to the fast development of the technology.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

3

Smart contracts are involved in several domains where a considerable amount of money must be 
secured as much as possible. Indeed, using the wrong tool to verify blockchain security thoroughly 
would result in security breaches, leading to loss of money.

This work’s contribution is to draw smart contracts users’ attention to the risks related to using 
this technology and how best they can secure or check their smart contract for a particular issue with 
the most appropriate tool while setting a new referencing database.

This includes:
Providing a current database that groups codifying, security, privacy, and performance issues 

with the most appropriate tool for their detection. This brings into combined document methods or 
new methods to detect threats.

Providing guidelines regarding the most recurrent and dangerous issues. Indeed, the more 
notorious a threat is, the more drastic measures are needed to counter it. This helps smart contract 
practitioners grasp how far research has evolved to secure smart contracts while allowing them to 
instantly. choose from among various tools.

Proposing future research perspectives.
Setting a new benchmark for the issues involved in the study. Though research has evolved, 

greater improvements are necessary to secure smart contracts better.

THE STATE OF THE ART

Blockchain and Smart Contracts: A Brief Overview
A blockchain is a distributed system that allows transaction completion without a third party 
(Nakamoto, 2008). The blockchain system consists of blocks with several transactions connected to 
a precedent block to form a chain. There is a genesis block to which the other blocks are appended, 
and every generated block goes through a validation process (Zibin & al., 2019) before it joins the 
chain. The reliability of the chain comes from the consensus algorithms. Some of them, such as Proof 
of Work (PoW), Proof of State (PoS), and Practical Byzantine-Fault Tolerance (PBFT), are used to 
solve a puzzle with the help of miners for block validation among nodes. The miner is responsible for 
selecting new transactions, recording them in the new block, and executing those contracts (Franklin 
& al., 2019). Solving the puzzle is difficult as the process must at the same time secure the Blockchain 
by preventing attackers from forging it. As a result, Blockchain exhibits decentralization, integrity, 
and auditability (Shuai et al., 2019), which allows its adoption.

Blockchain-based smart contracts are systems that get executed on distributed nodes without a 
central authority, allowing companies to collaborate easily while enforcing contract clauses (Chibuzor 
et al., 2018). Each smart contract receives a unique address, and for its execution, a transaction is 
initiated between a sender and the smart contract. A computational cost is needed to complete the 
transaction. The unit of the transaction cost is gas. The used gas gives the block miner where the 
transaction is kept, and the sender returns the unused gas. A threshold value for gas usage is specified 
to prevent unnecessary gas usage due to unoptimized programs. An exception is thrown when 
the gas threshold value is attained (Daniel & Benjamin., 2019). The contract execution follows a 
predefined process involving all network nodes concerning the triggering transaction data. According 
to (Konstantinos & Michael., 2016), each node involved in the smart contract blockchain-based runs 
a virtual machine (VM).

As the blockchain network consists of several nodes, it is then considered to be a distributed VM. 
The smart contract source code is available, and once deployed, it cannot be changed. Therefore, the 
executed code must be error-free while ensuring trust and fulfillment of intended use (Franklin & al., 
2019). Smart contracts are created with solidity, one of the programming languages designed for it. 
It is mainly used by programmers and is similar to an object-oriented language (Zeinab & al., 2018).



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

4

RELATED WORK

Several studies have been conducted on blockchain-based smart contracts. Authors (Chibuzor & 
al., 2018) produced a systematic review of older studies emphasizing smart contracts application 
in organizations. The implementation of smart contracts for the internet of things (IoT) has been 
tackled by (Konstantinos & Michael., 2016) in their work, where combining the two technologies 
is a significant concern. Evgeniy (2018) brought upfront smart contract security concerns while 
providing a symbolic model checking that ensures smart contract business logic correctness. Other 
solutions such as Oyente, Mythril, Madmax, Vandal et ContractFuzzer, security, SmartCheck, Zeus, 
etc., are proposed for vulnerabilities, and are summarized in Reza et al. (2018), Sukrit et al. (2018), 
and Daniel and Benjamin (2019). Greedy, Prodigal, and Suicidal contracts categorize attacks that 
the authors identified (Ioannis et al., 2018). They implemented Maian, a symbolic execution tool 
for detecting such attacks. These attacks are also tackled by Wesley et al. (2019) using Long Short 
Term Memory (LSTM), a machine learning technique. This machining technique has been further 
improved in (Peng & al., 2020) work with bidirectional LSTM (BLSTM) and BLSTM based on an 
attention mechanism for detecting reentrancy attacks on blockchain-enabled smart contracts.

A systematic mapping study on smart contracts was conducted Maher and Aad Van (2017). 
This study focused on smart contracts’ key parameters, codifying issues, and other smart contract-
related topics, including smart contract application topics. Zibin et al. (2019) provide a study on 
smart contracts while addressing challenges during the different phases (creation, deployment, 
execution, completion) of their existence. Huashan et al. (2020) tackle ethereum blockchain attacks, 
vulnerabilities, and defenses, and Jorge et al. (2019) provide a review on blockchain privacy issues. 
Monika & Gernot (2019) produced a document that embraces smart contract tools for vulnerability 
detection is produced. Sarwaar et al. (2020) describe the most (10) tools for threat detection while 
emphasizing their limitations.

Suvitha & Subha (2021) explored various smart contract platforms and their features for 
appropriate use. Negara et al. (2021) conducted a literature review with an exploratory approach 
where frameworks, methods, and simulations of smart contract implementations in various domains 
are reviewed. In their survey, Garfatta et al. (2021) presented a general overview of smart contracts 
verification, mainly formal verification. They provided results related to formal method approaches 
as well as threats they can tackle. Samreen and Alalfi (2021) conducted a survey where eight 
vulnerabilities and their detection tools were reviewed. Khan et al. (2021) categorized the existing 
blockchains’ interoperability solutions into three main categories: heterogeneous blockchains 
and homogeneous smart contracts, homogeneous blockchains and homogeneous smart contracts, 
heterogeneous blockchains, and heterogeneous smart contracts. They showed how to fill the gap 
between these solutions using smart contracts and provided further research orientations.

Wang et al. (2021) provide a smart contract review of the current research status and advances 
into six categories: symbolic execution, abstract interpretation, fuzz testing, formal verification, deep 
learning, and privacy enhancement. Tools comparison and methods developed for solving threats are 
also provided. Timuçin and Birogul (2021) conducted a study related to the transformation of smart 
contracts into real “smart” contract structures with the use of Deep Learning algorithms, while Khan 
et al. (2021) present a comprehensive survey about blockchain-based smart contracts from technical 
and usage points of view. Peng et al. (2021) performed a comprehensive review of Smart contract 
applications in the IoT domain for security threats. They also provided directions for further research.

Tang et al. (2021) analyze 15 security vulnerabilities and provide causes and methods used to 
address them. They also analyzed existing solutions, methods, and machine learning techniques, and 
advised using the two strategies to address security issues better and detect new threats.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

5

METHODOLOGY

We systematically review smart contracts challenges and solutions in particular domains such as 
codifying, security, privacy, and performance, while emphasizing the most tackled issues. Our 
methodology involves five steps: research question identification, searching methods and paper 
downloading, paper screening, paper analysis, and review writing (Maher & Aad Van., 2017).

In the research question identification, we specified the questions that the study would attempt to 
tackle: What is the current state of blockchain-based smart contract issues and solutions approaches? 
What vulnerabilities do smart contracts suffer, especially in the codifying, securities, privacy, and 
performance sectors? Is every vulnerability solved? What are the tools used to tackle those issues? 
What is the relationship between vulnerabilities and solutions? What could future trends be?

We proposed a search string using appropriate words such as smart contract problems or challenges 
or threats or bugs or vulnerabilities and approaches or detection techniques or solutions. This is to 
bring down all papers that could be related to our study.

We then explored several databases that are mainly used for academic research, such as Google 
Scholar, Springer, IEEE, ACM, and Preprint arXiv, to collect conference papers and journal articles. 
However, as academic literature can lack newly disclosed events or materials, we also used Google to 
look for reports, white papers, documentation, and websites that could provide relevant information. 
Through this exploration, several papers were downloaded and categorized according to the issues 
they tackled.

The next stage involved paper screening. We removed papers that did not satisfy specific criteria 
for adequate analysis. As criteria, we considered papers without full text, smart contracts papers 
concerning technologies other than Blockchain, redundant/duplicate articles, and documents with 
non-important abstracts. Articles that tackle smart contract concerns related to our objectives were 
kept, along with essential reports, documentation, and websites.

Next, relevant papers were obtained. They were analyzed, and all information pertinent to our 
objectives was extracted. Indeed, threats that fall within one of these categories of vulnerabilities-
-codifying, security, privacy, and performance—and their solutions, were considered and grouped 
while future trends were also provided from the relevant data gathered.

Finally, we combined the different information to write the review.

RESULTS

We produced the following tables from the papers analyzed, which consider smart contract issues 
with the developed solutions.

Figure 2 shows the relationship between the different types of issues together with their solutions.
Security issues have been of significant concern as we denote 18 different cases derived from it, 

leading to more than 130 solutions. They receive much attention far beyond the codifying, privacy, 
and performance issues with 4, 2, and 2 problem cases identified with 66, 40, and 34 solutions 
developed, respectively.

Codifying Issues

Figure 3 depicts the number of provided solutions against codifying issues.

Issue 1 = Under-optimized smart contract identification
Issue 2 = Correct smart contract programming language
Issue 3 = Complexity of programming language
Issue 4 = Smart Contract termination or modification weaknesses



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

6

Table 2. Smart Contracts Problems With Developed Solutions in Detail

Smart Contract Problems Techniques/Developed Tools

Codifying 
issues

Trouble with correct 
writing of smart 
contracts

Adoption of formal verification methods (Maher & Aad Van, 2017; Jing & Zhentian, 2019; Tesnim & Kei-Leo, 2018). 
Annotary (Konrad and Julian., 2019). Guidelines/standards for developers (Kevin et al., 2016; Bartoletti & Pompianu, 
2018). ContractWar (W. Wang et al., 2020). ContractGuard (X. Wang et al., 2020). SmartDEAMP (Zibin & al., 2019). 
Gigahorse (Zibin & al., 2019). Semi automation of smart contract creation (Christopher & Mariusz ., 2016). New contract 
language development (Jing & Zhentian., 2019). Semantics analysis (Zibin et al., 2019; Anastasia & Aaron, 2018). Raziel 
(David, 2020). Solidifier (Antonino & Roscoe., 2020). Verismart (Sunbeom & al., 2019). VeriSolid (Anastasia & Aron., 
2019). Osiris (Christof & al., 2018). SASC (Zhou et al., 2018). SCRepair (Xiao et al., 2020). SmartShield (Yuyao et al., 
2020). Manticore (Mark & al., 2019). FSolidM (Anastasia & Aaron, 2018). VerX (Anton et al., 2020). Zeus (Sukrit et al., 
2018). iContract (Qasse & al., 20201). Smart-Graph (Pierro., 2021). SuMo (Barboni & al., 2021). A security verifier type 
(Hu & al., 2021).

Smart Contracts 
termination or 
modification 
weaknesses

Use of norms for smart contracts (Maher & Aad Van., 2017; Bill & Ari., 2016). Mechanized proof of termination of 
smart contract (Thomas et al., 2020). 
Proof-carrying smart contracts (Hu & al., 2021). Intelligible Description Language Contract (IDLC),

Under-optimized 
smart contracts 
identification

SmartCheck (Sergei & al., 2018). MadMax (Neville & al., 2018). Maian (Ivica N. & al., 2018). Securif (Petar & al., 
2018). SmartCopy (Yu & al., 2019). Gas reducer (Ting & al., 2018). Gastap (Sara & Ralph., 2019). Gasper (Bill and Ari., 
2016). Gasol (Elvira & al., 2019). GasChecker (Ting et al., 2020). GasFuzzer (Ashraf et al., 2020). SafeVM (Elvira & 
al., 2019). SolAnalyser (Akca & al., 2019). Mythril (Sarwaar et al., 2020). Contract version comparisons, Graph Neural 
Networks (Yuan & al., 2020). sCompile (Jialiang et al., 2019). SCRepair (Yu et al., 2020). Formal verification framework 
(FVF) (Maher & Aad Van., 2017; Jing & Zhentian, 2019). SmartShield (Yuyao et al., 2020). Manticore (Mark & al., 
2019). Zeus (Sukrit et al., 2018). Echidna (Gustavo & al., 2020). Eth2vec (Ashizawa & al., 2021). Machine Learning 
Approach for Gas Price Prediction in Ethereum Blockchain (Mars & al., 2021).

Complexity of 
programming 
languages

Logic-based languages (Prolog) (Zibin et al., 2019; Florian et al., 2016). IELE (Scillia, Yul) (Tyurin & al., 2019). Use of 
type based-language Idris, Simplicity (O’Connor R., 2017). Liquidity (Çagdas & al., 2018). Obsidian (Coblenz, 2017). 
Flint (Schrans & al., 2018). Mandala (Markus, 2019). SmaCoNat (Regnath & Steinhors ., 2018). Bitml (Tyurin & al., 
2019). SPESC (Xiao & al., 2018).

continued on following page

Table 1. Summary of Identified Problems and Solutions

Type of category Number of issues per category Number of solutions per category

Codifying 4 66

Security 18 132

Privacy 2 40

Performance 2 34

Figure 1. Research Process (Adapted from Maher and Aad Van, 2017)



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

7

Smart Contract Problems Techniques/Developed Tools

Securities 
issues

Transaction-ordering 
vulnerability

Ethereum Based Functions (use of SendIfReceived function) (Christopher & Vincent., 2016). Oyente (Loi & al., 2016). 
Ether racer (Aashish & al., 2019). Fuzzer symbolic execution (Jingxuan & al., 2019). FSolidM (Anastasia & Aaron, 
2018). ContractWar (Wang Wei & al., 2020). Zeus (Sukrit et al., 2018). Securify (Petar & al., 2018). Mythril (Sarwaar et 
al., 2020). Unsecured smart contract detection (Kevin & al., 2021).

Timestamp 
vulnerability

Random seed of block number (Loi & al., 2016). SIF (Chao & al., 2019). Slither (Josselin & al., 2019). SmartCopy (Yu & 
al., 2019). ContractWar (Wang et al., 2020). Mythril (Sarwaar et al., 2020). Graph Neural Networks (Yuan & al., 2020). 
Fuzzer symbolic execution (Jingxuan & al., 2019). SolAnalyser (Akca & al., 2019). Eth2vec (Ashizawa & al., 2021). 
SmartPulse (Stephens & al., 2021). Graph Neural Network with expert knowledge (Liu & al., 2021).

Mishandled 
exception 
vulnerability

Check of the return value (Loi & al., 2016). ContractFuzzer (Jiang & al., 2018). Vandal (Brent & al., 2018). Zeus (Sukrit 
et al., 2018). Contract version comparison, SmartCheck (Sergei & al., 2018). Securify (Petar & al., 2018). SmartCopy (Yu 
& al., 2019). Mythril (Sarwaar et al., 2020). ContractWar (Wang Wei & al., 2020). Slither (Josselin & al., 2019). Oyente 
(Loi & al., 2016). Fuzzer symbolic execution (Jingxuan & al., 2019). EVMPatch (Rodler & al., 2020). SolAnalyser (Akca 
& al., 2019). Elysium (Torres & al., 2021).

Block randomness Delay and Sloth function (Zibin & al., 2019).

BGP Routing 
concerns

Sabre (Maria A. & al., 2017).

Reentrancy 
vulnerability

ÆGIS (Torres & al., 2020). ReGuard (Chao & al., 2018). Reentrancy analyzer (Chinen & al., 2020), Bidirectional 
LSTM – ATTention (BLSTM-ATT) (Peng & al., 2020). ECFChecker (Grossman & al., 2017). EthScope (Wu & al., 
2020). Sereum (Michael & al., 2019). Teether (Johannes and Christian., 2018). Zeus (Sukrit et al., 2018). Graph Neural 
Networks (Yuan & al., 2020). SmartCheck (Sergei et al., 2018). Securify (Petar & al., 2018). SmartCopy (Yu & al., 
2019). Manticore (Mark & al., 2019). Mythril (Sarwaar et al., 2020). Oyente (Loi & al., 2016). ContractFuzzer (Jiang 
& al., 2018). ContractWar (Wang et al., 2020). TxSpector (Mengya & al., 2020). Vandal (Brent & al., 2018). Slither 
(Josselin & al., 2019). Mechanism to Detect and Prevent Ethereum Blockchain Smart Contract (Alkhalifah & al., 2021). 
Dynamit (Eshghie & al., 2021). Elysium (Torres & al., 2021). Eth2vec (Ashizawa & al., 2021). Reentrancy detection 
using TXL programming language (Samreen & Alalfi., 2020). Graph Neural Network with expert knowledge (Liu & al., 
2021). EtherSolve (Contro & al., 2021). SGuard (Nguyen & al., 2021). EtherClue (Aquilina & al., 2021). VSCL (Mi & 
al., 2021).

Ponzi scheme issues Machine learning techniques (Ripper, Bayes Network and Random Forest, XGBoost) (Weili & al., 2018). Al-SPSD: Anti-
leakage smart Ponzi schemes detection in Blockchain (Fan & al., 2021).

HoneyPot HoneyBadger (Christof & Mathis., 2019).

Delegated Puzzle Piece of work (Philip & al., 2017). Non-delegated Scratch-Off Puzzles (Miller & al., 2015). Sign to Mine (Ziftr., 2014). 
Phase-Proof of Work (2P-PoW) (Eyal & Sirer., 2014).

Man in the middle Role-Based Access Control (RBAC) (Kamboj & al., 2021).

Denial of Service 
with Block Stuffing

Smart Contract-Based Solution for Secure Distributed SDN (Almakhour & al., 2021). SmartScan (Samreen & Alalfi., 
2021). Co-Chain SC (Houda & al., 2019).

Selfish Mining 
approached

Computation power reduction (to ¼), still an open research area approached (Cyril & Ricardo., 2019; Ittay & Emin, 
2018). TFCrowd (Li & al., 2021).

Verifier’s dilemma Consensus computational framework (Loi & al., 2015).

Criminal/Opaque 
smart contract 
activities

Trustee Neutralizable smart contract (Ari & al., 2016). Erays (Yi & al., 2018). Smart Inspect (Santiago et al., 2018). 
Samos (Knecht & Stiller., 2021). Smart contract-based Supply Chain Control (Dietrich & al., 2020).

Untrustworthy data 
feeds issues

Town Crier (TC) (Fan & al., 2016). Reputation contract (Zibin & al., 2019). Provable (provable, 2019). Witnet (Adan 
& al., 2017). Astrea (Adler et al., 2018). Augur (Peterson & al., 2015). Eternity (Hess & al., 2017). Chainlink (Ellis et 
al., 2017). PriceGeth (Eskandari & al., 2017). Majority is not enough (Ittay & Emin., 2018). TrustedAP (Fox., 2021). 
Unsecured smart contract detection (Kevin & al., 2021).

Tracing 
vulnerabilities from 
a large number of 
contracts

Long Short-Term Memory - LSTM (Wesley et al., 2019). Bidirectional LSTM (BLSTM) (Peng & al., 2020). BLSTM 
+ Attention (BLSTM-ATT) (Peng & al., 2020). AWD-LSTM (Ajay et al., 2020). S-gram scheme (Zibin & al., 2019). A 
Novel Machine Learning-Based Analysis Model (Xu & al., 2021).

Integer overflow/
Underflow

Easyflow (Gao & al., 2019). Oyente (Loi & al., 2016). Zeus (Sukrit et al., 2018). ReGuard (Chao et al., 2019). S-gram 
(Zibin et al., 2019; Han et al., 2018). ContractGuard (Wang & al., 2020). EVMPatch (Rodler & al., 2020). Osiris (Christof 
& al., 2018). SolAnalyser (Akca & al., 2019). SIF (Chao et al., 2019). Formal Verification Framework (Tianyu & 
Wensheng, 2020). Elysium (Torres & al., 2021). Eth2vec (Ashizawa & al., 2021). HFContractFuzzer (Ding & al., 2021).

Suicidal, prodigal 
and greedy contracts

Maian (Ivica et al., 2018). LSTM (Wesley et al., 2019). Fuzzer symbolic execution (Jingxuan & al., 2019). Teether 
(Johannes and Christian., 2018). EVMPatch (Rodler et al., 2020). TxSpector (Mengya & al., 2020). Ethbmc (Frank et al., 
2020). Elysium (Torres & al., 2021). Alternate authentication with smart contract (Boron & Kobusińska., 2021).

continued on following page

Table 2. Continued



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

8

In codifying issues, under-optimized contracts and contract writing difficulties are the most tackled 
issues. Indeed, From figure 3, more than 20 solutions exist for each. For smart contract programming 
language and smart contract termination problems, we denote 11 and 4 solutions, respectively. This 
shows how important some issues are concerning others.

Smart Contract Problems Techniques/Developed Tools

Privacy 
issues

Lack of transactional 
privacy

Encryption techniques (Zether, Secret store, and More secrets) (Hiroki et al., 2015; Benedikt et al., 2019; Rachel, 2018). 
Time-locked secrets and Secret contracts (Rachel., 2018). ShadowEth (Yuan & al., 2018). Privacy Preserving Solutions 
(Jorge & al., 2019). Privacy Guard (Yang & al., 2020). Access control privacy framework for DOSNs (Rahman et al., 
2019). SMACS (Liu & al., 2020). Use of artificial 
intelligence (Rajesh & al., 2020). Private data 
object, Ekiden (Cheng & al., 2019). Fastkitten, Eli, 
Teechain, Quorum, Zocrates, and Zexe (Hu & al., 2021). Privacy-Preserving Healthcare Platform (Omar & al., 2021). 
Deep Blockchain Framework (Al-Kadi & al., 2021). Smart Contract-Based Blockchain-Envisioned Authentication 
Scheme (Vangala & al., 2021). smartFHE (Solomon & Almashaqbeh., 2021). TrustedAP (Fox., 2021). Blockchain-
based smart contract framework (Vardhini & al., 2021). A Blockchain-based Framework for Information Management 
in Internet of Vehicles (Wen & al., 2021). Blockchain-independent smart contract infrastructure (Saquib & al., 2021). 
blockauth (Zhaofeng & al., 2021). Fortified-Chain (Egala & al., 2021). Reputation management smart contract 
(RM) (Geng & al., 2021). Fasten (Damle & al., 2021). Privacy Preservation for On-Chain Data (Ziar & al., 2021). 
SmartMedChain (El Majdoubi & al., 2021). Intelligent Mediator-based Enhanced Smart Contract (Mucheol & Junho., 
2021). TREAD (Khan & al., 2021). Privacy preserving platform for COVID-19 vaccines (Barati & al., 2021). TeSC 
(Gallersdörfer & Matthes., 2021).

Data feed privacy 
issues

Town Crier (TC) (Fan & al., 2016). Practical Data Feed Service (PDFS) (Juan & Pawel., 2018). TrustedAP (Fox., 2021). 
A Blockchain-based Framework for Information Management in Internet of Vehicles (Wen & al., 2021).

Performance 
issues

Smarts contract 
sequential execution 
problems/scalability 
issues/single point of 
failure/efficiency

Parallel execution of smart contracts (techniques adapted from software transactional memory and optimistic Software 
Transactional Memory systems (STMs)) (Vukolić, 2017). Concurrent execution of different contract models (Massimo et 
al., 2020; Wei et al., 2018). Arbitrum and Yoda . Asynchronous and Concurrent Execution (ACE) (Karl et al., 2019). OV: 
Validity-based optimistic Smart contract (Quan et al., 2020). Two-phase 
concurrency control protocol . Blockumulus . Cloak (Ren et al., 2021). Escort . Hybrid smart 
contract architecture . Smart contracts for automated control system 
. Blockchain-based smart contract framework . A Blockchain-based Framework for Information Management in Internet 
of Vehicles . SCBAC . Blockchain-independent smart contract infrastructure . Automating Procurement Contracts 
. Blockauth . Blockeye . Clock finance . Graph Neural Network with expert knowledge . Map-reduce based parallel 
computation . EtherSolve . Fortified-Chain . Two-phase framework based on trusted hardware Intel SGX . Deserving 
resource smart contract (DRSC) . Smart Contracts for Verifying DNN Model 
Generation Process . Flexible Smart Contract Interaction Framework with Access Control (FSCC) . FASTEN . EtherClue 
. TREAD . Smart contract sharding .

Contract 
redeployment 
efficiency

Decompilation capabilities encapsulated (Santiago et al., 2018).

Table 2. Continued

Figure 2. Relationship Between Issues and Solutions



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

9

Unoptimized smart contracts waste money through gas consumption. Thus, as money is involved, 
care must be taken to provide a flexible and extensible environment that can easily implement efficient 
contracts, which should be less gas-costly. Concerning unoptimized smart contract solutions to tackle 
the issue, SmartCheck (Sergei & al., 2018), MadMax (Neville & al., 2018), Maian (Ivica N. & al., 
2018), Securif (Petar & al., 2018), SmartCopy (Yu & al., 2019), Gas reducer (Ting & al., 2018), 
Gastap (Sara & Ralph., 2019), Gasper (Bill and Ari., 2016), Gasol (Elvira & al., 2019), GasChecker 
(Ting et al., 2020), GasFuzzer (Ashraf et al., 2020), SafeVM (Elvira & al., 2019), SolAnalyser (Akca 
& al., 2019), Mythril (Sarwaar et al., 2020), contract’s versions comparisons, Graph Neural Networks 
(Yuan & al., 2020), sCompile (Jialiang et al., 2019), SCRepair (Yu et al., 2020), Formal Verification 
framework (FVF) (Maher & Aad Van, 2017; Jing & Zhentian, 2019), SmartShield (Yuyao et al., 
2020), Manticore (Mark & al., 2019), Zeus (Sukrit et al., 2018), Echidna (Gustavo & al., 2020) can 
be used. Eth2vec (Ashizawa & al., 2021) and Machine Learning Approach for Gas Price Prediction 
in Ethereum Blockchain (Mars & al., 2021) are other methods to detect such contracts.

Regarding correct smart contract programming language and complexity of programming 
language, the easier the process of writing contracts, the less the contract will be subjected to errors. 
The correctness of smart contracts ensures the right functioning of the contracts, meaning the contracts 
should carry out actions as intended by programmers. While the faithful execution of smart contracts 
depends on Blockchain’s consensus protocol, participating entities should ensure the contract’s 
fairness and its correctness remain a major concern as part of their prerogatives (Sukrit & al., 2018). 
The importance of this comes from the fact that money is involved, and any mistake could result in 
disastrous consequences. A particular example is the Distributed Autonomous Organization (DAO) 
attack, where a massive loss of money occurred (Maher A. & Aad Van M., 2017). Several solutions 
are proposed to address this issue including Adoption of Formal verification methods (Maher. & Aad 
Van., 2017; Jing & Zhentian., 2019; Tesnim & Kei-Leo., 2018), Annotary (Konrad and Julian., 2019), 
Guidelines/standard for developers (Kevin et al., 2016; Bartoletti & Pompianu, 2018), ContractWar 
(W. Wang et al., 2020), ContractGuard (X. Wang X. et al., 2020), SmartDEAMP (Zibin & al., 2019), 
Gigahorse (Zibin & al., 2019), Semi-automation of smart contract creation (Christopher & Mariusz 
., 2016), New contract language development (Jing & Zhentian., 2019), Semantics analysis (Zibin 
et al., 2019; Anastasia and Aaron., 2018), Raziel (David, 2020), Solidifier (Antonino & Roscoe., 
2020), Verismart (Sunbeom & al., 2019), VeriSolid (Anastasia & Aron., 2019), Osiris (Christof & 
al., 2018), SASC (Zhou et al., 2018), SCRepair (Xiao et al., 2020), SmartShield (Yuyao et al., 2020), 
Manticore (Mark & al., 2019), FSolidM (Anastasia and Aaron., 2018), VerX (Anton et al., 2020), 
and Zeus (Sukrit et al., 2018).

Figure 3. Codifying Issues Diagram



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

10

Therefore, the choice of the programming language plays a significant role as the choice must be 
made according to the contract objective, flexibility, and to prevent unnecessary tasks that would be 
done with a difficult language choice. Initially, procedural languages are used to write current smart 
contracts, and the Solidity language is an example. However, procedural language requires that the 
execution code follows a series of steps specified by developers. As such, what should be done and 
how to do it must be clearly defined to avoid any misbehavior of the contract. As a result, writing smart 
contracts using this type of language becomes complex and subject to errors (Florian & al., 2016).

Several approaches are then proposed to ease smart contract development: Logic-based languages 
(Prolog) (Zibin et al., 2019; Florian et al., 2016), IELE (Scillia, Yul) (Tyurin & al., 2019), Use of 
type based-language Idris, Simplicity (O’Connor R., 2017), liquidity (Çagdas & al., 2018), Obsidian 
(Coblenz, 2017), Flint (Schrans & al., 2018), Mandala (Markus, 2019) SmaCoNat (Regnath & 
Steinhors ., 2018), Bitml (Tyurin & al., 2019), SPESC (Xiao & al., 2018), iContract (Qasse & al., 
20201), Smart-Graph (Pierro., 2021), and SuMo (Barboni & al., 2021).

Smart contract termination or modification is the least tackled issue. However, solutions have 
been given. According to the authors, a set of norms can allow smart contract modification and 
termination. It involves taking legal contracts’ rules or standards and redefining them to go along 
the smart contract.

Mechanized termination proof (Thomas et al., 2020) is another way to address the issue and is 
based on the EVM abstract model. An internal counter is used to evaluate the contract’s termination 
independently of gas system presence. This type of contract termination is used in EVM contracts and 
written in EVM bytecode. Other solutions such as proof-carrying smart contracts (Hu & al., 2021), 
and Intelligible Description Language Contract (IDLC) are also provided.

Security Issues

Figure 4 shows the number of provided solutions against security issues.

Issue 1 = Reentrancy vulnerability
Issue 2 = Mishandled exception vulnerability
Issue 3 = Integer overflow/underflow
Issue 4 = Transaction-ordering vulnerability
Issue 5 = Timestamp vulnerability
Issue 6 = Untrustworthy data feed issues

Figure 4. Security Issues Diagram



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

11

Issue 7 = Social, prodigal, and greedy contracts
Issue 8 = Tracing vulnerabilities from a large number of contracts
Issue 9 = Delegated puzzles
Issue 10 = Ponzi scheme issues
Issue 11 = Criminal/opaque smart contract activities
Issue 12 = Block randomness
Issue 13 = BGP routing concerns
Issue 14 = HoneyPot
Issue 15 = Selfish Mining
Issue 16 = Verifier’s dilemma
Issue 17 = Denial of service with block stuffing

Security issues are the ones that cause severe damages to the blockchain ecosystem with the 
DAO and multi-Sig parity wallet. They are vulnerabilities or threats someone might exploit to attack 
the blockchain system or use it to get funds from victims (Maher A. & Aad Van M., 2017).

According to Figure 4, reentrancy is the the most tackled problem is one of the notorious issues 
that caused a huge loss of funds. The issue occurs when several repetitive withdrawals are performed 
by a malicious user who uses a recursive call function while his balance is only deduced once (Maher 
A. & Aad Van M., 2017). It ranks with more than 20 solutions provided for its resolution while 
improvements are still needed.

These solutions ÆGIS (Torres & al., 2020), ReGuard (Chao & al., 2018), Reentrancy analyzer 
(Chinen & al., 2020), Bidirectional LSTM – ATTention (BLSTM-ATT) (Peng & al., 2020), 
ECFChecker (Grossman & al., 2017), EthScope (Wu & al., 2020), Sereum (Michael & al., 2019), 
Teether (Johannes and Christian., 2018), Zeus (Sukrit et al., 2018), Graph Neural Networks (Yuan 
& al., 2020), SmartCheck (Sergei et al., 2018), Securify (Petar & al., 2018), SmartCopy (Yu & al., 
2019), Manticore (Mark & al., 2019), Mythril (Sarwaar et al., 2020), Oyente (Loi & al., 2016), 
ContractFuzzer (Jiang & al., 2018), ContractWar (Wang et al., 2020), TxSpector (Mengya & al., 
2020), Vandal, (Brent & al., 2018) Slither (Josselin & al., 2019) are able to detect reentrancy bugs 
as well as Mechanism to Detect and Prevent Ethereum Blockchain Smart Contract (Alkhalifah & 
al., 2021), Dynamit (Eshghie & al., 2021), Elysium (Torres & al., 2021), Eth2vec (Ashizawa & al., 
2021), Reentrancy detection using TXL programming language (Samreen & Alalfi., 2020), Graph 
Neural Network with expert knowledge (Liu & al., 2021), EtherSolve (Contro & al., 2021), SGuard 
(Nguyen & al., 2021).

Mishandled exception, integer overflow/underflow, and transaction ordering followed, 
respectively, with more than 10 solutions provided for each. A mishandled exception is the lack of 
communication between two contracts that causes the problem (Maher A. & Aad Van M., 2017). A 
typical example is the occurrence of a lack of gas (currency units necessary for contract execution 
and rewarding miners) exception in the callee’s contract, which is not propagated to the caller based 
on the call function creation. Then, there is a possibility of causing trouble due to the non-reported 
exception. As solutions, we have Check of the return value (Loi & al., 2016), ContractFuzzer (Jiang 
& al., 2018), Vandal (Brent & al., 2018), Zeus (Sukrit et al., 2018), contract versions comparison, 
SmartCheck (Sergei & al., 2018), Security (Petar & al., 2018), SmartCopy (Yu & al., 2019), Mythril 
(Sarwaar et al., 2020), ContractWar (Wang Wei & al., 2020), Slither (Josselin & al., 2019), Oyente 
(Loi & al., 2016), Fuzzer symbolic execution (Jingxuan & al., 2019), EVMPatch (Rodler & al., 2020), 
SolAnalyser (Akca & al., 2019), Elysium (Torres & al., 2021).

Integer overflow/underflow occurs in arithmetic operations. An over or under issue occurs 
when a procedure is performed and will need a fixed variable size to keep an operand (e.g., uint256), 
which is beyond the data type of the variable (e.g., uint8). The calculation then oversteps the upper 
band value or is down the lower band value as max + 1 ® min or min − 1 ® max (Wang Wei & 
al., 2020). Several tools can solve this issue: Easyflow (Gao & al., 2019), Oyente (Loi & al., 2016), 



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

12

Zeus (Sukrit et al., 2018), ReGuard (Chao et al., 2019)., S-gram (Zibin et al., 2019; Han et al., 2018), 
ContractGuard (Wang & al., 2020), EVMPatch (Rodler & al., 2020), Osiris (Christof & al., 2018), 
SolAnalyser (Akca & al., 2019), SIF (Chao et al., 2019), and Formal Verification Framework (Tianyu 
& Wensheng., 2020) can find this vulnerability as well as Elysium (Torres & al., 2021) and Eth2vec 
(Ashizawa & al., 2021).

Regarding the transaction ordering issue, the occurrence of this problem is related to transactions 
that call upon the same contract while a block contains all of them. A disarranged execution order 
of transactions might result in an attack van if it is not planned carefully (Loi & al., 2016). As for 
solutions, Ethereum Based Functions (use of SendIfReceived function) (Christopher & Vincent., 2016), 
Oyente (Loi & al., 2016), Ether racer (Aashish & al., 2019), Fuzzer symbolic execution (Jingxuan 
& al., 2019), FSolidM (Anastasia and Aaron., 2018), ContractWar (Wang Wei & al., 2020), Zeus 
(Sukrit et al., 2018), Securify (Petar & al., 2018), Mythril (Sarwaar et al., 2020).

Time-stamped, untrustworthy data feeds and suicidal, prodigal, greedy contracts also received 
much attention, with several solutions developed.

Time-stamped vulnerability is a time dependency contract is the one that utilizes block timestamp 
as a triggered condition to transactions executions (e.g., sending money) (Maher A. & Aad Van M., 
2017). The current local time is the reference time used by the miner to set the block timestamp of the 
block it generated. But it can choose a timestamp condition value that can favor him because there is 
a possibility of causing inaccuracy in a block timestamp. Malicious miners can vary the timestamp 
value from the current time and ensure block acceptance in the blockchain system. This results in the 
possibility of favoring users in the case of activities such as games (e.g., TheRun Contract) where 
the timestamp is an important parameter in deciding the winner of the jackpot. As solutions to solve 
this issue, we have Random seed of block number (Loi & al., 2016), SIF (Chao & al., 2019), Slither 
(Josselin & al., 2019), SmartCopy (Yu & al., 2019), ContractWar (Wang et al., 2020), Mythril (Sarwaar 
et al., 2020), Graph Neural Networks (Yuan & al., 2020), Fuzzer symbolic execution (Jingxuan & 
al., 2019), SolAnalyser (Akca & al., 2019), Eth2vec (Ashizawa & al., 2021), SmartPulse (Stephens 
& al., 2021), and Graph Neural Network with expert knowledge (Liu & al., 2021).

Untrustworthy data feeds are derived from the external feeding of the Blockchain for some smart 
contracts and guarantee is not assured for the imported data. Solutions exist to tackle the issues: town 
Crier (TC) (Fan & al., 2016), Reputation contract (Zibin & al., 2019), Provable (provable, 2019), 
Witnet (Adan & al., 2017), Astrea (Adler et al., 2018), Augur (Peterson & al., 2015), Eternity (Hess 
& al., 2017), Chainlink (Ellis et al., 2017), PriceGeth (Eskandari & al., 2017), Majority is not enough 
(Ittay & Emin., 2018), and TrustedAP (Fox., 2021).

Contracts that are killed from anonymous addresses are known as suicidal contracts. Most of the 
time, a contract has a security option that enables it to be killed by its owner (or trusted addresses) in 
case of attacks or malfunctions. A malicious user can also exploit this option to cause trouble (Wesley 
et al., 2019; Ivica, 2018). Prodigal contracts permit fund leakage to unknown accounts. Contracts often 
have internal calls to return money to their owner when attacked (Ivica, 2018), which is exploited 
to perform this vulnerability. Greedy contracts are alive contracts that can’t release ether. A library 
responsible for ether withdrawing is killed. Many accounts dependent on the killed library involved in 
the ParitySig attack contract were unable to release funds. The following tools can tackle the issues: 
Maian (Ivica et al., 2018), LSTM (Wesley et al., 2019), Fuzzer symbolic execution (Jingxuan & al., 
2019), Teether (Johannes and Christian., 2018), EVMPatch (Rodler et al., 2020), TxSpector (Mengya 
& al., 2020), Ethbmc (Frank et al., 2020), and Elysium (Torres & al., 2021).

For vulnerability tracing issues, delegated puzzles, Ponzi schemes, and criminal/opaque contract 
activities, solutions are provided for their respective resolutions.

In vulnerability tracing issues, invocation depth is the main problem. Indeed, as specific symbolic 
tools use complex analysis steps, a predefined invocation depth is also needed to look for exposed 
execution paths. As the depth goes up, so does the search time (Wesley J. T & al., 2019). Therefore, 
the searching time will be so high that specific contracts cannot be analyzed from a certain number 



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

13

of smart contracts. The failure of these tools to analyze the increasingly large number of contracts 
that we have in the Ethereum platform might lead to faulty contracts that can cause losses. These 
solutions are useful to protect smart contracts: Long Short-Term Memory - LSTM (Wesley et al., 
2019), Bidirectional LSTM (BLSTM) (Peng & al., 2020), BLSTM + Attention (BLSTM-ATT) (Peng 
& al., 2020), AWD-LSTM (Ajay et al., 2020), S-gram scheme (Zibin & al., 2019), a Novel Machine 
Learning-Based Analysis Model (Xu & al., 2021).

Delegated puzzles (Wenbo et al., 2019) are problems where a cunning miner will break a searching 
puzzle solution work into several smaller works and later delegate them to outsourcers which might 
be untrusted workers. This will lead to the possibility of accumulating several puzzle works and 
delegating them, and increasing its revenue when its workers solve all puzzles. As for the solution, 
piece of work (Philip & al., 2017), Non-delegated Scratch-Off Puzzles (Miller & al., 2015), Sign to 
Mine (Ziftr., 2014), Phase-Proof of Work (2P-PoW) (Eyal & Sirer., 2014) can be used.

Ponzi schemes are fraudulent investment systems that are established and provide a high 
return with little or no risk (Massimo & al., 2018). Funds paid by new investors are used to pay old 
investors, and the system stops when no new investors come in. Several machine learning techniques 
are dedicated to the issue. Datasets are constructed using real blockchain transactions and are used 
to train classification models for threats detection. Several Machine learning techniques (Ripper, 
Bayes Network and Random Forest, and XGBoost) are used for their detection (Weili & al., 2018).

Criminal/opaque contract activities can be conducted through smart contracts, making them 
criminal smart contracts (CSC) (Ari & al., 2016). The authors identified three different types of 
criminal activities, namely, leakage/sale of secret documents, theft of private keys, and calling-card 
crimes (murder, arson, etc.). Leakage of secret documents is related to the public disclosure of 
secrets, leading to payments if the data is provided within the right time. A key-theft contract might 
be commission-fair if its perpetrator gets rewarded for delivering the private key that he stole, which 
must be valid within a certain period. A calling card is an unpredictable feature of a premeditated 
crime. When combined with authenticated data feeds, it can support many CSC (Criminal Smart 
Contracts). Crimes are executed, and codes are used to ensure the veracity of the crime before 
rewarding. The resolution of these issues is important to promote a secured and crime-free smart 
contract ecosystem. Trustee Neutralizable smart contract (Ari & al., 2016), Erays (Yi & al., 2018), 
Smart Inspect (Santiago et al., 2018), Samos (Knecht & Stiller., 2021), and smart contract-based 
Supply Chain Control (Dietrich & al., 2020) are used to tackle the issue.

Regarding denial of service, the DoS block stuffing (Crypto P., 2018) is a blockchain-based 
Smart contract threat that permits a malicious user to give high Gas Price incentives to miners for 
his transactions to be taken care of in new blocks to the detriment of other blocks. Smart Contract-
Based Solution for Secure Distributed SDN (Almakhour & al., 2021), SmartScan (Samreen & Alalfi., 
2021), and Co-Chain SC (Houda & al., 2019) have tried to solve the problem.

Considering block randomness, BGP routing, honey pot, selfish mining, verifier’s dilemma, and 
the man in the middle, only one solution is developed for each.

Considering block randomness, there is the possibility that block generation and release are based 
on the miner’s will while profit is at stake. Therefore, randomness is compromised, and the system 
becomes tricky (Zibin & al., 2019). To solve it, we have the Delay and Sloth function (Zibin et al., 
2019) introduced in the contract to avoid the execution of the miner’s will.

In this issue, Border Gateway Protocol (BGP) routing scheme is the main asset in capturing 
blockchain information (Maria A. & al., 2017). This can result in a high broadcasting delay of data 
or messages, traffic hijack, and digital currency robbery. The SABRE is a proposed solution that 
adjusts BGP routing policies from several domains while protecting the link between clients and relays 
through good relay alignment, appropriately placing relays. The same sabre network uses hardware 
and software co-designing in software-defined networking (SDN) to cut down relays traffic.

Honey pots are traps hidden within smart contracts where certain conditions of the contract will 
require funds from users while not providing an expected result. Attackers use several techniques 



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

14

further developed in (Christof & Mathis., 2019) work. The issue is tackled with HoneyBadger, which 
uses symbolic execution and heuristic techniques to detect this vulnerability. The tool takes in a 
smart contract in bytecode and outputs a final result where all honey pot techniques found are stated.

Selfish Mining (Cyril & Ricardo, 2019) is a security threat where an attacker generates several 
private blocks and broadcasts them one by one in the Blockchain or keeps them hidden and reveals 
them to the public at the right time to increase its incentives or rewards (uncle blocks rewarding). A 
proposed solution in the Bitcoin network (Ittay & Emin., 2018) is modifying the blockchain protocol 
that would allow pools to command less than one quarter of the available resources. However, in 
the Ethereum network, solutions are still in the infancy stages as the problem is more complicated 
(Cyril & Ricardo., 2019).

Verifier’s Dilemma (Loi et al., 2015) is a threat that forces miners to accept unvalidated 
blockchains in exchange for high gas incentives or to waste resources as the computational effort 
required to validate some blocks is very demanding, blocking them in the race o mining next blocks. 
It creates an atmosphere where greedy miners intentionally block honest miners to get higher rewards. 
A proposed solution is creating a consensus computation framework that achieves correctness by 
sharing computation tasks across several blocks of transactions that comply with the ε-consensus 
computer model. Thus, verification cost is reduced across multiple blockchain transactions.

Man in the middle is security issue based on authentication problems in organizations where 
people are getting access to resources cannot be securely verified. Users are given roles to only access 
resources, which can become challenging to address before user authentication and role issuance. 
To address these issues, a Role-Based Access Control (RBAC) system is developed to resist a man 
in the middle where attackers cannot forge

digital signatures of others without their private keys, which helps in preventing the problem.

Privacy Issues

Figure 5 represents privacy concerns against their developed solutions.

Issue 1 = Lack of transactional property
Issue 2 = Data feeds privacy issues

Privacy concerns are problems that are derived from contract information exposure to the public 
(Yang & al., 2020). Two problems are identified: the lack of transactional privacy and data feed 
privacy (Maher A. & Aad Van M., 2017). Transactional privacy is more frequently tackled than data 
feed privacy issues for privacy issues. According to Figure 5, the former produced more than 25 

Figure 5. Privacy Issues Diagram



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

15

solutions but the latter, only four. Data should be taken care of as attacks can be performed through 
imported data (Juan & Pawel., 2018).

Regarding the lack of transactional property, encryption techniques applied to
smart contracts before deployment are the most obvious ways to protect smart contracts. They 

are proposed by (Hiroki W. & al., 2015) and the contract access is restricted to people involved in 
the contract who have their decryption keys. Other ways to allow contract privacy are Zether, Secret 
store, and More secrets. They are all based on encryption/decryption techniques (Benedikt B. & 
al., 2019) (Rachel., 2018). Other solutions include private data object, Ekiden (Cheng & al., 2019), 
Fastkitten, Eli, Teechain, Quorum, Zocrates and Zexe (Hu & al., 2021), Privacy-Preserving Healthcare 
Platform (Omar & al., 2021), Deep Blockchain Framework (Al-Kadi & al., 2021), Smart Contract-
Based Blockchain-Envisioned Authentication Scheme (Vangala & al., 2021), smartFHE (Solomon 
& Almashaqbeh., 2021), TrustedAP (Fox., 2021), Blockchain-based smart contract framework 
(Vardhini & al., 2021), A Blockchain-based Framework for Information Management in Internet 
of Vehicles (Wen & al., 2021), blockchain-independent smart contract infrastructure (Saquib & al., 
2021), blockauth (Zhaofeng & al., 2021), Fortified-Chain (Egala & al., 2021), Reputation management 
smart contract (RM) (Geng & al., 2021), and Fasten (Damle & al., 2021).

For data feed privacy issues, the problem arises because all the data feeds needed by a contract 
to operate are exposed to the public (Fan & al., 2016). One of the solutions, Practical Data Feed 
Service (PDFS), is a system that securely connects content providers with their Blockchain (Juan & 
Pawel., 2018). The authentication of data is provided over Blockchain without affecting trust chains. 
Providers’ contents are easily parsed and converted into a different usable format. The system provides 
security, transparency, efficiency, and auditability of content providers while reducing their spiteful 
deeds. Town Crier (TC) is another solution

built by (Fan & al., 2016) that performs as a bridge between smart contracts and outside data 
providers. It helps in providing authenticated data feeds for smart contracts. A contract uses the TC’s 
public key to encrypt a request, and upon reception, the encrypted request is decrypted with the TC’s 
private key. This process secures the requested content from people/contracts not involved in the data 
feed. Other solutions are TrustedAP (Fox., 2021) and a Blockchain-based framework for information 
management on the internet of vehicles (Wen et al., 2021).

Performance Issues

Figure 6 represents the relationship between the issues and the solutions.

Figure 6. Performance Issues Diagram



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

16

The main issue in blockchain technology is the sequential execution of smart contracts (Vukolić 
M., 2017). Smart contracts in blockchain systems are executed one after the other. As the number 
of contracts is drastically increasing, running all those contracts sequentially will affect the whole 
performance, as noticed by (Maher A. & Aad Van M., 2017) because smart contract execution within 
a period will be very limited. Performance is always on the moving track in systems to satisfy the 
system user. As such, improvement is always necessary to cope with reality. According to Figure 6, 
more than 30 solutions have been developed to tackle its problem.

Sequential execution, scalability, single point of failure, and efficiency have been tackled 
differently in smart contract execution. Solutions are based on concurrent smart contract execution 
techniques that depend on multi-thread technology with transaction-splitting algorithms and the 
use of an optimistic Software Transactional Memory system (STMs). Other solutions developed 
include Arbitrum and Yoda (Hu et al., 2021), two-phase concurrency control protocol (Jin & al., 
2021), Blockumulus (Ivanov & al., 2021), Cloak (Ren et al., 2021), Escort (Lutz & al., 2021), hybrid 
smart contract architecture (Solaiman & al., 2021), Smart contracts for automated control system 
(Pradhan & Singh., 2021), Blockchain-based smart contract framework (Vardhini & al., 2021), A 
Blockchain-based Framework for Information Management on Internet of Vehicles (Wen & al., 
2021), SCBAC (Song & al., 2021), blockchain-independent smart contract infrastructure (Saquib 
& al., 2021), Automating Procurement Contracts (Omar & al., 2021), blockauth (Zhaofeng & al., 
2021), Blockeye (Wang & al., 2021), Clock finance (Babel & al., 2021), Graph Neural Network with 
expert knowledge (Liu & al., 2021), Map-reduce based parallel computation (Muchhala & al., 2021), 
EtherSolve (Contro & al., 2021), Fortified-Chain (Egala & al., 2021), Two-phase framework based 
on trusted hardware Intel SGX (Fang & al., 2021), Deserving resource smart contract (DRSC) (Yang 
& al., 2021), Smart Contracts for Verifying DNN Model Generation Process (Seike & al., 2021), 
Flexible Smart Contract Interaction Framework with Access Control (FSCC) (Li & Asaeda., 2021), 
and Fasten (Damle & al., 2021).

As smart contract usage increases exponentially with contracts being redeployed from time to 
time, further improvement is required. Binary decompilation reduces redeployment cost but is still 
in its infancy stage, as only one solution has been produced. The decompilation technique allows a 
particular method that introspects the smart contract’s current state without the redeployment of the 
smart contract (Santiago et al., 2018).

In summary, irrespective of the category of issues, lack of transactional privacy and other 
problems such as sequential execution and scalability, reentrancy, correct smart contract writing, and 
under-optimized contracts are the most recurrent problems that are tackled. Indeed, these problems 
lead to data exposure to the public and loss of money, which are valuable assets to be preserved 
seriously. Comparing reentrancy and parity multi-sig (suicidal contract), they both caused serious 
financial consequences. However, we can notice that reentrancy is far beyond tackled as compared 
to parity multi-sig wallet and this might be related to its severity. Problems with one solution, such 
as Delagated puzzle, HoneyPot, Bgp routing, blockrandomness, verifier dilemma, etc., are less 
common in the literature, perhaps because they are less severe and would need to be reconsidered 
for a different approach of solutions.

DISCUSSION

Implications for Practice
This study references smart contract issues related to coding, security, privacy, and performance. 
Solutions are categorized according to each problem. The first implication is that it helps Blockchain-
enabled smart contract users to get tools concerning a particular issue. Developers can easily know 
the appropriate tool to be used to check a particular issue in the work they are developing.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

17

Secondly, from a smart contracts point of view, the right coding is paramount as money is involved 
in most systems. This study provides different ways, such as the use of appropriate guidelines and 
Logic-based languages (Prolog) (Zibin et al., 2019; Florian et al., 2016), IELE (Scillia, Yul) (Tyurin 
& al., 2019), and the use of type based-language, to name a few, to ensure an error-free smart contract 
with more straightforward writing language. They all help develop smart contracts and ease smart 
contract development. Furthermore, they provide more minor gas usage systems as smart contracts 
can be quickly terminated and optimized with the available tool. Thirdly, looking at the divergence 
of tools for a particular issue gives practitioners the possibility of changing means if difficulties are 
found with a particular tool. As a result, smart contract users might be more confident in using the 
technology, though improvement is still needed as some issues are yet to be solved.

Implications for Research

This research provides an interesting reflection for researchers. Furthermore, it gives a new framework 
in researching hot topics regarding smart contract safety will be discovered. For example, privacy 
and performance issues are left behind compared to security and codifying issues, and a study might 
be conducted to find out new considerations concerning them.

Most of the tools have been developed using different techniques or approaches, and a new area 
of research could be to dig further into their respective performance. Furthermore, as this study has 
explored security, codifying, privacy, and performance issues, other studies can be conducted to explore 
other aspects of smart contracts, such as life cycle or function based on blockchain architecture layers.

Limitations

This study has several limitations concerning issue classifications and solutions. First, the study 
does not dig deeply into the cause of each issue. This may reduce the comprehension related to each 
category of issue. Secondly, the study does not find if these problems are common to all blockchain-
enabled smart contracts such as Ethereum and Tron, or if some blockchains are more affected than 
others, as the technology used varies from one Blockchain to another creation. Third, each category 
of issues could be further extended. Indeed, we can match each category of issues to a particular layer 
of blockchain-enabled smart contracts, thus emphasizing the most vulnerable layer. Fourth, there is 
a need for more research to be conducted to increase the existing problems-and-solutions portfolio. 
The study could go beyond coding, security, privacy, and performance issues and solutions, and 
offer problems related to dynamic and static execution of tools with respective approaches. Indeed, 
as technology evolves, new threats might be discovered. However, establishing such research with a 
realistic scenario could be very time-consuming and not covered in this study. Fifth, some solutions 
can tackle several issues, but their accuracy and efficiency are still a concern as no measurement tools 
are used in this study to evaluate those parameters. Thus, each tool’s most relevant performance area 
is not provided in this review. Finally, a road map for the most accessible tool used in each category 
when tackling a particular concern could be emphasized in this study. However, it’s not covered as 
tool classification (distinguishing between private and public tools) is not tackled in this study to 
help save time when looking for a particular one for a typical issue.

Open Research Challenges

Our study has led to the definition of new challenges that can enhance smart contract security. We 
consider the different domains in this study and solutions to solve each problem.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

18

Codifying Issues

Developers face many difficulties in writing smart contracts. Smart contracts embrace all domains, 
and several languages have been created to ease contract creation. A thorough study of these languages 
will help emphasize the easiest and least prone to artificial error to be used in a particular domain, 
such as the health care system (Tyurin & al., 2019). Further investigation can consider Turing’s 
complete contract language limitation, mainly used to develop smart contracts (Marc & al., 2019) 
to improve its effectiveness. The complexity of a solidity-based smart contract can be measured 
with static metrics. But this is still in its early stages and will require further investigation to set a 
new benchmark for smart contract programming. Some Gas estimation tools (Gastap) prevent gas 
error dynamically with the support of Oyente tools. However, further research can search for the 
best smart contract gas estimation tool (Sara & Ralph., 2019). Finally, as the smart contract is not 
bound to modification after deployment, it will be relevant to deploy a test environment for testing 
its accuracy before real-world usage.

Security Issues

Several studies have been conducted to solve the issues. However, few research types using deep-
learning techniques to tackle those issues have been conducted, raising the need to explore that 
possibility further. As data are imported into the Blockchain, irrelevant, malicious, or erroneous data 
can be among the imported data. New strategies or tools should be developed to preserve attacks by 
thoroughly analyzing the imported data (Hamda & al., 2020). Other issues such as delegated puzzles, 
denial of services, selfish mining, and Verifier’s dilemma are still open research areas (Huashan & 
al., 2020) and need more attention for smart contract protection.

Privacy Issues

Artificial intelligence is a new era that is yet to be explored. Further directions might focus on protecting 
data, especially health data, as they are very sensitive. Other researchers may embrace analysis and 
decision making to classify data or protect users (Rajesh & al., 2020).

Performance Issues

Scalability is still an issue that needs to be ameliorated as smart contract usage increases. Concurrent 
executions of smart contracts can be improved with new languages that rely on static analysis of 
reading/written key mechanisms to increase concurrency degree (Massimo & al., 2020). Other studies 
may tackle the complexity between child chains and the main child regarding Ethereum scalability.

CONCLUSION

This study provides a global view of blockchain-based smart contract issues, mainly regarding smart 
contract performance, privacy concerns, codifying, and security. We downloaded several papers and 
also identified new threats that fall into one of the categories. The corresponding solutions to the 
new threats are provided, and they can also be used for existing threats. We noticed that some threats 
have not been addressed or have been addressed with only a few solutions, and need more attention 
from the scientific community. Finally, we finally provide research directions so that smart contracts 
get secured in the future.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

19

FUNDING AGENCY

The publisher has waived the Open Access Processing fee for this article.

ACKNOWLEDGMENT

This work has been supported by the African Center of Excellence in Mathematics, Informatics and 
Applications (ACE-MIA) project in Benin. The authors would also like to thank Prof. Samuel Fosso 
Wamba (Toulouse Business School, France) and Dr. Thierry Edoh for their invaluable suggestions.



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

20

REFERENCES

Aashish, K., Ivica, N., Ilya, S., Aquinas, H., & Prateek, S. (2019). Exploiting the laws of order in smart contracts. 
Proceedings of the 28th ACM SIGSOFT International Symposium of Software Testing and Analysis, 363-373.

Adler, Berryhill, Veneris, Poulos, Veira, & Kastania. (2018). Astraea: A decentralized blockchain oracle. 
Proceedings of IEEE International Conference Internet Things (iThings) IEEE Green Computing and 
Communications (GreenCom) IEEE Cyber, Physical Social Computing and Networking (CPSCom) IEEE Smart 
Data (SmartData), 1145–1152. doi:10.1109/Cybermatics_2018.2018.00207

Ajay, Swayamjyoti, Sahoo, Sahu, & Kishore. (2020). Multi-Class classification of vulnerabilities in 
Smart Contracts using AWDLSTM, with pre-trained encoder inspired from natural language processing. 
arXiv:2004.00362.

Akca, S., Rajan, A., & Peng, C. (2019). SolAnalyser: A Framework for Analysing and Testing Smart Contracts. 
Proceedings in the 26th Asia-Pacific Software Engineering Conference (APSEC), 482-489. doi:10.1109/
APSEC48747.2019.00071

Al-Kadi, O., Moustafa, N., Turnbull, B., & Choo, K. (2021). A Deep Blockchain Framework-Enabled 
Collaborative Intrusion Detection for Protecting IoT and Cloud Networks. IEEE Internet of Things Journal, 
8(12), 9463–9472. doi:10.1109/JIOT.2020.2996590

Alexandre, A. B., Rogério, B. a., Julio, C. R., & Antonio, B. (2018). An exploration of blockchain technology 
in supply chain. In 22nd Cambridge International Manufacturing Symposium. University of Cambridge.

Alkhalifah, A., Ng, A., Watters, P., & Kayes, A. (2021). A Mechanism to Detect and Prevent Ethereum Blockchain 
Smart Contract Reentrancy Attacks. Frontiers in Computer Science.

Almakhour, M., Wehby, A., Sliman, L., Samhat, A., & Mellouk, A. (2021). Smart Contract Based Solution for 
Secure Distributed SDN. 2021 11th IFIP International Conference on New Technologies, Mobility and Security 
(NTMS), 1-6.

Anastasia, M., & Aaron, L. (2018). Designing secure Ethereum smart contracts: A finite state machine-based 
approach. Proceedings of the 22nd International Conference on Financial Cryptography Data Security, 1–15.

Anastasia, M., & Aaron, L. (2018). FSolidM for Designing Secure Ethereum Smart Contracts. proceeding of 
the 7th International Conference on Principles of Security and Trust (POST).

Anastasia, M., & Aaron, L. (2019). VeriSolid: Correct-by-Design Smart Contracts for Ethereum. 
arXiv:1901.01292v2.

Anton, P., Dimitar, D., Petar, T., Dana, D., & Martin, V. (2020). VerX: Safety Verification of Smart Contracts. 
IEEE Symposium on Security and Privacy (SP), 1661-1677.

Antonino, P., & Roscoe, A. (2020). Formalising and verifying smart contracts with Solidifier: a bounded model 
checker for Solidity. arXiv, abs/2002.02710.

Aquilina, S.J., Casino, F., Vella, M., Ellul, J., & Patsakis, C. (2021). EtherClue: Digital investigation of attacks 
on Ethereum smart contracts. ArXiv,abs/2104.05293.

Ari, J., Ahmed, K., & Elaine, S. (2016). The Ring of Gyges: Investigating the Future of Criminal Smart Contracts. 
In SIGSAC Conference on Computer and Communications Security (pp. 283-295). ACM.

Ashizawa, N., Yanai, N., Cruz, J. P., & Okamura, S. (2021). Eth2Vec: Learning Contract-Wide Code 
Representations for Vulnerability Detection on Ethereum Smart Contracts. Proceedings of the 3rd ACM 
International Symposium on Blockchain and Secure Critical Infrastructure. doi:10.1145/3457337.3457841

Ashraf, I., Ma, X., Jiang, B., & Chan, W. K. (2020). GasFuzzer: Fuzzing Ethereum Smart Contract Binaries to 
Expose Gas-Oriented Exception Security Vulnerabilities. IEEE Access: Practical Innovations, Open Solutions, 
8, 99552–99564. doi:10.1109/ACCESS.2020.2995183

Babel, K., Daian, P., Kelkar, M., & Juels, A. (2021). Clockwork Finance: Automated Analysis of Economic 
Security in Smart Contracts. Academic Press.

http://dx.doi.org/10.1109/Cybermatics_2018.2018.00207
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1109/JIOT.2020.2996590
http://dx.doi.org/10.1145/3457337.3457841
http://dx.doi.org/10.1109/ACCESS.2020.2995183


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

21

Barati, M., Buchanan, W.J., Lo, O., & Rana, O.F. (2021). A Privacy-Preserving Platform for Recording COVID-19 
Vaccine Passports. ArXiv, abs/2112.01815.

Barboni, M., Morichetta, A., & Polini, A. (2021). SuMo: A Mutation Testing Strategy for Solidity Smart 
Contracts. 2021 IEEE/ACM International Conference on Automation of Software Test (AST), 50-59. doi:10.1109/
AST52587.2021.00014

Bartoletti, M., & Pompianu, L. (2018). An Empirical Analysis of Smart Contracts: Platforms, Applications, and 
Design Patterns. arXiv:1703.06322.

Benedikt, B., Shashank, A., Mahdi, Z., & Dan, B. (2019). Zether: Towards Privacy in a Smart Contract World. 
International Association for Cryptologic Research (IACR) ePrint Archive. 

Bill, M., & Ari, J. (2016). Setting standards for altering and undoing smart contracts. In International Symposium 
on Rules and Rule Markup Languages for the Semantic Web (pp. 151-166). Springer.

Boron, M., & Kobusińska, A. (2021). Alternative Authentication with Smart Contracts for Online Games. 2021 
IEEE 46th Conference on Local Computer Networks (LCN), 415-418.

Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R., & Scholz, B. (2018). Vandal: A 
Scalable Security Analysis Framework for Smart Contracts. arXiv abs/1809.03981.

Çagdas, Iguernlala, Laporte, Fessant, & Mebsout. (2018). Liquidity: Ocaml pour la blockchain. Journées 
Francophones des Langages Applicatifs.

Chao, L., Han, L., Zhao, C., Zhong, C., Bangdao, C., & Bill, R. (2018). Reguard: finding reentrancy bugs 
in smart contracts. Proceedings of the 40th International Conference on Software Engineering: Companion 
Proceeedings, 65–68.

Chao, P., Sefa, A., & Ajitha, R. (2019). A Framework for Solidity Contract Instrumentation and Analysis. 
arXiv:1905.01659v1.

Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N. M., Juels, A., Miller, A. K., & Song, D. (2019). 
Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts. 2019 IEEE 
European Symposium on Security and Privacy (EuroS&P), 185-200. doi:10.1109/EuroSP.2019.00023

Chibuzor, U., Aleksandr, K., Kondwani, T., & Alex, N. (2018). An Exploration of Blockchain enabled Smart-
Contracts Application in the Enterprise. Technical report.

Chinen, Y., Yanai, N., Cruz, J., & Okamura, S. (2020). Hunting for Re-Entrancy Attacks in Ethereum Smart 
Contracts via Static Analysis. arXiv, abs/2007.01029.

Christof, F. T., & Julian, S. (2018). Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts. 2018 Annual 
Computer Security Applications Conference (ACSAC ’18). doi:10.1145/3274694.3274737

Christof, F. T., & Mathis, S. (2019). The art of the scam: Demystifying honeypots in ethereum smart contracts. 
arXiv:1902.06976.

Christopher, K. F., & Mariusz, N. (2016). From institutions to code: Towards automated generation of smart 
contracts. IEEE 1st International Workshops on Foundations and Applications of Self Systems (FAS*W), 210-215.

Christopher, N., & Vincent, G. (2016). The blockchain anomaly. In 15th International Symposium on Network 
and Computer Applications (pp. 301-317). IEEE.

Coblenz, M. (2017). Obsidian: A safer blockchain programming language. Proc. IEEE/ACM 39th International 
Conference on Software Engineering Companion, 1–11. doi:10.1109/ICSE-C.2017.150

Contro, F., Crosara, M., Ceccato, M., & Preda, M. D. (2021). EtherSolve: Computing an Accurate Control-Flow 
Graph from Ethereum Bytecode. 2021 IEEE/ACM 29th International Conference on Program Comprehension 
(ICPC), 127-137.

Crypto, P. (2018). The $3 Million Winner of Fomo3D Is Still Playing to Win. Retrieved from https://www.
longhash.com/en/news/2257/The-$3-Million-Winner-of-Fomo3D-Is-Still-Playing-to-Win

Cyril, G., & Ricardo, P. (2019). Selfish Mining in ethereum. arXiv:1904.13330.

http://dx.doi.org/10.1109/AST52587.2021.00014
http://dx.doi.org/10.1109/AST52587.2021.00014
http://dx.doi.org/10.1109/EuroSP.2019.00023
http://dx.doi.org/10.1145/3274694.3274737
http://dx.doi.org/10.1109/ICSE-C.2017.150


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

22

Damle, S., Gujar, S., & Moti, M. H. (2021). FASTEN: Fair and Secure Distributed Voting Using Smart 
Contracts. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 1-3. doi:10.1109/
ICBC51069.2021.9461060

Daniel, P., & Benjamin, L. (2019). Smart contract vulnerabilities: Does anyone care? arXiv:1902.06710v2.

David, C. S. (2020). Private and Verifiable Smart Contracts on Blockchains. arXiv:1807.09484v2.

de Pedro, Daniele, & Cuende. (2017). Witnet: A decentralized oracle network protocol. arXiv:1711.09756.

Dietrich, F., Turgut, A., Palm, D., & Louw, L. (2020). Smart Contract-Based Blockchain Solution to Reduce 
Supply Chain Risks. APMS.

Ding, M., Li, P., Li, S., & Zhang, H. (2021). HFContractFuzzer: Fuzzing Hyperledger Fabric Smart Contracts 
for Vulnerability Detection. Evaluation and Assessment in Software Engineering.

DocumentationP. (n.d.). Available at: https://docs.provable.xyz

Egala, B. S., Pradhan, A., Badarla, V., & Mohanty, S. (2021). Fortified-Chain: A Blockchain-Based Framework 
for Security and Privacy-Assured Internet of Medical Things With Effective Access Control. IEEE Internet of 
Things Journal, 8(14), 11717–11731. doi:10.1109/JIOT.2021.3058946

El Majdoubi, D., El Bakkali, H., & Sadki, S. (2021). SmartMedChain: A Blockchain-Based Privacy-Preserving 
Smart Healthcare Framework. Journal of Healthcare Engineering, 2021, 1–19. doi:10.1155/2021/4145512 
PMID:34777733

Ellis, S., Juels, A., & Nazarov, S. (2017). ChainLink: A decentralized oracle network. White Paper. 
Available:https://link.smartcontract.com/whitepaper

Elvira, A., Jesus, C., Pablo, G., Guillermo, R., & Albert R. (2019). SAFEVM: A Safety Verifier for Ethereum 
Smart Contract. arXiv:1906.04984v1

Elvira, A., Jesus, C., Pablo, G., Guillermo, R., & Albert, R. (2019). GASOL: Gas Analysis and Optimization for 
Ethereum Smart Contracts, arXiv:1912.11929.

Eshghie, M., Artho, C., & Gurov, D. (2021). Dynamic Vulnerability Detection on Smart Contracts Using Machine 
Learning. Evaluation and Assessment in Software Engineering. doi:10.1145/3463274.3463348

Eskandari, Clark, Sundaresan, & Adham. (2017). On the feasibility of decentralized derivatives markets. Proc. 
Int. Conf. Financial Cryptography Data Secur., 553–567. doi:10.1007/978-3-319-70278-0_35

Evgeniy, S. (2018). Debugging Smart Contract’s Business Logic Using Symbolic Model Checking. 
arXiv:1812.00619v1.

Eyal, I., & Sirer, E. G. (2014). How to disincentivize large bitcoin mining pools. https://hackingdistributed.
com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/

Fan, S., Fu, S., Xu, H., & Cheng, X. (2021). Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain. 
Information Processing & Management, 58(4), 102587. doi:10.1016/j.ipm.2021.102587

Fan, Z., Ethan, C., Kyle, C., Ari, J., & Elaine, S. (2016). Town crier: An authenticated data feed for smart contracts. 
In ACM SIGSAC Conference on Computer and Communications Security (pp. 270-282). ACM.

Fang, M., Zhang, Z., Jin, C., & Zhou, A. (2021). High-Performance Smart Contracts Concurrent Execution for 
Permissioned Blockchain Using SGX. 2021 IEEE 37th International Conference on Data Engineering (ICDE), 
1907-1912.

Florian, I., Guido, G., Regis, R., & Giovanni, S. (2016). Evaluation of logic-based smart contracts for blockchain 
systems. In International Symposium on Rules and Rule Markup Languages for the Semantic Web (pp. 167-
183). Springer.

Fox, P. (2021). TrustedAP: Using the Ethereum Blockchain to Mitigate the Evil Twin Attack. Proceedings of 
the 52nd ACM Technical Symposium on Computer Science Education. doi:10.1145/3408877.3439695

Frank, J., Aschermann, C., & Holz, T. (2020). ETHBMC: A Bounded Model Checker for Smart Contracts. 
Proceeding of the 29th USENIX Security Symposium.

http://dx.doi.org/10.1109/ICBC51069.2021.9461060
http://dx.doi.org/10.1109/ICBC51069.2021.9461060
https://docs.provable.xyz
http://dx.doi.org/10.1109/JIOT.2021.3058946
http://dx.doi.org/10.1155/2021/4145512
http://www.ncbi.nlm.nih.gov/pubmed/34777733
https://link.smartcontract.com/whitepaper
http://dx.doi.org/10.1145/3463274.3463348
http://dx.doi.org/10.1007/978-3-319-70278-0_35
http://dx.doi.org/10.1016/j.ipm.2021.102587
http://dx.doi.org/10.1145/3408877.3439695


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

23

Franklin, S., Daniel, H., Alexander, H., Sophia, D., & Susan, E. (2019). Flint for Safer Smart Contracts. 
arXiv:1904.06534.

Gallersdörfer, U., & Matthes, F. (2021). TeSC: TLS/SSL-Certificate Endorsed Smart Contracts. 2021 IEEE 
International Conference on Decentralized Applications and Infrastructures (DAPPS), 95-100. doi:10.1109/
DAPPS52256.2021.00016

Gao, J., Liu, H., Liu, C., Li, Q., Guan, Z., & Chen, Z. (2019). EASYFLOW: Keep Ethereum Away from 
Overflow. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings 
(ICSE-Companion), 23-26.

Garfatta, I., Klai, K., Gaaloul, W., & Graiet, M. (2021). A Survey on Formal Verification for Solidity Smart 
Contracts. 2021 Australasian Computer Science Week Multiconference.

Geng, Z., He, Y., Wang, C., Xu, G., Xiao, K., & Yu, S. (2021). A Blockchain based Privacy-Preserving Reputation 
Scheme for Cloud Service. ICC 2021 - IEEE International Conference on Communications, 1-6.

Grossman, Abraham, Golan-Gueta, Michalevsky, Rinetzky, Sagiv, & Zohar. (2017). Online detection of effectively 
callback free objects with applications to smart contracts. Proceedings of the ACM on Programming Languages.

Gustavo, G., Will, S., Artur, C., Josselin, F., & Alex, G. (2020). Echidna: Effective, Usable, and Fast Fuzzing 
for Smart Contracts. Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing 
and Analysis (ISSTA ’20).

Hamda, A., Muhammad, H. R., Khaled, S., & Davor, S. (2020). Trustworthy Blockchain Oracles: Review, 
Comparison, and Open Research Challenges. IEEE Access: Practical Innovations, Open Solutions.

Han, Liu, Zhao, Jiang, & Sun.(2018). S-gram: Towards Semantic-Aware Security Auditing for Ethereum Smart 
Contracts. 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), 814-819. 
doi:10.1145/3238147.3240728

Hess, Malahov, & Petterson. (2017). Aeternity Blockchain.  Available:https://aeternity.com/
aeternityblockchainwhitepaper.pdf

Hiroki, W., Shigeru, F., Atsushi, N., Yasuhiko, M., & Akihito, A. (2015). Blockchain contract: A complete 
consensus using Blockchain. 4th Global Conference on Consumer Electronics (GCCE), 577-578.

Houda, Z. A., Hafid, A., & Khoukhi, L. (2019). Cochain-SC: An Intra- and Inter-Domain Ddos Mitigation Scheme 
Based on Blockchain Using SDN and Smart Contract. IEEE Access: Practical Innovations, Open Solutions, 7, 
98893–98907. doi:10.1109/ACCESS.2019.2930715

Hu, B., Zhang, Z., Liu, J., Liu, Y., Yin, J., Lu, R., & Lin, X. (2021). A comprehensive survey on smart contract 
construction and execution: paradigms, tools, and systems. Patterns.

Hu, X., Zhuang, Y., Lin, S., Zhang, F., Kan, S., & Cao, Z. (2021). A security type verifier for smart contracts. 
Computers & Security, 108, 102343. doi:10.1016/j.cose.2021.102343

Huashan, C., Marcus, P., Laurent, N., & Shouhuai, X., (2020). A Survey on Ethereum Systems Security: 
Vulnerabilities, Attacks, and Defenses. ACM Comput. Surv., 53. . 10.1145/3391195

Ioannis, K., Maria, P., & Nedaa, B. A. (2018). Design of the Blockchain Smart Contract: A Use case for real 
estate. Journal of Information Security, 177-190.

Ittay, E., & Emin, S. (2018). Majority is not enough: Bitcoin mining is vulnerable. Communications of the ACM, 
61(7), 95–102. doi:10.1145/3212998

Ivanov, N., Yan, Q., & Wang, Q. (2021). Blockumulus: A Scalable Framework for Smart Contracts on the Cloud. 
ArXiv, abs/2107.04904.

Ivica, N., Aashish, K., Ilya, S., Prateek, S., & Aquinas, H. (2018). Finding The Greedy, Prodigal, and Suicidal 
Contracts at Scale. 34th Annual Computer Security Applications Conference, 653-663.

Jiachi, C. (2020). Finding Ethereum Smart Contracts Security Issues by comparing history. 35th IEEE/ACM 
International Conference on Automated Software Engineering (ASE ’20).

http://dx.doi.org/10.1109/DAPPS52256.2021.00016
http://dx.doi.org/10.1109/DAPPS52256.2021.00016
http://dx.doi.org/10.1145/3238147.3240728
https://aeternity.com/aeternityblockchainwhitepaper.pdf
https://aeternity.com/aeternityblockchainwhitepaper.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2930715
http://dx.doi.org/10.1016/j.cose.2021.102343
http://dx.doi.org/10.1145/3212998


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

24

Jialiang, C., Bo, G., Hao, X., Jun, S., Yan, C., & Zijiang, Y. (2019). sCompile: Critical Path Identification and 
Analysis for Smart contract. arXiv:1808.00624v2

Jiang, B., Liu, Y., & Chan, W. K. (2018). ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. 
Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE’18). 
doi:10.1145/3238147.3238177

Jin, C., Pang, S., Qi, X., Zhang, Z., & Zhou, A. (2021). A High Performance Concurrency Protocol for Smart 
Contracts of Permissioned Blockchain. IEEE Transactions on Knowledge and Data Engineering, 1. doi:10.1109/
TKDE.2021.3059959

Jing, L., & Zhentian, L. (2019). A Survey on Security Verification of Blockchain Smart Contracts (Vol. 7). IEEE 
Access. doi:10.1109/ACCESS.2019.2921624

Jingxuan, H., Mislav, B., Nodar, A., Petar, T., & Martin, V. (2019). Learning to Fuzz from Symbolic Execution 
with Application to Smart Contracts. 2019 ACM SIGSAC Conference on Computer and Communications Security 
(CCS ’19). doi:10.1145/3319535.3363230

Johannes, K., & Christian, R. (2018). Teether: Gnawing at Ethereum to Automatically Exploit Smart Contracts. 
Proceedings of the 27th USENIX Security Symposium.

Josselin, F., Gustavo, G., & Alex, G. (2019). Slither: A Static Analysis Framework For Smart Contract. 
Proceedings IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain 
(WETSEB). doi:10.1109/WETSEB.2019.00008

Juan, G., & Pawel, S. (2018). PDFS: Practical Data Feed Service for Smart Contracts. arXiv 1808.06641v2.

Kamboj, P., Khare, S., & Pal, S. (2021). User authentication using Blockchain based smart contract in role-based 
access control. Peer-to-Peer Networking and Applications, 14(5), 2961–2976. doi:10.1007/s12083-021-01150-1

Karl, W., Sinisa, M., Silvan, E., Kari, K., & Srdjan, C. (2019). ACE: Asynchronous and Concurrent Execution of 
Complex Smart Contracts. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications 
Security.

Kevin, D., Mitchell, A., Ahmed, K., Andrew, M., & Elaine, S. (2016). Step by Step Towards Creating a Safe 
Smart Contract: Lessons and insights from a cryptocurrency lab. In International Conference on Financial 
Cryptography and data Security (pp. 79-84). Springer.

Khan, J. A., Bangalore, K. U., Kurkcu, A., & Ozbay, K. (2021). TREAD: Privacy Preserving Incentivized 
Connected Vehicle Mobility Data Storage on InterPlanetary-File-System-Enabled Blockchain. Transportation 
Research Record: Journal of the Transportation Research Board.

Khan, S., Amin, M. B., Azar, A. T., & Aslam, S. (2021). Towards Interoperable Blockchains: A Survey on the 
Role of Smart Contracts in Blockchain Interoperability. IEEE Access: Practical Innovations, Open Solutions, 
9, 116672–116691. doi:10.1109/ACCESS.2021.3106384

Khan, S. N., Loukil, F., Ghedira, C., Benkhelifa, E., & Bani-Hani, A. I. (2021). Blockchain smart contracts: 
Applications, challenges, and future trends. Peer-to-Peer Networking and Applications, 14(5), 1–25. doi:10.1007/
s12083-021-01127-0 PMID:33897937

Kim & Kim. (2020). Intelligent Mediator-based Enhanced Smart Contract for Privacy Protection. ACM Trans. 
Internet Technol., 21(1). 10.1145/3404892

Knecht, M., & Stiller, B. (2021). SAMOS: a Smart Contract Access Management over Opaque and Substructural 
Types. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 1-5. doi:10.1109/
ICBC51069.2021.9461117

Konrad, W., & Julian, S. (2019). Annotary: A Concolic Execution System for Developing Secure Smart Contracts. 
ESORICS.

Konstantinos, C., & Michael, D. (2016). Blockchains and Smart Contracts for IOT. IEEE special section on the 
Plethora of Research in Internet of Things (iot), 2292-2303.

http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1109/TKDE.2021.3059959
http://dx.doi.org/10.1109/TKDE.2021.3059959
http://dx.doi.org/10.1109/ACCESS.2019.2921624
http://dx.doi.org/10.1145/3319535.3363230
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/10.1007/s12083-021-01150-1
http://dx.doi.org/10.1109/ACCESS.2021.3106384
http://dx.doi.org/10.1007/s12083-021-01127-0
http://dx.doi.org/10.1007/s12083-021-01127-0
http://www.ncbi.nlm.nih.gov/pubmed/33897937
http://dx.doi.org/10.1109/ICBC51069.2021.9461117
http://dx.doi.org/10.1109/ICBC51069.2021.9461117


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

25

Li, C., Qu, X., & Guo, Y. (2021). TFCrowd: A blockchain-based crowdsourcing framework with enhanced 
trustworthiness and fairness. EURASIP Journal on Wireless Communications and Networking, 2021, 1–20. 
doi:10.1186/s13638-020-01861-8

Li, R., & Asaeda, H. (2021). FSCC: Flexible Smart Contract Interaction with Access Control for Blockchain. 
ICC 2021 - IEEE International Conference on Communications, 1-6.

Liu, B., Sun, S., & Szalachowski, P. (2020). SMACS: Smart Contract Access Control Service. 2020. 50th Annual 
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 221-232. doi:10.1109/
DSN48063.2020.00039

Liu, Z., Qian, P., Wang, X., Zhuang, Y., Qiu, L., & Wang, X. (2021). Combining Graph Neural Networks with 
Expert Knowledge for Smart Contract Vulnerability Detection. ArXiv, abs/2107.11598.

Loi, Teutsch, Kulkarni, & Saxena. (2015). Demystifying incentives in the consensus computer. Proceedings of 
the ACM CCS. 706–719.

Loi, L., Duc-Hiep, C., Hrishi, O., Prateek, S., & Aquinas, H. (2016). Making Smart Contracts Smarter. ACM 
SIGSAC Conference on Computer and Communications Security, 167-183.

Lutz, O., Chen, H., Fereidooni, H., Sendner, C., Dmitrienko, A., Sadeghi, A., & Koushanfar, F. (2021). ESCORT: 
Ethereum Smart COntRacTs Vulnerability Detection using Deep Neural Network and Transfer Learning. ArXiv, 
abs/2103.12607.

Maher, A., & Aad Van, M. (2017). Blockchain-based Smart Contracts: A systematic mapping study. 3rd 
International Conference on Artificial Intelligence and Soft Computing, 131-135.

Marc, J., Farouk, H., Ramy, G., & Ziyaad, Q. (2019). Do Smart Contract Languages Need to be Turing Complete? 
arXiv:1710.06372.

Maria, A., Aviv, Z., & Laurent, V. (2017). Hijacking Bitcoin: Routing attacks on cryptocurrencies. Security and 
Privacy (SP), IEEE Symposium on, 375–392.

Maria, A., Gian, M., Jan, M., & Laurent, V. (2018). SABRE: Protecting Bitcoin against Routing Attacks. 
arXiv:1808.06254.

Mark, M., Felipe, M., Eric, H., Alex, G., Gustavo, G., Josselin, F., Trent, B., & Artem, D. (2019). Manticore: A 
User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts. arXiv:1907.03890v3.

Markus, K. (2019). Mandala: A smart Contract Programming. arXiv:1911.11376v1.

Mars, R., Abid, A., Cheikhrouhou, S., & Kallel, S. (2021). A Machine Learning Approach for Gas Price 
Prediction in Ethereum Blockchain. 2021 IEEE 45th Annual Computers, Software, and Applications Conference 
(COMPSAC), 156-165.

Massimo, B., Barbara, P., & Sergio, S. (2018). Data mining for detecting bitcoin ponzi schemes. Crypto Valley 
Conference on Blockchain Technology (CVCBT), 75–84.

Massimo, B., Letterio, G., & Maurizio, M. (2020). A true concurrent model of smart contracts executions. 
arXiv 1905.04366v3.

Mazurok, I., Leonchyk, Y., Antonenko, O., & Volkov, K. S. (2021). Smart contract sharding with proof of 
execution. Applied Aspects of Information Technology. doi:10.15276/aait.03.2021.6

Mengya, Z., Xiaokuan, Z., Yinqian, Z., & Zhiqiang, L. (2020), TxSpector: Uncovering Attacks in Ethereum 
from Transactions. Proc. 29th USENIX Security Symposium.

Mi, F., Wang, Z., Zhao, C., Guo, J., Ahmed, F., & Khan, L. (2021). VSCL: Automating Vulnerability Detection 
in Smart Contracts with Deep Learning. 2021 IEEE International Conference on Blockchain and Cryptocurrency 
(ICBC), 1-9. doi:10.1109/ICBC51069.2021.9461050

Michael, R., Wenting, L., Ghassan, O. K., & Lucas, D. (2019). Sereum: Protecting Existing Smart Contracts 
Against Re-entrancy attacks. Network and Distributed Systems Security (NDSS) Symposium 2019.

Miller, A., Kosba, A., Katz, J., & Shi, E. (2015). Nonoutsourceable scratch-off puzzles to discourage bitcoin 
mining coalitions. Proceedings of the ACM CCS, 680–691. doi:10.1145/2810103.2813621

http://dx.doi.org/10.1186/s13638-020-01861-8
http://dx.doi.org/10.1109/DSN48063.2020.00039
http://dx.doi.org/10.1109/DSN48063.2020.00039
http://dx.doi.org/10.15276/aait.03.2021.6
http://dx.doi.org/10.1109/ICBC51069.2021.9461050
http://dx.doi.org/10.1145/2810103.2813621


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

26

Monika, D., & Gernot, S. (2019). A Survey of Tools for analysing Smart contract. IEEE.

Muchhala, Y., Singhania, H., Sheth, S., & Devadkar, K. (2021). Enabling MapReduce based Parallel Computation 
in Smart Contracts. 2021 6th International Conference on Inventive Computation Technologies (ICICT), 537-543.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from: https://bitcoin.org/
bitcoin.pdf

Negara, E. S., Hidayanto, A. N., Andryani, R., & Syaputra, R. (2021). Survey of Smart Contract Framework 
and Its Application. Inf., 12(7), 257. doi:10.3390/info12070257

Neville, G., Michael, K., Anton, J., Lexi, B., & Bernhard, S. (2018). MadMax: Surviving Out-of-Gas Conditions 
in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2, OOPSLA. doi:10.1145/3276486

Nguyen, T. D., Pham, L. H., & Sun, J. (2021). SGUARD: Towards Fixing Vulnerable Smart Contracts 
Automatically. 2021 IEEE Symposium on Security and Privacy (SP), 1215-1229. doi:10.1109/SP40001.2021.00057

O’Connor, R. (2017). Simplicity: A new language for blockchains. Proc Workshop Program. Lang. Anal. Secur., 
107–120. 

Omar, A., Jamil, A. K., Khandakar, A., Uzzal, A. R., Bosri, R., Mansoor, N., & Rahman, M. S. (2021). A 
Transparent and Privacy-Preserving Healthcare Platform With Novel Smart Contract for Smart Cities. IEEE 
Access: Practical Innovations, Open Solutions, 9, 90738–90749. doi:10.1109/ACCESS.2021.3089601

Omar, I. A., Jayaraman, R., Debe, M., Salah, K., Yaqoob, I., & Omar, M. A. (2021). Automating Procurement 
Contracts in the Healthcare Supply Chain Using Blockchain Smart Contracts. IEEE Access: Practical Innovations, 
Open Solutions, 9, 37397–37409. doi:10.1109/ACCESS.2021.3062471

Peng, K., Li, M., Huang, H., Wang, C., Wan, S., & Choo, K. R. (2021). Security Challenges and Opportunities 
for Smart Contracts in Internet of Things: A Survey. IEEE Internet of Things Journal, 8(15), 12004–12020. 
doi:10.1109/JIOT.2021.3074544

Peng, Q., Zhenguang, L., Qinming, H., Roger, Z., & Xun, W. (2020). Towards Automated Reentrancy Detection 
for Smart Contracts Based on Sequential Models. IEEE Access: Practical Innovations, Open Solutions.

Petar, T., Andrei, D., Dana, D-C., Arthur, G., Florian, B., & Martin, V. (2018). Securify: Practical Security Analysis 
of Smart Contracts. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 
Security, 67-82. doi:10.1145/3243734.3243780

Peterson, K. Williams, & Alexander. (2015). Augur: A decentralized oracle and prediction market platform. 
arXiv:1501.01042.

Pettersson, J., & Edström, R. (2018). Safer Smart Contracts Through TypeDriven Development. Available:https://
publications.lib.chalmers.se/records/fulltext/234939/234939.pdf

Pierro, G. A. (2021). Smart-Graph: Graphical Representations for Smart Contract on the Ethereum Blockchain. 
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 708-714. 
doi:10.1109/SANER50967.2021.00090

Pradhan, N., & Singh, A. (2021). Smart contracts for automated control system in Blockchain based smart cities. 
Journal of Ambient Intelligence and Smart Environments, 13(3), 253–267. doi:10.3233/AIS-210601

Bernabe, Canovas, Hernandez-Ramos, Moreno, & Antonio. (2019). Privacy-Preserving Solutions for Blockchain: 
Review and Challenges. IEEE Access: Practical Innovations, Open Solutions.

Qasse, I. A., Mishra, S., & Hamdaqa, M. (2021). iContractBot: A Chatbot for Smart Contracts’ Specification 
and Code Generation. 2021 IEEE/ACM Third International Workshop on Bots in Software Engineering (BotSE), 
35-38. doi:10.1109/BotSE52550.2021.00015

Qin, P., Tan, W., Guo, J., & Shen, B. (2021). Intelligible Description Language Contract (IDLC) – A Novel 
Smart Contract Model. Information Systems Frontiers, 1–18. doi:10.1007/s10796-021-10138-4

Quan, N., Andre, C., & Michael, K. (2020), OV: Validity-Based Optimistic Smart Contracts. arXiv:2004.04338v1.

RachelR. (2018). Retrieved from https://www.coindesk.com/four-projects-seek

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.3390/info12070257
http://dx.doi.org/10.1145/3276486
http://dx.doi.org/10.1109/SP40001.2021.00057
http://dx.doi.org/10.1109/ACCESS.2021.3089601
http://dx.doi.org/10.1109/ACCESS.2021.3062471
http://dx.doi.org/10.1109/JIOT.2021.3074544
http://dx.doi.org/10.1145/3243734.3243780
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
http://dx.doi.org/10.1109/SANER50967.2021.00090
http://dx.doi.org/10.3233/AIS-210601
http://dx.doi.org/10.1109/BotSE52550.2021.00015
http://dx.doi.org/10.1007/s10796-021-10138-4
https://www.coindesk.com/four-projects-seek


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

27

Rahman, M. U., Baiardi, F., Guidi, B., & Ricci, L. (2019) Protecting Personal Data Using Smart Contracts. 
In Internet and Distributed Computing Systems. IDCS 2019. Lecture Notes in Computer Science, vol 11874. 
Springer. 34914-1_310.1007/978-3-030-

Rajesh, G., Sudeep, T., Fadi, A., Prit, I., Ali, N., & Sung, W. K. (2020). Smart Contract Privacy Protection Using 
AI in Cyber-Physical Systems: Tools, Techniques and Challenges. IEEE Access: Practical Innovations, Open 
Solutions, 8, 24746–24772. doi:10.1109/ACCESS.2020.2970576

Regnath, E., & Steinhorst, S. (2018). SmaCoNat: Smart contracts in natural language. Proc. Forum Specification 
Design Lang., 5–16. doi: doi:10.1109/FDL.2018.8524068

Ren, Q., Liu, H., Li, Y., & Lei, H. (2021). CLOAK: A Framework For Development of Confidential Blockchain 
Smart Contracts. ArXiv, abs/2106.13460.

Reza, M. P., Ali, D., Kim-Kwang, R. C., & Amritraj, S. (2018). Empirical Vulnerability Analysis of Automated 
Smart Contracts Security Testing on Blockchains. Proceedings of 28th Annual International Conference on 
Computer Science and Software Engineering.

Rodler, M., Li, W., Karame, G., & Davi, L. (2020). EVMPatch: Timely and Automated Patching of Ethereum 
Smart Contracts. arXiv abs/2010.00341.

Samreen, N. F., & Alalfi, M. (2020). Reentrancy Vulnerability Identification in Ethereum Smart Contracts. 2020 
IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), 22-29.

Samreen, N.F., & Alalfi, M. (2021). A Survey of Security Vulnerabilities in Ethereum Smart Contracts. ArXiv, 
abs/2105.06974.

Samreen, N. F., & Alalfi, M. (2021). SmartScan: An approach to detect Denial of Service Vulnerability in 
Ethereum Smart Contracts. 2021 IEEE/ACM 4th International Workshop on Emerging Trends in Software 
Engineering for Blockchain (WETSEB), 17-26.

Santiago, B., Henrique, R., Marcus, D., & Stéphane, D. (2018). SmartInspect: SoliditySmart Contract Inspector. 
IWBOSE 2018 - 1st International Workshop on Blockchain Oriented Soft-ware Engineering. hal-01831075 
doi:10.1109/IWBOSE.2018.8327566

Saquib, N., Bakir, F., Krintz, C., & Wolski, R. (2021). A Resource-Efficient Smart Contract for Privacy Preserving 
Smart Home Systems. Academic Press.

Sara, R. & Ralph, D. (2019). Security, Performance, and Applications of Smart Contracts: A Systematic Survey. 
IEEE Access.

Sarwaar, S., Hector, M., & Tom, C. (2020). Smart Contract: Attacks and Protections. IEEE Access. doi:10.1109/
Access.2020.2970495

Schrans, F., Eisenbach, S., & Drossopoulou, S. (2018), Writing safe smart contracts in flint. Proc. Conf. 
Companion 2nd Int. Conf. Art, Sci., Eng. Program, 218–219.

Seike, H., Aoki, Y., & Koshizuka, N. (2021). Towards Smart Contracts for Verifying DNN Model Generation 
Process with the Blockchain. 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), 160-168.

Sergei, T., Ekaterina, V., Ivan, I., Ramil, T., Evgeny, M., & Yaroslav, A. (2018). SmartCheck: StaticAnalysis of 
Ethereum Smart Contracts. In EEE/ACM1st International Workshop on Emerging Trends in Software Engineering 
for Blockchain (WETSEB 2018). ACM. https://doi.org/10.1145/3194113.3194115.

Shuai, W., Liwei, O., Yong, Y., Xiaochun, N., Xuan, H., & Fei-Yue, W. (2019). Blockchain-Enabled Smart 
Contracts: Architecture, applications and future trends. IEEE Transactions on Systems, Man, and Cybernetics. 
Systems, 2168–2216.

Solaiman, E., Wike, T., & Sfyrakis, I. (2021). Implementation and evaluation of smart contracts using a hybrid 
on‐ and off‐blockchain architecture. Concurrency and Computation.

Solomon, R., & Almashaqbeh, G. (2021). SmartFHE: Privacy-Preserving Smart Contracts from Fully 
Homomorphic Encryption. IACR Cryptol. ePrint Arch.

http://dx.doi.org/10.1109/ACCESS.2020.2970576
http://dx.doi.org/10.1109/FDL.2018.8524068
http://dx.doi.org/10.1109/IWBOSE.2018.8327566
http://dx.doi.org/10.1109/Access.2020.2970495
http://dx.doi.org/10.1109/Access.2020.2970495


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

28

Song, L., Zhu, Z., Li, M., Ma, L., & Ju, X. (2021). A Novel Access Control for Internet of Things Based on 
Blockchain Smart Contract. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation 
Control Conference (IAEAC), 5, 111-117.

Stephens, J., Ferles, K., Mariano, B., Lahiri, S. K., & Dillig, I. (2021). SmartPulse: Automated Checking of 
Temporal Properties in Smart Contracts. 2021 IEEE Symposium on Security and Privacy (SP), 555-571.

Sukrit, K., Seep, G., Mohan, D., & Subodh, S. (2018). ZEUS: Analyzing Safety of Smart Contracts. Network 
and Distributed Systems Security (NDSS) Symposium, 1-15.

Sunbeom, S., Myungho, L., Jisu, P., Heejo, L., & Hakjoo, O. (2019). VERISMART: A Highly Precise Safety 
Verifier for Ethereum Smart Contracts. arXiv:1908.11227v2.

Suvitha, M., & Subha, R. (2021). A Survey on Smart Contract Platforms and Features. 2021 7th International 
Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1536-1539.

Tang, X., Zhou, K., Cheng, J., Li, H., & Yuan, Y. (2021). The Vulnerabilities in Smart Contracts: A Survey. 
Advances in Artificial Intelligence and Security.

Tesnim, A., & Kei-Leo, B. (2018). Formal Verification of Smart Contracts Based on Users and Blockchain 
Behaviors Models. 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS).

Thomas, D., Paul, G., Maurice, H., & Eric, K. (2017). Adding Concurrency to Smart Contracts. 
arXiv:1702.04467v1.

Thomas, G., Thomas, J., & Justine, S. (2020). Termination of Ethereum’s Smart Contracts [Research Report]. 
Univ Rennes, Inria, CNRS, IRISA.

Tianyu, S., & Wensheng, Y. (2020). A Formal Verification Framework for Security Issues of Blockchain Smart 
Contracts. IEEE Transactions on Emerging Topics in Computing.

Timuçin, T., & Birogul, S. (2021). A survey: Making “Smart Contracts” really smart. Transactions on Emerging 
Telecommunications Technologies.

Ting, C., Xiaoqi, L., Xiapu, L., & Xiaosong, Z. (2017). Under-optimized smart contracts devour your money. 
In 24th International Conference on Software Analysis, Evolution and Reengineering (pp. 442-446). IEEE.

Ting, C., Youzheng, F., Zihao, L., Hao, Z., Xiapu, L., Xiaoqi, L., Xiuzhuo, X., Jiachi, C., & Xiaosong, Z. (2020). 
GasChecker: Scalable Analysis for Discovering Gas-Inefficient Smart Contracts. IEEE Transactions on Emerging 
Topics in Computing. Advance online publication. doi:10.1109/TETC.2020.2979019

Ting, C., Zihao, L., Hao, Z., Jiachi, C., Xiapu, L., Xiaoqi, L., & Xiaosong, Z. (2018). Towards Saving Money 
in Using Smart Contracts. In ICSE-NIER’18: 40th International Conference on Software Engineering: New 
Ideas and Emerging Results Track, May 27-June 3, 2018. ACM. https://doi.org/10.1145/3183399.3183420.

Tjiam, K., Wang, R., Chen, H., & Liang, K. 2021. Your Smart Contracts Are Not Secure: Investigating Arbitrageurs 
and Oracle Manipulators in Ethereum. Proceedings of the 3rd Workshop on Cyber-Security Arms Race (CYSARM 
’21). doi:10.1145/3474374.3486916

Torres, C. F., Baden, M., Norvill, R., Pontiveros, B. B., Jonker, H., & Mauw, S. (2020). AEGIS: Shielding 
Vulnerable Smart Contracts Against Attacks. arXiv:2003.05987v1.

Torres, C.F., Jonker, H., & State, R. (2021). Elysium: Automagically Healing Vulnerable Smart Contracts Using 
Context-Aware Patching. ArXiv, abs/2108.10071.

Tyurin, A. V., Tyuluandin, I. V., Maltsev, V. S., Kirilenko, I. A., & Berezun, D. A. (2019). Overview of the 
Languages for Safe Smart Contract Programming. Trudy ISP RAN/Proc. ISP RAS, 31(3), 157-176. DOI: 
doi:10.15514/ISPRAS- 2019-31(3)-13

Vangala, A., Sutrala, A. K., Das, A., & Jo, M. (2021). Smart Contract-Based Blockchain-Envisioned 
Authentication Scheme for Smart Farming. IEEE Internet of Things Journal, 8, 10792–10806.

Vardhini, B., Dass, S. N., Sahana, R., & Chinnaiyan, R. (2021). A Blockchain based Electronic Medical Health 
Records Framework using Smart Contracts. International Conference on Computer Communication and 
Informatics (ICCCI), 1-4.

http://dx.doi.org/10.1109/TETC.2020.2979019
http://dx.doi.org/10.1145/3474374.3486916
http://dx.doi.org/10.15514/ISPRAS- 2019-31(3)-13


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

29

Wang, B., Liu, H., Liu, C., Yang, Z., Ren, Q., Zheng, H., & Lei, H. (2021). BLOCKEYE: Hunting for DeFi 
Attacks on Blockchain. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion 
Proceedings (ICSE-Companion), 17-20.

Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., & Wang, F. (2018). An Overview of Smart Contract: Architecture, 
Applications, and Future Trends. 2018 IEEE Intelligent Vehicles Symposium (IV), 108-113.

Wang, W., Song, J., Xu, G., Li, Y., Wang, H., & Su, C. (2020). ContractWard: Automated Vulnerability Detection 
Models for Ethereum Smart Contracts. IEEE Transactions on Network Science and Engineering.

Wang, X., He, J., Xie, Z., Zhao, G., & Cheung, S. (2020). ContractGuard: Defend Ethereum Smart Contracts 
with Embedded Intrusion Detection. IEEE Transactions on Services Computing, 13, 314–328.

Wang, Y., He, J., Zhu, N., Yi, Y., Zhang, Q., Song, H., & Xue, R. (2021). Security enhancement technologies 
for smart contracts in the blockchain: A survey. Transactions on Emerging Telecommunications Technologies.

Wei, Y., Kan, L., Yi, D., Guang, Y., & Kai, H. (2018). A Parallel Smart Contract Model. Proceedings of the 
2018 International Conference on Machine Learning and Machine Intelligence, 72-77.

Weili, C., Zibin, Z., Jiahui, C., Edith, N., Peilin, Z., & Yuren, Z. (2018). Detecting Ponzi Schemes on Ethereum: 
Towards Healthier Blockchain Technology. WWW 2018: The 2018 Web Conference. 10.1145/3178876.3186046

Wen, X., Guan, Z., Li, D., Lyu, H., & Li, H. (2021). A Blockchain-based Framework for Information Management 
in Internet of Vehicles. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing 
(CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 18-23.

Wenbo, W., Dinh, T. H., Peizhao, H., Zehui, X., Dusit, N., Ping, W., Yonggang, W., & Dong, I. (2019). A survey 
on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access: Practical 
Innovations, Open Solutions, 7, 22328–22370.

Wesley, J. T., Xing, J. H., Sourav, S. G., & Yew-Soon, O. (2019). Towards Safer Smart Contracts: A Sequence 
Learning Approach to detecting security threats. arXiv:1811.06632v2.

Wu, L., Wu, S., Zhou, Y., Li, R., Wang, Z., Luo, X., Wang, C., & Ren, K. (2020). EthScope: A Transaction-
centric Security Analytics Framework to Detect Malicious Smart Contracts on Ethereum. aXiv abs/2005.08278.

Xiao, Qin, Zhu, Chen, & Liu. (2018). SPESC: A Specification Language for Smart Contracts. 2018 IEEE 
42nd Annual Computer Software and Applications Conference (COMPSAC), 132-137. doi: doi:10.1109/
COMPSAC.2018.00025

Xiao, L. Y., Omar, A., David, L., & Abhik, R. (2020). Smart Contract Repair. ACM Trans. Softw. Eng. Methodol., 
1. 10.1145/nnnnnnn.nnnnnnn

Xu, Y., Hu, G., You, L., & Cao, C. (2021). A Novel Machine Learning-Based Analysis Model for Smart Contract 
Vulnerability. 10.1155/2021/5798033

Yang, X., Gao, Q., Liu, K., & Gu, H. (2021). Smart contracts based supply chain resource management system 
in the industrial internet. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation 
(YAC), 31-36.

Yang, X., Ning, Z., Jin, L., Wenjing, L., & Thomas, Y. (2020). PrivacyGuard: Enforcing Private Data Usage 
Control with Blockchain and Attested Off-chain Contract. arXiv:1904 07275.

Yi, Z., Deepak, K., Surya, B., Joshua, M., Andrew, M., & Michael, B. (2018). Erays: Reverse Engineering 
Ethereum’s Opaque Smart Contracts. Proceedings of the 27th USENIX Security Symposium.

Yu, F., Emina, T., & Rastislav, B. (2019, February 16). Precise Attack Synthesis for Smart Contracts. 
arXiv:1902.06067v1.

Yuan, R., Xia, Y. B., Chen, H. B., Zang, B. Y., & Xie, J. (2018). ShadowEth: Private Smart Contract on Public 
Blockchain. J. Comput. Sci. Technol., 33, 542–556. https://doi.org/10.1007/s11390-018-1839-y

Yuan, Z., Zhenguang, L., Peng, Q., Qi, L., Xiang, W., & Qinming, H. (2020). Smart Contract Vulnerability 
Detection Using Graph Neural Networks. Proceedings of the Twenty-Ninth International Joint Conference on 
Artificial Intelligence (IJCAI-20), 3283 - 3290.

http://dx.doi.org/10.1109/COMPSAC.2018.00025
http://dx.doi.org/10.1109/COMPSAC.2018.00025


International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

30

Senou Rosaire is a Ph.D. student at the Institute of Mathematics and Physics (IMSP), University of Abomey-Calavi, 
Benin. He received a bachelor’s degree in telecommunications at Ghana Technology University College (2011)
and a Master Degree at IMSP (2018) where he majored in networking and information systems. He also became 
a Cisco Certified Network Associate (2011) and received his Advanced Diploma certificate from the City and 
Guilds of London Institute (2007) in telecommunications. He has more than five years of professional experience 
in networking and telecommunications and has worked in companies such as Huawei where he was in charge of 
conducting surveys for Wi-Fi network implementation; supervising fiber network deployment contractors onsite; 
and proposing solutions to customers. His research embraces networking and blockchain technologies.

Jules Degila (Ph.D.) is a Professor of Computer Science at the University of Abomey-Calavi, Benin. He is specialized 
in telecommunication networks and systems architecture, deployment, and operations. He has held different 
management, executive, and board member positions for Western and African telecommunications companies 
during the last ten years. A guest speaker at various universities in operations research and telecommunication, he 
has also advised many companies and governments as a strategist in ICT4D. From 04/2005 to 06/2010, he was 
Assistant Director of Telecommunications Applications and Technologies for a leading Canadian analog and digital 
television, high-speed Internet, and telephony services provider. During his career in Canada, he was responsible 
both for the technological architectures of all telecommunications services and for exploring and developing 
advanced telecommunication applications and technologies. In addition, he served as a technology strategist for 
regulatory affairs. He was also a member of different working groups of CableLabs (a Denver, Colorado-based 
research consortium for cable operators). Jules received a Ph.D. degree in electrical engineering from École 
Polytechnique de Montréal, Canada, in 2004.

Yuepeng, W., Shuvendu, K., Shuo, C., Rong, P., Isil, D., Cody, B., & Immad, N. (2019). Formal Specification 
and Verification of Smart contracts in Azure Blockchain. arXiv:1812.08829v2.

Yuyao, Z., Siqi, M., Juanru, L., Kailai, L., Surya, N., & Dawu, G. (2020). SMARTSHIELD: Automatic 
Smart Contract Protection Made Easy. In 27th International Conference on Software Analysis, Evolution and 
Reengineering (SANER) (pp. 23-34). IEEE.

Zeinab, N., Pierre, Y. P., & Frederic, D. (2018). Model-Checking of Smart Contracts. 2018 IEEE International 
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and 
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 980-987. doi: 
doi:10.1109/Cybermatics_2018.2018.00185

Zhaofeng, M., Jialin, M., Ji-hui, W., & Zhiguang, S. (2021). Blockchain-Based Decentralized Authentication 
Modeling Scheme in Edge and IoT Environment. IEEE Internet of Things Journal, 8, 2116–2123.

Zhou, E., Hua, S., Pi, B., Sun, J., Nomura, Y., Yamashita, K., & Kurihara, H. (2018). Security Assurance for Smart 
Contract. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1-5.

Ziar, R.A., Irfanullah, S., Khan, W.U., & Salam, A. (2021). Privacy Preservation for On-Chain Data in the 
Permission less Blockchain using Symmetric Key Encryption and Smart Contract. Academic Press.

Zibin, Z., Shaoan, X., Hong-Ning, D., Weili, C., Xiangping, C., Jian, W., & Muhammad, I. (2019). Overview 
on Smart Contracts: Challenges, Advances and Platforms. arXiv:1912.10370v1.

Ziftrcoin: A cryptocurrency to enable commerces. (2014). Available at https://d19y4lldx7po3t. cloudfront.net/
assets/docs/ziftrcoin-whitepaper-120614.pdf

http://dx.doi.org/10.1109/Cybermatics_2018.2018.00185
https://d19y4lldx7po3t.cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf
https://d19y4lldx7po3t.cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf

