
DOI: 10.4018/IJITWE.304048

International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

ABSTRACT

Blockchain-enabled smart contracts are subjected to several issues leading to vigorous attacks such as 
the decentralized autonomous organization (DAO) and the ParitySig bug on the Ethereum platform 
with disastrous consequences. Several solutions have been proposed. However, new threats are 
identified as technology evolves and new solutions are produced, while some older threats remain 
unsolved. Thus, the need to fill the gap with a more comprehensive survey on existing issues and 
solutions for researchers and practitioners arises. The resulting updated database will become an 
essential means for choosing a particular solution for a specific subject. In this review, the authors 
embrace mainly codifying security privacy and performance issues and their respective solutions. 
Each problem is attached to its corresponding solutions when they exist. A summary of the threats 
and solutions is provided as well as the relationship between threat importance and the given answers. 
They finally enumerate some directives for future works.
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INTRODUCTION

Transactions are subject to risks and high transaction fees in the real world, especially when third 
parties are involved. The creation of blockchain technology brought the light of hope to this issue. 
The Blockchain is a decentralized ledger that allows secure transactions at a low cost (Nakamoto, 
2008). At first, its application was related to the finance domain using the Bitcoin currency but has 
been extended lately to several sectors, including the contract domain, giving rise to a new intelligent 
contract era. Smart contracts based on Blockchain are a set of codes that enforce contract execution. 
Their correctness is essential to ensure trust in blockchain-based systems (Alexandre et al., 2018).

The contracts are presented as programs running on blockchain platforms, such as the Ethereum 
Virtual Machine (EVM). They interact through well-defined interfaces where no third parties are 
involved in the financial transaction’s completion in a distributed environment. However, attackers can 
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exploit security vulnerabilities from the interfaces as they provide favorable malicious deeds (Yu et 
al., 2019). Blockchain technology has an immutability property that does not simplify bug fixing in a 
smart contract. One of the main reasons is that a deployed smart contract is not modified directly when 
bugs are found. It involves assets and different parties that need to be considered carefully. A novel 
version of the contract is created and deployed to fix bugs. However, data on the previous contract is 
not automatically sent to the new contract. Manual intervention is required to initiate the new contract 
with the earlier data, which is very clumsy (Shuai et al., 2019). Several smart contract vulnerabilities 
have been noticed; a breach of trust in the underlying blockchain technology was revealed (Evgeniy, 
2018). Two of the most notorious security breaches are the infamous Decentralized Autonomous 
Organization (DAO) exploit, which has led to a considerable loss of more than $50 million, and the 
ParitySig attack, where $169 million is locked forever (Yuepeng et al., 2019; Franklin et al., 2019).

These incidents shed more light on the importance of securing smart contracts, and the user 
community started to pay more attention to them. Therefore, programmers are forced to ensure that 
smart contract codes are challenged from security perspectives before deployment. Consequently, 
smart contract issues have been hot topics among researchers (Wang et al., 2018). The frequent threats 
in the literature are related to codifying, security privacy and performance aspects, smart contract life 
cycle, and the blockchain architecture layers (Maher & Aad Van, 2017; Zibin et al., 2019; Huashan et 
al., 2020). Several contract analysis tools have been developed in the past few years to address these 
concerns and consist of an important database that needs to be continuously updated. Indeed, such 
a document is a powerful tool to help and guide blockchain practitioners and researchers. As most 
difficult issues are tackled, it is a severe option to ensure minimum security on the blockchain smart 
contract. However, threats have been discovered. Previous tools become obsolete against new threats, 
and security is therefore not assured. This situation becomes a concern and would lead Blockchain 
and smart contract users to conduct dense and thorough research to ensure smart contract safety. Also, 
as some issues are yet to be tackled, and some have received more attention than others, it becomes 
relevant to bring to their knowledge a clear vision of smart contract security for a better tool choice.

Thus, we provide this review to combine several smart contract problems with their respective 
solutions as much as possible. This article surveys the literature of smart contract issues from 2014 to 
2021 as they apply to codify, security, privacy, and performance domain. Solutions related to issues 
are classified accordingly, while suggestions for likely research directions are presented.

Our contributions from this work are described as follows:
Identifying new vulnerabilities concerning codifying, security, privacy, and performance issues.
Identifying newly developed solutions against vulnerabilities.
Creating a new database that can serve as a guideline in the smart contract security domain with 

insights on future directions to help researchers, students, and practitioners.
Section 2 talks about the problem statement and objectives in the rest of the paper. Section 3 

presents Blockchain and smart contracts. Then, section 4 tackles the research methodology, while 
section 5 shows the results obtained. After that, the discussion of the results is conducted in section 
6, and section 7 presents research perspectives. Finally, section 8 concludes the paper.

PROBLEM STATEMENT AND OBJECTIVES

Several blockchain-enabled smart contract issues have been noticed, and solutions have been provided 
accordingly. Researchers combined the solutions to produce a literature review document related to 
the topic. However, the rapid growth of threats and solutions makes the previous database obsolete. 
Indeed, when referencing the existing database, only old bugs and related solutions are found. This 
results in a waste of time, leading to conducting more studies. As of this writing, as far as we know, 
only one database related to codifying, security, privacy, and performance was created in 2017, which 
is indeed outdated due to the fast development of the technology.
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Smart contracts are involved in several domains where a considerable amount of money must be 
secured as much as possible. Indeed, using the wrong tool to verify blockchain security thoroughly 
would result in security breaches, leading to loss of money.

This work’s contribution is to draw smart contracts users’ attention to the risks related to using 
this technology and how best they can secure or check their smart contract for a particular issue with 
the most appropriate tool while setting a new referencing database.

This includes:
Providing a current database that groups codifying, security, privacy, and performance issues 

with the most appropriate tool for their detection. This brings into combined document methods or 
new methods to detect threats.

Providing guidelines regarding the most recurrent and dangerous issues. Indeed, the more 
notorious a threat is, the more drastic measures are needed to counter it. This helps smart contract 
practitioners grasp how far research has evolved to secure smart contracts while allowing them to 
instantly. choose from among various tools.

Proposing future research perspectives.
Setting a new benchmark for the issues involved in the study. Though research has evolved, 

greater improvements are necessary to secure smart contracts better.

THE STATE OF THE ART

Blockchain and Smart Contracts: A Brief Overview
A blockchain is a distributed system that allows transaction completion without a third party 
(Nakamoto, 2008). The blockchain system consists of blocks with several transactions connected to 
a precedent block to form a chain. There is a genesis block to which the other blocks are appended, 
and every generated block goes through a validation process (Zibin & al., 2019) before it joins the 
chain. The reliability of the chain comes from the consensus algorithms. Some of them, such as Proof 
of Work (PoW), Proof of State (PoS), and Practical Byzantine-Fault Tolerance (PBFT), are used to 
solve a puzzle with the help of miners for block validation among nodes. The miner is responsible for 
selecting new transactions, recording them in the new block, and executing those contracts (Franklin 
& al., 2019). Solving the puzzle is difficult as the process must at the same time secure the Blockchain 
by preventing attackers from forging it. As a result, Blockchain exhibits decentralization, integrity, 
and auditability (Shuai et al., 2019), which allows its adoption.

Blockchain-based smart contracts are systems that get executed on distributed nodes without a 
central authority, allowing companies to collaborate easily while enforcing contract clauses (Chibuzor 
et al., 2018). Each smart contract receives a unique address, and for its execution, a transaction is 
initiated between a sender and the smart contract. A computational cost is needed to complete the 
transaction. The unit of the transaction cost is gas. The used gas gives the block miner where the 
transaction is kept, and the sender returns the unused gas. A threshold value for gas usage is specified 
to prevent unnecessary gas usage due to unoptimized programs. An exception is thrown when 
the gas threshold value is attained (Daniel & Benjamin., 2019). The contract execution follows a 
predefined process involving all network nodes concerning the triggering transaction data. According 
to (Konstantinos & Michael., 2016), each node involved in the smart contract blockchain-based runs 
a virtual machine (VM).

As the blockchain network consists of several nodes, it is then considered to be a distributed VM. 
The smart contract source code is available, and once deployed, it cannot be changed. Therefore, the 
executed code must be error-free while ensuring trust and fulfillment of intended use (Franklin & al., 
2019). Smart contracts are created with solidity, one of the programming languages designed for it. 
It is mainly used by programmers and is similar to an object-oriented language (Zeinab & al., 2018).
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RELATED WORK

Several studies have been conducted on blockchain-based smart contracts. Authors (Chibuzor & 
al., 2018) produced a systematic review of older studies emphasizing smart contracts application 
in organizations. The implementation of smart contracts for the internet of things (IoT) has been 
tackled by (Konstantinos & Michael., 2016) in their work, where combining the two technologies 
is a significant concern. Evgeniy (2018) brought upfront smart contract security concerns while 
providing a symbolic model checking that ensures smart contract business logic correctness. Other 
solutions such as Oyente, Mythril, Madmax, Vandal et ContractFuzzer, security, SmartCheck, Zeus, 
etc., are proposed for vulnerabilities, and are summarized in Reza et al. (2018), Sukrit et al. (2018), 
and Daniel and Benjamin (2019). Greedy, Prodigal, and Suicidal contracts categorize attacks that 
the authors identified (Ioannis et al., 2018). They implemented Maian, a symbolic execution tool 
for detecting such attacks. These attacks are also tackled by Wesley et al. (2019) using Long Short 
Term Memory (LSTM), a machine learning technique. This machining technique has been further 
improved in (Peng & al., 2020) work with bidirectional LSTM (BLSTM) and BLSTM based on an 
attention mechanism for detecting reentrancy attacks on blockchain-enabled smart contracts.

A systematic mapping study on smart contracts was conducted Maher and Aad Van (2017). 
This study focused on smart contracts’ key parameters, codifying issues, and other smart contract-
related topics, including smart contract application topics. Zibin et al. (2019) provide a study on 
smart contracts while addressing challenges during the different phases (creation, deployment, 
execution, completion) of their existence. Huashan et al. (2020) tackle ethereum blockchain attacks, 
vulnerabilities, and defenses, and Jorge et al. (2019) provide a review on blockchain privacy issues. 
Monika & Gernot (2019) produced a document that embraces smart contract tools for vulnerability 
detection is produced. Sarwaar et al. (2020) describe the most (10) tools for threat detection while 
emphasizing their limitations.

Suvitha & Subha (2021) explored various smart contract platforms and their features for 
appropriate use. Negara et al. (2021) conducted a literature review with an exploratory approach 
where frameworks, methods, and simulations of smart contract implementations in various domains 
are reviewed. In their survey, Garfatta et al. (2021) presented a general overview of smart contracts 
verification, mainly formal verification. They provided results related to formal method approaches 
as well as threats they can tackle. Samreen and Alalfi (2021) conducted a survey where eight 
vulnerabilities and their detection tools were reviewed. Khan et al. (2021) categorized the existing 
blockchains’ interoperability solutions into three main categories: heterogeneous blockchains 
and homogeneous smart contracts, homogeneous blockchains and homogeneous smart contracts, 
heterogeneous blockchains, and heterogeneous smart contracts. They showed how to fill the gap 
between these solutions using smart contracts and provided further research orientations.

Wang et al. (2021) provide a smart contract review of the current research status and advances 
into six categories: symbolic execution, abstract interpretation, fuzz testing, formal verification, deep 
learning, and privacy enhancement. Tools comparison and methods developed for solving threats are 
also provided. Timuçin and Birogul (2021) conducted a study related to the transformation of smart 
contracts into real “smart” contract structures with the use of Deep Learning algorithms, while Khan 
et al. (2021) present a comprehensive survey about blockchain-based smart contracts from technical 
and usage points of view. Peng et al. (2021) performed a comprehensive review of Smart contract 
applications in the IoT domain for security threats. They also provided directions for further research.

Tang et al. (2021) analyze 15 security vulnerabilities and provide causes and methods used to 
address them. They also analyzed existing solutions, methods, and machine learning techniques, and 
advised using the two strategies to address security issues better and detect new threats.
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METHODOLOGY

We systematically review smart contracts challenges and solutions in particular domains such as 
codifying, security, privacy, and performance, while emphasizing the most tackled issues. Our 
methodology involves five steps: research question identification, searching methods and paper 
downloading, paper screening, paper analysis, and review writing (Maher & Aad Van., 2017).

In the research question identification, we specified the questions that the study would attempt to 
tackle: What is the current state of blockchain-based smart contract issues and solutions approaches? 
What vulnerabilities do smart contracts suffer, especially in the codifying, securities, privacy, and 
performance sectors? Is every vulnerability solved? What are the tools used to tackle those issues? 
What is the relationship between vulnerabilities and solutions? What could future trends be?

We proposed a search string using appropriate words such as smart contract problems or challenges 
or threats or bugs or vulnerabilities and approaches or detection techniques or solutions. This is to 
bring down all papers that could be related to our study.

We then explored several databases that are mainly used for academic research, such as Google 
Scholar, Springer, IEEE, ACM, and Preprint arXiv, to collect conference papers and journal articles. 
However, as academic literature can lack newly disclosed events or materials, we also used Google to 
look for reports, white papers, documentation, and websites that could provide relevant information. 
Through this exploration, several papers were downloaded and categorized according to the issues 
they tackled.

The next stage involved paper screening. We removed papers that did not satisfy specific criteria 
for adequate analysis. As criteria, we considered papers without full text, smart contracts papers 
concerning technologies other than Blockchain, redundant/duplicate articles, and documents with 
non-important abstracts. Articles that tackle smart contract concerns related to our objectives were 
kept, along with essential reports, documentation, and websites.

Next, relevant papers were obtained. They were analyzed, and all information pertinent to our 
objectives was extracted. Indeed, threats that fall within one of these categories of vulnerabilities-
-codifying, security, privacy, and performance—and their solutions, were considered and grouped 
while future trends were also provided from the relevant data gathered.

Finally, we combined the different information to write the review.

RESULTS

We produced the following tables from the papers analyzed, which consider smart contract issues 
with the developed solutions.

Figure 2 shows the relationship between the different types of issues together with their solutions.
Security issues have been of significant concern as we denote 18 different cases derived from it, 

leading to more than 130 solutions. They receive much attention far beyond the codifying, privacy, 
and performance issues with 4, 2, and 2 problem cases identified with 66, 40, and 34 solutions 
developed, respectively.

Codifying Issues

Figure 3 depicts the number of provided solutions against codifying issues.

Issue 1 = Under-optimized smart contract identification
Issue 2 = Correct smart contract programming language
Issue 3 = Complexity of programming language
Issue 4 = Smart Contract termination or modification weaknesses
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Table 2. Smart Contracts Problems With Developed Solutions in Detail

Smart Contract Problems Techniques/Developed Tools

Codifying 
issues

Trouble with correct 
writing of smart 
contracts

Adoption of formal verification methods (Maher & Aad Van, 2017; Jing & Zhentian, 2019; Tesnim & Kei-Leo, 2018). 
Annotary (Konrad and Julian., 2019). Guidelines/standards for developers (Kevin et al., 2016; Bartoletti & Pompianu, 
2018). ContractWar (W. Wang et al., 2020). ContractGuard (X. Wang et al., 2020). SmartDEAMP (Zibin & al., 2019). 
Gigahorse (Zibin & al., 2019). Semi automation of smart contract creation (Christopher & Mariusz ., 2016). New contract 
language development (Jing & Zhentian., 2019). Semantics analysis (Zibin et al., 2019; Anastasia & Aaron, 2018). Raziel 
(David, 2020). Solidifier (Antonino & Roscoe., 2020). Verismart (Sunbeom & al., 2019). VeriSolid (Anastasia & Aron., 
2019). Osiris (Christof & al., 2018). SASC (Zhou et al., 2018). SCRepair (Xiao et al., 2020). SmartShield (Yuyao et al., 
2020). Manticore (Mark & al., 2019). FSolidM (Anastasia & Aaron, 2018). VerX (Anton et al., 2020). Zeus (Sukrit et al., 
2018). iContract (Qasse & al., 20201). Smart-Graph (Pierro., 2021). SuMo (Barboni & al., 2021). A security verifier type 
(Hu & al., 2021).

Smart Contracts 
termination or 
modification 
weaknesses

Use of norms for smart contracts (Maher & Aad Van., 2017; Bill & Ari., 2016). Mechanized proof of termination of 
smart contract (Thomas et al., 2020). 
Proof-carrying smart contracts (Hu & al., 2021). Intelligible Description Language Contract (IDLC),

Under-optimized 
smart contracts 
identification

SmartCheck (Sergei & al., 2018). MadMax (Neville & al., 2018). Maian (Ivica N. & al., 2018). Securif (Petar & al., 
2018). SmartCopy (Yu & al., 2019). Gas reducer (Ting & al., 2018). Gastap (Sara & Ralph., 2019). Gasper (Bill and Ari., 
2016). Gasol (Elvira & al., 2019). GasChecker (Ting et al., 2020). GasFuzzer (Ashraf et al., 2020). SafeVM (Elvira & 
al., 2019). SolAnalyser (Akca & al., 2019). Mythril (Sarwaar et al., 2020). Contract version comparisons, Graph Neural 
Networks (Yuan & al., 2020). sCompile (Jialiang et al., 2019). SCRepair (Yu et al., 2020). Formal verification framework 
(FVF) (Maher & Aad Van., 2017; Jing & Zhentian, 2019). SmartShield (Yuyao et al., 2020). Manticore (Mark & al., 
2019). Zeus (Sukrit et al., 2018). Echidna (Gustavo & al., 2020). Eth2vec (Ashizawa & al., 2021). Machine Learning 
Approach for Gas Price Prediction in Ethereum Blockchain (Mars & al., 2021).

Complexity of 
programming 
languages

Logic-based languages (Prolog) (Zibin et al., 2019; Florian et al., 2016). IELE (Scillia, Yul) (Tyurin & al., 2019). Use of 
type based-language Idris, Simplicity (O’Connor R., 2017). Liquidity (Çagdas & al., 2018). Obsidian (Coblenz, 2017). 
Flint (Schrans & al., 2018). Mandala (Markus, 2019). SmaCoNat (Regnath & Steinhors ., 2018). Bitml (Tyurin & al., 
2019). SPESC (Xiao & al., 2018).

continued on following page

Table 1. Summary of Identified Problems and Solutions

Type of category Number of issues per category Number of solutions per category

Codifying 4 66

Security 18 132

Privacy 2 40

Performance 2 34

Figure 1. Research Process (Adapted from Maher and Aad Van, 2017)
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Smart Contract Problems Techniques/Developed Tools

Securities 
issues

Transaction-ordering 
vulnerability

Ethereum Based Functions (use of SendIfReceived function) (Christopher & Vincent., 2016). Oyente (Loi & al., 2016). 
Ether racer (Aashish & al., 2019). Fuzzer symbolic execution (Jingxuan & al., 2019). FSolidM (Anastasia & Aaron, 
2018). ContractWar (Wang Wei & al., 2020). Zeus (Sukrit et al., 2018). Securify (Petar & al., 2018). Mythril (Sarwaar et 
al., 2020). Unsecured smart contract detection (Kevin & al., 2021).

Timestamp 
vulnerability

Random seed of block number (Loi & al., 2016). SIF (Chao & al., 2019). Slither (Josselin & al., 2019). SmartCopy (Yu & 
al., 2019). ContractWar (Wang et al., 2020). Mythril (Sarwaar et al., 2020). Graph Neural Networks (Yuan & al., 2020). 
Fuzzer symbolic execution (Jingxuan & al., 2019). SolAnalyser (Akca & al., 2019). Eth2vec (Ashizawa & al., 2021). 
SmartPulse (Stephens & al., 2021). Graph Neural Network with expert knowledge (Liu & al., 2021).

Mishandled 
exception 
vulnerability

Check of the return value (Loi & al., 2016). ContractFuzzer (Jiang & al., 2018). Vandal (Brent & al., 2018). Zeus (Sukrit 
et al., 2018). Contract version comparison, SmartCheck (Sergei & al., 2018). Securify (Petar & al., 2018). SmartCopy (Yu 
& al., 2019). Mythril (Sarwaar et al., 2020). ContractWar (Wang Wei & al., 2020). Slither (Josselin & al., 2019). Oyente 
(Loi & al., 2016). Fuzzer symbolic execution (Jingxuan & al., 2019). EVMPatch (Rodler & al., 2020). SolAnalyser (Akca 
& al., 2019). Elysium (Torres & al., 2021).

Block randomness Delay and Sloth function (Zibin & al., 2019).

BGP Routing 
concerns

Sabre (Maria A. & al., 2017).

Reentrancy 
vulnerability

ÆGIS (Torres & al., 2020). ReGuard (Chao & al., 2018). Reentrancy analyzer (Chinen & al., 2020), Bidirectional 
LSTM – ATTention (BLSTM-ATT) (Peng & al., 2020). ECFChecker (Grossman & al., 2017). EthScope (Wu & al., 
2020). Sereum (Michael & al., 2019). Teether (Johannes and Christian., 2018). Zeus (Sukrit et al., 2018). Graph Neural 
Networks (Yuan & al., 2020). SmartCheck (Sergei et al., 2018). Securify (Petar & al., 2018). SmartCopy (Yu & al., 
2019). Manticore (Mark & al., 2019). Mythril (Sarwaar et al., 2020). Oyente (Loi & al., 2016). ContractFuzzer (Jiang 
& al., 2018). ContractWar (Wang et al., 2020). TxSpector (Mengya & al., 2020). Vandal (Brent & al., 2018). Slither 
(Josselin & al., 2019). Mechanism to Detect and Prevent Ethereum Blockchain Smart Contract (Alkhalifah & al., 2021). 
Dynamit (Eshghie & al., 2021). Elysium (Torres & al., 2021). Eth2vec (Ashizawa & al., 2021). Reentrancy detection 
using TXL programming language (Samreen & Alalfi., 2020). Graph Neural Network with expert knowledge (Liu & al., 
2021). EtherSolve (Contro & al., 2021). SGuard (Nguyen & al., 2021). EtherClue (Aquilina & al., 2021). VSCL (Mi & 
al., 2021).

Ponzi scheme issues Machine learning techniques (Ripper, Bayes Network and Random Forest, XGBoost) (Weili & al., 2018). Al-SPSD: Anti-
leakage smart Ponzi schemes detection in Blockchain (Fan & al., 2021).

HoneyPot HoneyBadger (Christof & Mathis., 2019).

Delegated Puzzle Piece of work (Philip & al., 2017). Non-delegated Scratch-Off Puzzles (Miller & al., 2015). Sign to Mine (Ziftr., 2014). 
Phase-Proof of Work (2P-PoW) (Eyal & Sirer., 2014).

Man in the middle Role-Based Access Control (RBAC) (Kamboj & al., 2021).

Denial of Service 
with Block Stuffing

Smart Contract-Based Solution for Secure Distributed SDN (Almakhour & al., 2021). SmartScan (Samreen & Alalfi., 
2021). Co-Chain SC (Houda & al., 2019).

Selfish Mining 
approached

Computation power reduction (to ¼), still an open research area approached (Cyril & Ricardo., 2019; Ittay & Emin, 
2018). TFCrowd (Li & al., 2021).

Verifier’s dilemma Consensus computational framework (Loi & al., 2015).

Criminal/Opaque 
smart contract 
activities

Trustee Neutralizable smart contract (Ari & al., 2016). Erays (Yi & al., 2018). Smart Inspect (Santiago et al., 2018). 
Samos (Knecht & Stiller., 2021). Smart contract-based Supply Chain Control (Dietrich & al., 2020).

Untrustworthy data 
feeds issues

Town Crier (TC) (Fan & al., 2016). Reputation contract (Zibin & al., 2019). Provable (provable, 2019). Witnet (Adan 
& al., 2017). Astrea (Adler et al., 2018). Augur (Peterson & al., 2015). Eternity (Hess & al., 2017). Chainlink (Ellis et 
al., 2017). PriceGeth (Eskandari & al., 2017). Majority is not enough (Ittay & Emin., 2018). TrustedAP (Fox., 2021). 
Unsecured smart contract detection (Kevin & al., 2021).

Tracing 
vulnerabilities from 
a large number of 
contracts

Long Short-Term Memory - LSTM (Wesley et al., 2019). Bidirectional LSTM (BLSTM) (Peng & al., 2020). BLSTM 
+ Attention (BLSTM-ATT) (Peng & al., 2020). AWD-LSTM (Ajay et al., 2020). S-gram scheme (Zibin & al., 2019). A 
Novel Machine Learning-Based Analysis Model (Xu & al., 2021).

Integer overflow/
Underflow

Easyflow (Gao & al., 2019). Oyente (Loi & al., 2016). Zeus (Sukrit et al., 2018). ReGuard (Chao et al., 2019). S-gram 
(Zibin et al., 2019; Han et al., 2018). ContractGuard (Wang & al., 2020). EVMPatch (Rodler & al., 2020). Osiris (Christof 
& al., 2018). SolAnalyser (Akca & al., 2019). SIF (Chao et al., 2019). Formal Verification Framework (Tianyu & 
Wensheng, 2020). Elysium (Torres & al., 2021). Eth2vec (Ashizawa & al., 2021). HFContractFuzzer (Ding & al., 2021).

Suicidal, prodigal 
and greedy contracts

Maian (Ivica et al., 2018). LSTM (Wesley et al., 2019). Fuzzer symbolic execution (Jingxuan & al., 2019). Teether 
(Johannes and Christian., 2018). EVMPatch (Rodler et al., 2020). TxSpector (Mengya & al., 2020). Ethbmc (Frank et al., 
2020). Elysium (Torres & al., 2021). Alternate authentication with smart contract (Boron & Kobusińska., 2021).

continued on following page

Table 2. Continued
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In codifying issues, under-optimized contracts and contract writing difficulties are the most tackled 
issues. Indeed, From figure 3, more than 20 solutions exist for each. For smart contract programming 
language and smart contract termination problems, we denote 11 and 4 solutions, respectively. This 
shows how important some issues are concerning others.

Smart Contract Problems Techniques/Developed Tools

Privacy 
issues

Lack of transactional 
privacy

Encryption techniques (Zether, Secret store, and More secrets) (Hiroki et al., 2015; Benedikt et al., 2019; Rachel, 2018). 
Time-locked secrets and Secret contracts (Rachel., 2018). ShadowEth (Yuan & al., 2018). Privacy Preserving Solutions 
(Jorge & al., 2019). Privacy Guard (Yang & al., 2020). Access control privacy framework for DOSNs (Rahman et al., 
2019). SMACS (Liu & al., 2020). Use of artificial 
intelligence (Rajesh & al., 2020). Private data 
object, Ekiden (Cheng & al., 2019). Fastkitten, Eli, 
Teechain, Quorum, Zocrates, and Zexe (Hu & al., 2021). Privacy-Preserving Healthcare Platform (Omar & al., 2021). 
Deep Blockchain Framework (Al-Kadi & al., 2021). Smart Contract-Based Blockchain-Envisioned Authentication 
Scheme (Vangala & al., 2021). smartFHE (Solomon & Almashaqbeh., 2021). TrustedAP (Fox., 2021). Blockchain-
based smart contract framework (Vardhini & al., 2021). A Blockchain-based Framework for Information Management 
in Internet of Vehicles (Wen & al., 2021). Blockchain-independent smart contract infrastructure (Saquib & al., 2021). 
blockauth (Zhaofeng & al., 2021). Fortified-Chain (Egala & al., 2021). Reputation management smart contract 
(RM) (Geng & al., 2021). Fasten (Damle & al., 2021). Privacy Preservation for On-Chain Data (Ziar & al., 2021). 
SmartMedChain (El Majdoubi & al., 2021). Intelligent Mediator-based Enhanced Smart Contract (Mucheol & Junho., 
2021). TREAD (Khan & al., 2021). Privacy preserving platform for COVID-19 vaccines (Barati & al., 2021). TeSC 
(Gallersdörfer & Matthes., 2021).

Data feed privacy 
issues

Town Crier (TC) (Fan & al., 2016). Practical Data Feed Service (PDFS) (Juan & Pawel., 2018). TrustedAP (Fox., 2021). 
A Blockchain-based Framework for Information Management in Internet of Vehicles (Wen & al., 2021).

Performance 
issues

Smarts contract 
sequential execution 
problems/scalability 
issues/single point of 
failure/efficiency

Parallel execution of smart contracts (techniques adapted from software transactional memory and optimistic Software 
Transactional Memory systems (STMs)) (Vukolić, 2017). Concurrent execution of different contract models (Massimo et 
al., 2020; Wei et al., 2018). Arbitrum and Yoda . Asynchronous and Concurrent Execution (ACE) (Karl et al., 2019). OV: 
Validity-based optimistic Smart contract (Quan et al., 2020). Two-phase 
concurrency control protocol . Blockumulus . Cloak (Ren et al., 2021). Escort . Hybrid smart 
contract architecture . Smart contracts for automated control system 
. Blockchain-based smart contract framework . A Blockchain-based Framework for Information Management in Internet 
of Vehicles . SCBAC . Blockchain-independent smart contract infrastructure . Automating Procurement Contracts 
. Blockauth . Blockeye . Clock finance . Graph Neural Network with expert knowledge . Map-reduce based parallel 
computation . EtherSolve . Fortified-Chain . Two-phase framework based on trusted hardware Intel SGX . Deserving 
resource smart contract (DRSC) . Smart Contracts for Verifying DNN Model 
Generation Process . Flexible Smart Contract Interaction Framework with Access Control (FSCC) . FASTEN . EtherClue 
. TREAD . Smart contract sharding .

Contract 
redeployment 
efficiency

Decompilation capabilities encapsulated (Santiago et al., 2018).

Table 2. Continued

Figure 2. Relationship Between Issues and Solutions
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Unoptimized smart contracts waste money through gas consumption. Thus, as money is involved, 
care must be taken to provide a flexible and extensible environment that can easily implement efficient 
contracts, which should be less gas-costly. Concerning unoptimized smart contract solutions to tackle 
the issue, SmartCheck (Sergei & al., 2018), MadMax (Neville & al., 2018), Maian (Ivica N. & al., 
2018), Securif (Petar & al., 2018), SmartCopy (Yu & al., 2019), Gas reducer (Ting & al., 2018), 
Gastap (Sara & Ralph., 2019), Gasper (Bill and Ari., 2016), Gasol (Elvira & al., 2019), GasChecker 
(Ting et al., 2020), GasFuzzer (Ashraf et al., 2020), SafeVM (Elvira & al., 2019), SolAnalyser (Akca 
& al., 2019), Mythril (Sarwaar et al., 2020), contract’s versions comparisons, Graph Neural Networks 
(Yuan & al., 2020), sCompile (Jialiang et al., 2019), SCRepair (Yu et al., 2020), Formal Verification 
framework (FVF) (Maher & Aad Van, 2017; Jing & Zhentian, 2019), SmartShield (Yuyao et al., 
2020), Manticore (Mark & al., 2019), Zeus (Sukrit et al., 2018), Echidna (Gustavo & al., 2020) can 
be used. Eth2vec (Ashizawa & al., 2021) and Machine Learning Approach for Gas Price Prediction 
in Ethereum Blockchain (Mars & al., 2021) are other methods to detect such contracts.

Regarding correct smart contract programming language and complexity of programming 
language, the easier the process of writing contracts, the less the contract will be subjected to errors. 
The correctness of smart contracts ensures the right functioning of the contracts, meaning the contracts 
should carry out actions as intended by programmers. While the faithful execution of smart contracts 
depends on Blockchain’s consensus protocol, participating entities should ensure the contract’s 
fairness and its correctness remain a major concern as part of their prerogatives (Sukrit & al., 2018). 
The importance of this comes from the fact that money is involved, and any mistake could result in 
disastrous consequences. A particular example is the Distributed Autonomous Organization (DAO) 
attack, where a massive loss of money occurred (Maher A. & Aad Van M., 2017). Several solutions 
are proposed to address this issue including Adoption of Formal verification methods (Maher. & Aad 
Van., 2017; Jing & Zhentian., 2019; Tesnim & Kei-Leo., 2018), Annotary (Konrad and Julian., 2019), 
Guidelines/standard for developers (Kevin et al., 2016; Bartoletti & Pompianu, 2018), ContractWar 
(W. Wang et al., 2020), ContractGuard (X. Wang X. et al., 2020), SmartDEAMP (Zibin & al., 2019), 
Gigahorse (Zibin & al., 2019), Semi-automation of smart contract creation (Christopher & Mariusz 
., 2016), New contract language development (Jing & Zhentian., 2019), Semantics analysis (Zibin 
et al., 2019; Anastasia and Aaron., 2018), Raziel (David, 2020), Solidifier (Antonino & Roscoe., 
2020), Verismart (Sunbeom & al., 2019), VeriSolid (Anastasia & Aron., 2019), Osiris (Christof & 
al., 2018), SASC (Zhou et al., 2018), SCRepair (Xiao et al., 2020), SmartShield (Yuyao et al., 2020), 
Manticore (Mark & al., 2019), FSolidM (Anastasia and Aaron., 2018), VerX (Anton et al., 2020), 
and Zeus (Sukrit et al., 2018).

Figure 3. Codifying Issues Diagram
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Therefore, the choice of the programming language plays a significant role as the choice must be 
made according to the contract objective, flexibility, and to prevent unnecessary tasks that would be 
done with a difficult language choice. Initially, procedural languages are used to write current smart 
contracts, and the Solidity language is an example. However, procedural language requires that the 
execution code follows a series of steps specified by developers. As such, what should be done and 
how to do it must be clearly defined to avoid any misbehavior of the contract. As a result, writing smart 
contracts using this type of language becomes complex and subject to errors (Florian & al., 2016).

Several approaches are then proposed to ease smart contract development: Logic-based languages 
(Prolog) (Zibin et al., 2019; Florian et al., 2016), IELE (Scillia, Yul) (Tyurin & al., 2019), Use of 
type based-language Idris, Simplicity (O’Connor R., 2017), liquidity (Çagdas & al., 2018), Obsidian 
(Coblenz, 2017), Flint (Schrans & al., 2018), Mandala (Markus, 2019) SmaCoNat (Regnath & 
Steinhors ., 2018), Bitml (Tyurin & al., 2019), SPESC (Xiao & al., 2018), iContract (Qasse & al., 
20201), Smart-Graph (Pierro., 2021), and SuMo (Barboni & al., 2021).

Smart contract termination or modification is the least tackled issue. However, solutions have 
been given. According to the authors, a set of norms can allow smart contract modification and 
termination. It involves taking legal contracts’ rules or standards and redefining them to go along 
the smart contract.

Mechanized termination proof (Thomas et al., 2020) is another way to address the issue and is 
based on the EVM abstract model. An internal counter is used to evaluate the contract’s termination 
independently of gas system presence. This type of contract termination is used in EVM contracts and 
written in EVM bytecode. Other solutions such as proof-carrying smart contracts (Hu & al., 2021), 
and Intelligible Description Language Contract (IDLC) are also provided.

Security Issues

Figure 4 shows the number of provided solutions against security issues.

Issue 1 = Reentrancy vulnerability
Issue 2 = Mishandled exception vulnerability
Issue 3 = Integer overflow/underflow
Issue 4 = Transaction-ordering vulnerability
Issue 5 = Timestamp vulnerability
Issue 6 = Untrustworthy data feed issues

Figure 4. Security Issues Diagram
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Issue 7 = Social, prodigal, and greedy contracts
Issue 8 = Tracing vulnerabilities from a large number of contracts
Issue 9 = Delegated puzzles
Issue 10 = Ponzi scheme issues
Issue 11 = Criminal/opaque smart contract activities
Issue 12 = Block randomness
Issue 13 = BGP routing concerns
Issue 14 = HoneyPot
Issue 15 = Selfish Mining
Issue 16 = Verifier’s dilemma
Issue 17 = Denial of service with block stuffing

Security issues are the ones that cause severe damages to the blockchain ecosystem with the 
DAO and multi-Sig parity wallet. They are vulnerabilities or threats someone might exploit to attack 
the blockchain system or use it to get funds from victims (Maher A. & Aad Van M., 2017).

According to Figure 4, reentrancy is the the most tackled problem is one of the notorious issues 
that caused a huge loss of funds. The issue occurs when several repetitive withdrawals are performed 
by a malicious user who uses a recursive call function while his balance is only deduced once (Maher 
A. & Aad Van M., 2017). It ranks with more than 20 solutions provided for its resolution while 
improvements are still needed.

These solutions ÆGIS (Torres & al., 2020), ReGuard (Chao & al., 2018), Reentrancy analyzer 
(Chinen & al., 2020), Bidirectional LSTM – ATTention (BLSTM-ATT) (Peng & al., 2020), 
ECFChecker (Grossman & al., 2017), EthScope (Wu & al., 2020), Sereum (Michael & al., 2019), 
Teether (Johannes and Christian., 2018), Zeus (Sukrit et al., 2018), Graph Neural Networks (Yuan 
& al., 2020), SmartCheck (Sergei et al., 2018), Securify (Petar & al., 2018), SmartCopy (Yu & al., 
2019), Manticore (Mark & al., 2019), Mythril (Sarwaar et al., 2020), Oyente (Loi & al., 2016), 
ContractFuzzer (Jiang & al., 2018), ContractWar (Wang et al., 2020), TxSpector (Mengya & al., 
2020), Vandal, (Brent & al., 2018) Slither (Josselin & al., 2019) are able to detect reentrancy bugs 
as well as Mechanism to Detect and Prevent Ethereum Blockchain Smart Contract (Alkhalifah & 
al., 2021), Dynamit (Eshghie & al., 2021), Elysium (Torres & al., 2021), Eth2vec (Ashizawa & al., 
2021), Reentrancy detection using TXL programming language (Samreen & Alalfi., 2020), Graph 
Neural Network with expert knowledge (Liu & al., 2021), EtherSolve (Contro & al., 2021), SGuard 
(Nguyen & al., 2021).

Mishandled exception, integer overflow/underflow, and transaction ordering followed, 
respectively, with more than 10 solutions provided for each. A mishandled exception is the lack of 
communication between two contracts that causes the problem (Maher A. & Aad Van M., 2017). A 
typical example is the occurrence of a lack of gas (currency units necessary for contract execution 
and rewarding miners) exception in the callee’s contract, which is not propagated to the caller based 
on the call function creation. Then, there is a possibility of causing trouble due to the non-reported 
exception. As solutions, we have Check of the return value (Loi & al., 2016), ContractFuzzer (Jiang 
& al., 2018), Vandal (Brent & al., 2018), Zeus (Sukrit et al., 2018), contract versions comparison, 
SmartCheck (Sergei & al., 2018), Security (Petar & al., 2018), SmartCopy (Yu & al., 2019), Mythril 
(Sarwaar et al., 2020), ContractWar (Wang Wei & al., 2020), Slither (Josselin & al., 2019), Oyente 
(Loi & al., 2016), Fuzzer symbolic execution (Jingxuan & al., 2019), EVMPatch (Rodler & al., 2020), 
SolAnalyser (Akca & al., 2019), Elysium (Torres & al., 2021).

Integer overflow/underflow occurs in arithmetic operations. An over or under issue occurs 
when a procedure is performed and will need a fixed variable size to keep an operand (e.g., uint256), 
which is beyond the data type of the variable (e.g., uint8). The calculation then oversteps the upper 
band value or is down the lower band value as max + 1 ® min or min − 1 ® max (Wang Wei & 
al., 2020). Several tools can solve this issue: Easyflow (Gao & al., 2019), Oyente (Loi & al., 2016), 
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Zeus (Sukrit et al., 2018), ReGuard (Chao et al., 2019)., S-gram (Zibin et al., 2019; Han et al., 2018), 
ContractGuard (Wang & al., 2020), EVMPatch (Rodler & al., 2020), Osiris (Christof & al., 2018), 
SolAnalyser (Akca & al., 2019), SIF (Chao et al., 2019), and Formal Verification Framework (Tianyu 
& Wensheng., 2020) can find this vulnerability as well as Elysium (Torres & al., 2021) and Eth2vec 
(Ashizawa & al., 2021).

Regarding the transaction ordering issue, the occurrence of this problem is related to transactions 
that call upon the same contract while a block contains all of them. A disarranged execution order 
of transactions might result in an attack van if it is not planned carefully (Loi & al., 2016). As for 
solutions, Ethereum Based Functions (use of SendIfReceived function) (Christopher & Vincent., 2016), 
Oyente (Loi & al., 2016), Ether racer (Aashish & al., 2019), Fuzzer symbolic execution (Jingxuan 
& al., 2019), FSolidM (Anastasia and Aaron., 2018), ContractWar (Wang Wei & al., 2020), Zeus 
(Sukrit et al., 2018), Securify (Petar & al., 2018), Mythril (Sarwaar et al., 2020).

Time-stamped, untrustworthy data feeds and suicidal, prodigal, greedy contracts also received 
much attention, with several solutions developed.

Time-stamped vulnerability is a time dependency contract is the one that utilizes block timestamp 
as a triggered condition to transactions executions (e.g., sending money) (Maher A. & Aad Van M., 
2017). The current local time is the reference time used by the miner to set the block timestamp of the 
block it generated. But it can choose a timestamp condition value that can favor him because there is 
a possibility of causing inaccuracy in a block timestamp. Malicious miners can vary the timestamp 
value from the current time and ensure block acceptance in the blockchain system. This results in the 
possibility of favoring users in the case of activities such as games (e.g., TheRun Contract) where 
the timestamp is an important parameter in deciding the winner of the jackpot. As solutions to solve 
this issue, we have Random seed of block number (Loi & al., 2016), SIF (Chao & al., 2019), Slither 
(Josselin & al., 2019), SmartCopy (Yu & al., 2019), ContractWar (Wang et al., 2020), Mythril (Sarwaar 
et al., 2020), Graph Neural Networks (Yuan & al., 2020), Fuzzer symbolic execution (Jingxuan & 
al., 2019), SolAnalyser (Akca & al., 2019), Eth2vec (Ashizawa & al., 2021), SmartPulse (Stephens 
& al., 2021), and Graph Neural Network with expert knowledge (Liu & al., 2021).

Untrustworthy data feeds are derived from the external feeding of the Blockchain for some smart 
contracts and guarantee is not assured for the imported data. Solutions exist to tackle the issues: town 
Crier (TC) (Fan & al., 2016), Reputation contract (Zibin & al., 2019), Provable (provable, 2019), 
Witnet (Adan & al., 2017), Astrea (Adler et al., 2018), Augur (Peterson & al., 2015), Eternity (Hess 
& al., 2017), Chainlink (Ellis et al., 2017), PriceGeth (Eskandari & al., 2017), Majority is not enough 
(Ittay & Emin., 2018), and TrustedAP (Fox., 2021).

Contracts that are killed from anonymous addresses are known as suicidal contracts. Most of the 
time, a contract has a security option that enables it to be killed by its owner (or trusted addresses) in 
case of attacks or malfunctions. A malicious user can also exploit this option to cause trouble (Wesley 
et al., 2019; Ivica, 2018). Prodigal contracts permit fund leakage to unknown accounts. Contracts often 
have internal calls to return money to their owner when attacked (Ivica, 2018), which is exploited 
to perform this vulnerability. Greedy contracts are alive contracts that can’t release ether. A library 
responsible for ether withdrawing is killed. Many accounts dependent on the killed library involved in 
the ParitySig attack contract were unable to release funds. The following tools can tackle the issues: 
Maian (Ivica et al., 2018), LSTM (Wesley et al., 2019), Fuzzer symbolic execution (Jingxuan & al., 
2019), Teether (Johannes and Christian., 2018), EVMPatch (Rodler et al., 2020), TxSpector (Mengya 
& al., 2020), Ethbmc (Frank et al., 2020), and Elysium (Torres & al., 2021).

For vulnerability tracing issues, delegated puzzles, Ponzi schemes, and criminal/opaque contract 
activities, solutions are provided for their respective resolutions.

In vulnerability tracing issues, invocation depth is the main problem. Indeed, as specific symbolic 
tools use complex analysis steps, a predefined invocation depth is also needed to look for exposed 
execution paths. As the depth goes up, so does the search time (Wesley J. T & al., 2019). Therefore, 
the searching time will be so high that specific contracts cannot be analyzed from a certain number 
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of smart contracts. The failure of these tools to analyze the increasingly large number of contracts 
that we have in the Ethereum platform might lead to faulty contracts that can cause losses. These 
solutions are useful to protect smart contracts: Long Short-Term Memory - LSTM (Wesley et al., 
2019), Bidirectional LSTM (BLSTM) (Peng & al., 2020), BLSTM + Attention (BLSTM-ATT) (Peng 
& al., 2020), AWD-LSTM (Ajay et al., 2020), S-gram scheme (Zibin & al., 2019), a Novel Machine 
Learning-Based Analysis Model (Xu & al., 2021).

Delegated puzzles (Wenbo et al., 2019) are problems where a cunning miner will break a searching 
puzzle solution work into several smaller works and later delegate them to outsourcers which might 
be untrusted workers. This will lead to the possibility of accumulating several puzzle works and 
delegating them, and increasing its revenue when its workers solve all puzzles. As for the solution, 
piece of work (Philip & al., 2017), Non-delegated Scratch-Off Puzzles (Miller & al., 2015), Sign to 
Mine (Ziftr., 2014), Phase-Proof of Work (2P-PoW) (Eyal & Sirer., 2014) can be used.

Ponzi schemes are fraudulent investment systems that are established and provide a high 
return with little or no risk (Massimo & al., 2018). Funds paid by new investors are used to pay old 
investors, and the system stops when no new investors come in. Several machine learning techniques 
are dedicated to the issue. Datasets are constructed using real blockchain transactions and are used 
to train classification models for threats detection. Several Machine learning techniques (Ripper, 
Bayes Network and Random Forest, and XGBoost) are used for their detection (Weili & al., 2018).

Criminal/opaque contract activities can be conducted through smart contracts, making them 
criminal smart contracts (CSC) (Ari & al., 2016). The authors identified three different types of 
criminal activities, namely, leakage/sale of secret documents, theft of private keys, and calling-card 
crimes (murder, arson, etc.). Leakage of secret documents is related to the public disclosure of 
secrets, leading to payments if the data is provided within the right time. A key-theft contract might 
be commission-fair if its perpetrator gets rewarded for delivering the private key that he stole, which 
must be valid within a certain period. A calling card is an unpredictable feature of a premeditated 
crime. When combined with authenticated data feeds, it can support many CSC (Criminal Smart 
Contracts). Crimes are executed, and codes are used to ensure the veracity of the crime before 
rewarding. The resolution of these issues is important to promote a secured and crime-free smart 
contract ecosystem. Trustee Neutralizable smart contract (Ari & al., 2016), Erays (Yi & al., 2018), 
Smart Inspect (Santiago et al., 2018), Samos (Knecht & Stiller., 2021), and smart contract-based 
Supply Chain Control (Dietrich & al., 2020) are used to tackle the issue.

Regarding denial of service, the DoS block stuffing (Crypto P., 2018) is a blockchain-based 
Smart contract threat that permits a malicious user to give high Gas Price incentives to miners for 
his transactions to be taken care of in new blocks to the detriment of other blocks. Smart Contract-
Based Solution for Secure Distributed SDN (Almakhour & al., 2021), SmartScan (Samreen & Alalfi., 
2021), and Co-Chain SC (Houda & al., 2019) have tried to solve the problem.

Considering block randomness, BGP routing, honey pot, selfish mining, verifier’s dilemma, and 
the man in the middle, only one solution is developed for each.

Considering block randomness, there is the possibility that block generation and release are based 
on the miner’s will while profit is at stake. Therefore, randomness is compromised, and the system 
becomes tricky (Zibin & al., 2019). To solve it, we have the Delay and Sloth function (Zibin et al., 
2019) introduced in the contract to avoid the execution of the miner’s will.

In this issue, Border Gateway Protocol (BGP) routing scheme is the main asset in capturing 
blockchain information (Maria A. & al., 2017). This can result in a high broadcasting delay of data 
or messages, traffic hijack, and digital currency robbery. The SABRE is a proposed solution that 
adjusts BGP routing policies from several domains while protecting the link between clients and relays 
through good relay alignment, appropriately placing relays. The same sabre network uses hardware 
and software co-designing in software-defined networking (SDN) to cut down relays traffic.

Honey pots are traps hidden within smart contracts where certain conditions of the contract will 
require funds from users while not providing an expected result. Attackers use several techniques 
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further developed in (Christof & Mathis., 2019) work. The issue is tackled with HoneyBadger, which 
uses symbolic execution and heuristic techniques to detect this vulnerability. The tool takes in a 
smart contract in bytecode and outputs a final result where all honey pot techniques found are stated.

Selfish Mining (Cyril & Ricardo, 2019) is a security threat where an attacker generates several 
private blocks and broadcasts them one by one in the Blockchain or keeps them hidden and reveals 
them to the public at the right time to increase its incentives or rewards (uncle blocks rewarding). A 
proposed solution in the Bitcoin network (Ittay & Emin., 2018) is modifying the blockchain protocol 
that would allow pools to command less than one quarter of the available resources. However, in 
the Ethereum network, solutions are still in the infancy stages as the problem is more complicated 
(Cyril & Ricardo., 2019).

Verifier’s Dilemma (Loi et al., 2015) is a threat that forces miners to accept unvalidated 
blockchains in exchange for high gas incentives or to waste resources as the computational effort 
required to validate some blocks is very demanding, blocking them in the race o mining next blocks. 
It creates an atmosphere where greedy miners intentionally block honest miners to get higher rewards. 
A proposed solution is creating a consensus computation framework that achieves correctness by 
sharing computation tasks across several blocks of transactions that comply with the ε-consensus 
computer model. Thus, verification cost is reduced across multiple blockchain transactions.

Man in the middle is security issue based on authentication problems in organizations where 
people are getting access to resources cannot be securely verified. Users are given roles to only access 
resources, which can become challenging to address before user authentication and role issuance. 
To address these issues, a Role-Based Access Control (RBAC) system is developed to resist a man 
in the middle where attackers cannot forge

digital signatures of others without their private keys, which helps in preventing the problem.

Privacy Issues

Figure 5 represents privacy concerns against their developed solutions.

Issue 1 = Lack of transactional property
Issue 2 = Data feeds privacy issues

Privacy concerns are problems that are derived from contract information exposure to the public 
(Yang & al., 2020). Two problems are identified: the lack of transactional privacy and data feed 
privacy (Maher A. & Aad Van M., 2017). Transactional privacy is more frequently tackled than data 
feed privacy issues for privacy issues. According to Figure 5, the former produced more than 25 

Figure 5. Privacy Issues Diagram
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solutions but the latter, only four. Data should be taken care of as attacks can be performed through 
imported data (Juan & Pawel., 2018).

Regarding the lack of transactional property, encryption techniques applied to
smart contracts before deployment are the most obvious ways to protect smart contracts. They 

are proposed by (Hiroki W. & al., 2015) and the contract access is restricted to people involved in 
the contract who have their decryption keys. Other ways to allow contract privacy are Zether, Secret 
store, and More secrets. They are all based on encryption/decryption techniques (Benedikt B. & 
al., 2019) (Rachel., 2018). Other solutions include private data object, Ekiden (Cheng & al., 2019), 
Fastkitten, Eli, Teechain, Quorum, Zocrates and Zexe (Hu & al., 2021), Privacy-Preserving Healthcare 
Platform (Omar & al., 2021), Deep Blockchain Framework (Al-Kadi & al., 2021), Smart Contract-
Based Blockchain-Envisioned Authentication Scheme (Vangala & al., 2021), smartFHE (Solomon 
& Almashaqbeh., 2021), TrustedAP (Fox., 2021), Blockchain-based smart contract framework 
(Vardhini & al., 2021), A Blockchain-based Framework for Information Management in Internet 
of Vehicles (Wen & al., 2021), blockchain-independent smart contract infrastructure (Saquib & al., 
2021), blockauth (Zhaofeng & al., 2021), Fortified-Chain (Egala & al., 2021), Reputation management 
smart contract (RM) (Geng & al., 2021), and Fasten (Damle & al., 2021).

For data feed privacy issues, the problem arises because all the data feeds needed by a contract 
to operate are exposed to the public (Fan & al., 2016). One of the solutions, Practical Data Feed 
Service (PDFS), is a system that securely connects content providers with their Blockchain (Juan & 
Pawel., 2018). The authentication of data is provided over Blockchain without affecting trust chains. 
Providers’ contents are easily parsed and converted into a different usable format. The system provides 
security, transparency, efficiency, and auditability of content providers while reducing their spiteful 
deeds. Town Crier (TC) is another solution

built by (Fan & al., 2016) that performs as a bridge between smart contracts and outside data 
providers. It helps in providing authenticated data feeds for smart contracts. A contract uses the TC’s 
public key to encrypt a request, and upon reception, the encrypted request is decrypted with the TC’s 
private key. This process secures the requested content from people/contracts not involved in the data 
feed. Other solutions are TrustedAP (Fox., 2021) and a Blockchain-based framework for information 
management on the internet of vehicles (Wen et al., 2021).

Performance Issues

Figure 6 represents the relationship between the issues and the solutions.

Figure 6. Performance Issues Diagram



International Journal of Information Technology and Web Engineering
Volume 17 • Issue 1

16

The main issue in blockchain technology is the sequential execution of smart contracts (Vukolić 
M., 2017). Smart contracts in blockchain systems are executed one after the other. As the number 
of contracts is drastically increasing, running all those contracts sequentially will affect the whole 
performance, as noticed by (Maher A. & Aad Van M., 2017) because smart contract execution within 
a period will be very limited. Performance is always on the moving track in systems to satisfy the 
system user. As such, improvement is always necessary to cope with reality. According to Figure 6, 
more than 30 solutions have been developed to tackle its problem.

Sequential execution, scalability, single point of failure, and efficiency have been tackled 
differently in smart contract execution. Solutions are based on concurrent smart contract execution 
techniques that depend on multi-thread technology with transaction-splitting algorithms and the 
use of an optimistic Software Transactional Memory system (STMs). Other solutions developed 
include Arbitrum and Yoda (Hu et al., 2021), two-phase concurrency control protocol (Jin & al., 
2021), Blockumulus (Ivanov & al., 2021), Cloak (Ren et al., 2021), Escort (Lutz & al., 2021), hybrid 
smart contract architecture (Solaiman & al., 2021), Smart contracts for automated control system 
(Pradhan & Singh., 2021), Blockchain-based smart contract framework (Vardhini & al., 2021), A 
Blockchain-based Framework for Information Management on Internet of Vehicles (Wen & al., 
2021), SCBAC (Song & al., 2021), blockchain-independent smart contract infrastructure (Saquib 
& al., 2021), Automating Procurement Contracts (Omar & al., 2021), blockauth (Zhaofeng & al., 
2021), Blockeye (Wang & al., 2021), Clock finance (Babel & al., 2021), Graph Neural Network with 
expert knowledge (Liu & al., 2021), Map-reduce based parallel computation (Muchhala & al., 2021), 
EtherSolve (Contro & al., 2021), Fortified-Chain (Egala & al., 2021), Two-phase framework based 
on trusted hardware Intel SGX (Fang & al., 2021), Deserving resource smart contract (DRSC) (Yang 
& al., 2021), Smart Contracts for Verifying DNN Model Generation Process (Seike & al., 2021), 
Flexible Smart Contract Interaction Framework with Access Control (FSCC) (Li & Asaeda., 2021), 
and Fasten (Damle & al., 2021).

As smart contract usage increases exponentially with contracts being redeployed from time to 
time, further improvement is required. Binary decompilation reduces redeployment cost but is still 
in its infancy stage, as only one solution has been produced. The decompilation technique allows a 
particular method that introspects the smart contract’s current state without the redeployment of the 
smart contract (Santiago et al., 2018).

In summary, irrespective of the category of issues, lack of transactional privacy and other 
problems such as sequential execution and scalability, reentrancy, correct smart contract writing, and 
under-optimized contracts are the most recurrent problems that are tackled. Indeed, these problems 
lead to data exposure to the public and loss of money, which are valuable assets to be preserved 
seriously. Comparing reentrancy and parity multi-sig (suicidal contract), they both caused serious 
financial consequences. However, we can notice that reentrancy is far beyond tackled as compared 
to parity multi-sig wallet and this might be related to its severity. Problems with one solution, such 
as Delagated puzzle, HoneyPot, Bgp routing, blockrandomness, verifier dilemma, etc., are less 
common in the literature, perhaps because they are less severe and would need to be reconsidered 
for a different approach of solutions.

DISCUSSION

Implications for Practice
This study references smart contract issues related to coding, security, privacy, and performance. 
Solutions are categorized according to each problem. The first implication is that it helps Blockchain-
enabled smart contract users to get tools concerning a particular issue. Developers can easily know 
the appropriate tool to be used to check a particular issue in the work they are developing.
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Secondly, from a smart contracts point of view, the right coding is paramount as money is involved 
in most systems. This study provides different ways, such as the use of appropriate guidelines and 
Logic-based languages (Prolog) (Zibin et al., 2019; Florian et al., 2016), IELE (Scillia, Yul) (Tyurin 
& al., 2019), and the use of type based-language, to name a few, to ensure an error-free smart contract 
with more straightforward writing language. They all help develop smart contracts and ease smart 
contract development. Furthermore, they provide more minor gas usage systems as smart contracts 
can be quickly terminated and optimized with the available tool. Thirdly, looking at the divergence 
of tools for a particular issue gives practitioners the possibility of changing means if difficulties are 
found with a particular tool. As a result, smart contract users might be more confident in using the 
technology, though improvement is still needed as some issues are yet to be solved.

Implications for Research

This research provides an interesting reflection for researchers. Furthermore, it gives a new framework 
in researching hot topics regarding smart contract safety will be discovered. For example, privacy 
and performance issues are left behind compared to security and codifying issues, and a study might 
be conducted to find out new considerations concerning them.

Most of the tools have been developed using different techniques or approaches, and a new area 
of research could be to dig further into their respective performance. Furthermore, as this study has 
explored security, codifying, privacy, and performance issues, other studies can be conducted to explore 
other aspects of smart contracts, such as life cycle or function based on blockchain architecture layers.

Limitations

This study has several limitations concerning issue classifications and solutions. First, the study 
does not dig deeply into the cause of each issue. This may reduce the comprehension related to each 
category of issue. Secondly, the study does not find if these problems are common to all blockchain-
enabled smart contracts such as Ethereum and Tron, or if some blockchains are more affected than 
others, as the technology used varies from one Blockchain to another creation. Third, each category 
of issues could be further extended. Indeed, we can match each category of issues to a particular layer 
of blockchain-enabled smart contracts, thus emphasizing the most vulnerable layer. Fourth, there is 
a need for more research to be conducted to increase the existing problems-and-solutions portfolio. 
The study could go beyond coding, security, privacy, and performance issues and solutions, and 
offer problems related to dynamic and static execution of tools with respective approaches. Indeed, 
as technology evolves, new threats might be discovered. However, establishing such research with a 
realistic scenario could be very time-consuming and not covered in this study. Fifth, some solutions 
can tackle several issues, but their accuracy and efficiency are still a concern as no measurement tools 
are used in this study to evaluate those parameters. Thus, each tool’s most relevant performance area 
is not provided in this review. Finally, a road map for the most accessible tool used in each category 
when tackling a particular concern could be emphasized in this study. However, it’s not covered as 
tool classification (distinguishing between private and public tools) is not tackled in this study to 
help save time when looking for a particular one for a typical issue.

Open Research Challenges

Our study has led to the definition of new challenges that can enhance smart contract security. We 
consider the different domains in this study and solutions to solve each problem.
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Codifying Issues

Developers face many difficulties in writing smart contracts. Smart contracts embrace all domains, 
and several languages have been created to ease contract creation. A thorough study of these languages 
will help emphasize the easiest and least prone to artificial error to be used in a particular domain, 
such as the health care system (Tyurin & al., 2019). Further investigation can consider Turing’s 
complete contract language limitation, mainly used to develop smart contracts (Marc & al., 2019) 
to improve its effectiveness. The complexity of a solidity-based smart contract can be measured 
with static metrics. But this is still in its early stages and will require further investigation to set a 
new benchmark for smart contract programming. Some Gas estimation tools (Gastap) prevent gas 
error dynamically with the support of Oyente tools. However, further research can search for the 
best smart contract gas estimation tool (Sara & Ralph., 2019). Finally, as the smart contract is not 
bound to modification after deployment, it will be relevant to deploy a test environment for testing 
its accuracy before real-world usage.

Security Issues

Several studies have been conducted to solve the issues. However, few research types using deep-
learning techniques to tackle those issues have been conducted, raising the need to explore that 
possibility further. As data are imported into the Blockchain, irrelevant, malicious, or erroneous data 
can be among the imported data. New strategies or tools should be developed to preserve attacks by 
thoroughly analyzing the imported data (Hamda & al., 2020). Other issues such as delegated puzzles, 
denial of services, selfish mining, and Verifier’s dilemma are still open research areas (Huashan & 
al., 2020) and need more attention for smart contract protection.

Privacy Issues

Artificial intelligence is a new era that is yet to be explored. Further directions might focus on protecting 
data, especially health data, as they are very sensitive. Other researchers may embrace analysis and 
decision making to classify data or protect users (Rajesh & al., 2020).

Performance Issues

Scalability is still an issue that needs to be ameliorated as smart contract usage increases. Concurrent 
executions of smart contracts can be improved with new languages that rely on static analysis of 
reading/written key mechanisms to increase concurrency degree (Massimo & al., 2020). Other studies 
may tackle the complexity between child chains and the main child regarding Ethereum scalability.

CONCLUSION

This study provides a global view of blockchain-based smart contract issues, mainly regarding smart 
contract performance, privacy concerns, codifying, and security. We downloaded several papers and 
also identified new threats that fall into one of the categories. The corresponding solutions to the 
new threats are provided, and they can also be used for existing threats. We noticed that some threats 
have not been addressed or have been addressed with only a few solutions, and need more attention 
from the scientific community. Finally, we finally provide research directions so that smart contracts 
get secured in the future.
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