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ABSTRACT

Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and 
cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while 
the users are more concerned about shorter task completion time. In cloud computing, multi-queue 
and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task 
commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) 
problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO 
scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning 
(MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the 
samples and use the memory replay mechanism to train. Experimental results show that the proposed 
algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.
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INTRODUCTION

For more than 10 years since the concept was proposed, cloud computing has taken a huge leap 
forward and had drastic changes. Cloud computing is regarded as a revolution in the field of computer 
networks. Because of its emergence, social working methods and business models are also undergoing 
tremendous changes. Cloud computing platform has powerful computing and storage capacities, and 
can provide high-quality customized services. However, cloud computing is not a brand-new network 
technology, but a brand-new network application concept. In fact, cloud computing is the result of 
the mixed evolution of computer technologies such as distributed computing, utility computing, 
load balancing, parallel computing, network storage, and virtualization. The core concept of cloud 
computing is to provide fast and secure computing service and data storage on the network so that 
everyone can use the huge computing resources and data centers through Internet. Therefore, cloud 
computing is essentially a network that provides resources, and can be regarded as unlimited expansion. 
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Users can obtain resources from the “cloud” at any time, use them as needed, as long as they pay 
for it according to usage. CSPs build cloud computing resource pool in the form of data center and 
provide it to users in the form of virtual machine (VM). After a user rents VMs in the data center, 
she/he can submit her/his tasks to the VMs for processing via network. After the tasks are completed, 
the VMs return the results to the user via network too. Cloud users only need to install a simple client 
in local. During the service, the CSP and the user who want to use cloud computing resources sign 
a service level agreement (SLA) to agree on the quality of service (QoS). Under SLA condition, the 
CSP tries her/his best to provide better QoS and resources management, such as faster task response, 
less error probability, and lower data center energy consumption, etc., to attract more users and get 
better economic benefits. Task response time and other indicators that affect QoS are closely related to 
the cloud platform’s TS strategy. So, the quality of TS strategy determines a cloud platform’s service 
quality and business profit (Madni, Latiff, Coulibaly & Abdulhamid, 2017). However, the problem 
of cloud TS optimization has not yet been well solved, and it is currently one of urgent problems of 
cloud computing to be solved.

Due to the advancement and convenience of the cloud computing service model, more and more 
users abandon the software service model in which they manage physical servers themselves, begin 
to use the cloud computing service model and migrate their businesses to virtual servers in remote 
data center. The tasks generated by different businesses usually have different characteristics. For 
example, some are real-time, some are with a large amount of data, some can be processed offline, 
and some need to be processed online. Because of the diversity of user tasks and the huge number 
of users, cloud computing system has to deal with a large number of tasks and data, especially when 
batch tasks are submitted. Due to the large number, the tasks submitted by user must first enter task 
queues to wait for scheduling. In this case, if all tasks are submitted into a single queue, the tasks are 
prone to long queuing delay when the business bursts. Furthermore, to deploy tasks on a single VM 
is prone to overload the VM server, leading to slow task response. The service mode of single queue 
and single server will severely reduce the QoS of the cloud platform. Therefore, CSPs and users tend 
to use a service mode with MQMC, that is, different types of tasks are loaded into different queues 
for submission, and multiple VMs are clustered to execute the tasks. However, The TS in this MQMC 
mode will be more complicated. How to perform efficient TS and reasonable resource allocation 
under this mode has not been studied much.

The scheduling of cloud tasks is an NP-complete problem that has never been completely solved 
(Nabi, Lbrahim & Jimenez, 2021). When submitting tasks to multiple clusters in batches, the 
scheduling possibilities are exponential. For example, if there are M user task queues of length N and 
there are K computing clusters for task processing, the possibility of TS will be KM N* . When the 
problem scales up (that is, M and K become larger), the traditional exact and approximate methods 
such as exhaustive method will consume a huge amount of calculation and a long calculation time, 
and will not be able to cope with it. Heuristic algorithms have been tried, but they require specific 
conditions to obtain the optimal solution. And their adaptability is not good in the complex, changeable 
cloud environment. They can easily fall into a local optimal solution for MOO problem. In recent 
years, artificial intelligence (AI) technologies such as deep learning (DL) have made great progress 
and have been successfully applied in many fields such as unmanned driving. DL is hot in the current 
research and application of AI. DL has strong feature perception capability, and it can deal with 
large-scale state spaces, and provides a new solution for TS optimization problems in complex cloud 
computing environment.

DL is to learn the internal laws and the indication hierarchies of sample data. The information 
obtained through learning is of great help to the interpretation of data such as text, image and sound. 
Its ultimate goal is to enable machines to analyze and learn like humans, and to recognize data such 
as text, images, and sound. DL is a complex machine learning algorithm that has achieved results in 
sound and image recognition far surpassing previous related technologies. However, DL is a supervised 
learning method and requires a large number of samples during training and learning. However, in 
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the dynamic and changeable cloud computing environment, the training samples are not easy to 
obtain. Therefore, this paper expands the traditional TS framework that uses a single deep network 
as the scheduler, and upgrades the scheduler to make it combined with multiple heterogeneous deep 
neural networks (DNNs). The cloud task optimization scheduling framework based on heterogeneous 
distributed DNNs is formed. The main idea of the framework is that in each iteration, multiple DNNs 
perform paralleled and independent learning, and they will generate different scheduling strategies 
for the same task set. We save the optimal strategy among these strategies for the current task set. The 
saved samples can be used for the training of all DNNs in the framework. This mechanism is similar 
to memory replay of deep reinforcement learning (DRL), but is simpler. With this mechanism, the 
framework can automatically generate samples for training of each DNN, and improve the effect of 
training while solving the problem of training samples.

We propose a MHDNNL algorithm for cloud TS problem of MQMC mode to minimize energy 
consumption and task. MHDNNL can generate an optimal scheduling strategy to improve user service 
quality and the service provider’s revenue.

The main innovations and contributions of this article are as follows:

•	 We propose a novel cloud optimization scheduling model to solve the TS problem in the MQMC 
cloud computing scenario. The complex dynamic scheduling problem is converted to a static 
problem whose near-optimal solution is obtained by minimizing the task latency and energy 
consumption.

•	 The MHDNNL algorithm we proposed takes multiple DNNs which are heterogeneous as joint 
schedulers to make scheduling decisions together. Moreover, historical prior knowledge and 
experience replay back mechanism are adopted to accelerate the training convergence speed and 
improve the optimization effect.

•	 The effectiveness and performance advantages of the proposed algorithm are verified through 
extensive comparative experiments.

The remainder of this paper is organized as follows: The Literature Survey is introduced in 
Section 2. The system framework, including the various model components, problem formulation, 
and MHDNNL algorithm, are introduced in Section 3. The simulation experiments and their results’ 
analysis are provided in Section 4. The summary and the future prospects are provided in Section 5.

RELATED WORK

In cloud computing, the TS optimization problem has been studied by many researchers and institutions. 
To maximize TS performance and minimize unreasonable task allocation in clouds, (Zhang & Zhou, 
2018) proposed a TS method based on two-stage strategy. At the first stage, they classified the task 
with a Bayes classifier and precreated VMs according to historical scheduling data to minimize the 
waiting time of creating VMs. At the second stage, they proposed a dynamic TS algorithm based on 
the dynamical tasks match with concrete VMs. Similarly, (Xiong, Huang, Wu, She & Jiang, 2019) 
proposed a Johnson’s-Rule-Based genetic algorithm (JRGA) for two-stage-TS problem in data centers 
of cloud computing. The JRCA takes account the characteristics of multiprocessor scheduling, uses 
new crossover and mutation operations to make the algorithm converge more quickly, and applies the 
Johnson’s rule to optimize the makepsan of tasks. Although the two-stage TS strategies can effectively 
improve the cloud’s scheduling performance, their models use a single queue submission for user 
tasks, not multiple queues submission.

Computation cost is an important issue of TS and needs to be considered in cloud computing. 
(Zuo, Shu, Dong, Zhu & Hara, 2017) proposed a resource-cost model which reflects the relationship 
between the cost of their budget and the cost of user resources in cloud computing. Based on this 
model and improved ant colony algorithm, they proposed an optimization scheduling method to 
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achieve MOO of system performance. (Al-Maytami, Fan, Hussain, Baker & Liatsis, 2019) proposed 
a TS algorithm with improved makespan based on prediction of tasks computation time (PTCT) 
algorithm for cloud computing. They tackled the problem of static scheduling of a single application 
in a widely distributed and heterogeneous environment. To predict the ideal algorithm for incoming/
available data as and when needed, they performed a systematic analysis of techniques for resource 
utilization by means of Principal Components Analysis (PCA) in the cloud environment. The PTCT 
algorithm improves the performance of TS, while reducing computation cost. However, the system 
models of the above algorithms are different from ours.

In green infrastructure-as-a-service clouds (GICs), cost is still one of the most concerned issues 
for CSPs. The arrival of irregular tasks forces the private GIC cloud to migrate some tasks to the 
public clouds for processing, thus forming a hybrid cloud. However, the VM running prices are 
temporal differences in public clouds, so it difficult to schedule all tasks in a cost-effective way 
subject to the constraints of users’ specified response time. In order to solve this problem, (Yuan, Bi 
& Zhou, 2019) gave the mathematical relations between rejected tasks and service rates of servers in 
private GIC, designed and implemented a novel meta-heuristic optimization approach by combining 
simulated annealing, particle swarm optimization (PSO), with genetic algorithm (GA). The approach 
investigates such temporal differences in hybrid GICs (HGICs). The approach is also multiple queues 
scheduling, and its goal is to maximize the profit and throughput with meeting the constraints of user 
tasks’ response time, however, it doesn’t optimize user tasks’ response time.

The quality of TS performance directly affects the user gratifications and CSP benefits. TS need 
to perform MOO to meet the needs of both supply and demand of cloud service. To improve resource 
utilization and task response time, (Nabi, Ibrahim & Jimenez, 2021) proposed a dynamic and resource 
aware load balanced algorithm (DRALBA) for TS in cloud data center. The DRALBA maps a set of 
independent, non-preemptive, and computationally expensive tasks on the available resources in a load-
balanced way, calculates the computation share for each VM based on a set of tasks and then select a 
VM (with maximum computation share for assigning larger size task) whose length is less than or equal 
to the computation share of the selected VM, and updates the VM’s load and computation share at run 
time. Moreover, DRALBA cannot support multiple requested queues of user tasks.

For more goals of TS optimization, (Geng, Wu, Wang & Cai, 2020) established MOO TS model, 
whose optimization indicators include response time, total costs, resource utilization, and balancing 
load. They designed a hybrid angle strategy to solve this model. The hybrid angle is combined 
individual-to-individual angle with individual-to-reference point angle. They proposed one by one 
elimination strategy to remain individuals with better performance. Based on the hybrid angles, 
they designed and implemented a many-objective optimization algorithm (MaOEA-HA) for TS in 
cloud computing. The proposed algorithm achieves the best performance on the DTLZ test suite, 
comparing with NSGAIII, GrEA, KnEA, VaEA and Two-Arch2. (Ma, Wang, Gu, Meng & Wu, 
2021) proposed a multi-objective knowledge-driven evolutionary algorithm (MGR-NSGA-III) for 
microservice deployment and startup strategy problem in different data centers. The MGR-NSGA-III 
takes completeness of service, total amount of storage resources, and total number of microservices 
as the constraints, considers the computation and storage resource utilization rate, load balancing rate, 
and actual microservice usage rate in resource service centers, and gains a better performance than 
the traditional microservice instance deployment and startup strategy does. However, the MaOEA-
HA does not support MQMC scheduling in cloud computing.

Some researches tried to use heuristic algorithm to solve TS in cloud computing. Aiming at the 
performance of PSO algorithm decreases with the increase of the number of tasks, (Saleh, Nashaat, 
Saber & Harb, 2018) proposed an improved PSO (IPSO) algorithm. The IPSO achieves the optimal 
scheduling for a large number of tasks by splitting them into batches dynamically. When creating a 
batch, the IPSO considers the resources utilization states and gets the optimal solution. (Duan, Chen, 
Min & Wu, 2017) proposed PreAntPolicy, a VM scheduling method based on improved ant colony 
optimization (ACO) algorithm and a prediction model which assists the scheduler to make rational 
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schedules by predicting load trends. (Srichandan, Kumar & Bibhudatta, 2018) designed a TS algorithm 
that combines the ideal characteristics of a GA with bacterial foraging (BF) algorithm. The algorithm 
can perform efficient scheduling while adhering to the service quality defined in the service level 
agreement (SLA). However, the optimal solution such as PSO, ACO and GA can only be obtained 
under the specific conditions required by traditional heuristic algorithms, so the algorithm has poor 
generality in a complex and variable cloud environment. Also, it easily falls into local optima and 
fails to obtain global optimal solution of MOO problems.

Some researchers began to use metaheuristic instead of earlier heuristic for TS in cloud 
environment. Based on non-dominated sorting genetic algorithm (NSGA)-II, (Alsadie, 2021) 
proposed a metaheuristic framework for dynamic VM allocation in data center. This framework was 
named MDVMA. The MDVMA is to optimize TS in cloud computing and its goals not only include 
minimizing energy consumption, makespan and cost, but also provide trade-off the CSPs according 
to their requirements. To improve the TS performance with resource constraints, (Chen et al. 2020) 
proposed a latest metaheuristics whale optimization algorithm (WOA) for cloud TS with a MOO 
model. To further improve the optimal solution search capability of the WOA-based approach, they 
proposed an improved WOA for cloud TS (IWC). Compared with current metaheuristic algorithms, 
the IWC achieve better convergence speech, better accuracy in searching for the optimal TS strategy, 
and higher resource utilization in the presence of both small and large-scale tasks. However, the 
MDVMA and IWC do not support MQMC scheduling in cloud computing either.

With the development of machine learning technologies such as DL and RL, some scholars used 
machine learning to do TS in cloud computing. In terms of TS using DL, (Rangra, Sehgal & Shukla, 
2019) proposed a scheduling approach with multi-tasking convolution neural network (M-CNN) 
to solve the contradiction between running time and running cost of TS in cloud computing. The 
M-CNN can make a effective decision for TS in cloud computing. They performed experiments on 
tweets dataset and workflow dataset. The experiment results show that the M-CNN can great reduce 
the time and cost of scheduling, compared with PSO and PSO-GA. Forecasting resource usage of 
VM is importance when we use prediction method to deal with TS in cloud computing. But it is 
difficult to accurately predict the future workload because the resources requested in data center are 
dynamic. (Hasan Shuvo, Shahriar Maswood & Alharbi, 2020) proposed a novel method whose name 
is LSRU to improve the accuracy of prediction. LSRU is a hybrid-method, which is combined Gated 
Recurrent Unit (GRU) with Long Short Term Memory (LSTM). LSRU can not only perform short-
time ahead workload prediction but also perform long-time ahead workload prediction, especially 
sudden workload prediction. However, because of the different scheduling ideas and system models, 
the above methods are not suitable for the MQMC TS in cloud computing.

RL is a machine learning algorithm with strong decision-making ability. It explores the optimal 
solution through a constant trial-and-error mechanism. RL is an effective method to solve multi-
constrained MOO problems. Some researchers try to deal with the TS problems based on RL in 
cloud computing (Coello, Brambila, Gamboa, Ma & Gómez, 2019). (Peng, Cui, Zuo & Lin, 2015) 
solved TS problems by combining RL with queue theory in complex cloud environment and obtained 
the optimal scheduling strategy by the trial-and-error mechanism of RL. With the concepts of 
segmentation service level agreement (SSLA) and utilization unit time cost (UUTC), they viewed the 
TS and resource provisioning problem in data center as a Markov decision process. To solve it they 
proposed novel resource management scheme with RL and queuing theory. Furthermore, to solve 
the problem of accurate scaled cloud computing environment and the problem of efficient TS subject 
to resource constraints, (Peng et al., 2015) proposed a fine-grained cloud computing system model 
and optimization TS algorithm with RL and queuing theory. They divided the system model into TS 
submodel, task execute submodel and task transmission submodel, so as to accurately analyze the task 
processing of user requests. The algorithm they proposed not only improves the efficiency of TS, but 
also reveals the relationship between the arrival rate, server rate, number of VMs and the number of 
buffer size. Similarly, (Thein, Myo, Parvin & Gawanmeh, 2018) realized the energy-saving resource 
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allocation of cloud data center based on RL, and achieved the purpose of high energy efficiency and 
SLA guarantee. (Wei et al. 2019) proposed an adaptive cloud computing resource lease plan generating 
approach based on RL, which can help Software-as-a-Service (SaaS) CSP to make effective facility 
adjustment strategies dynamically. Although cloud TS algorithms based on RL can obtain the optimal 
strategy through constant trial-and-error mechanism, when the scale of state space becomes large, 
the RL may not converge or converge slowly. DNN has strong perception capabilities, and can deal 
with large-scale state spaces effectively and overcome the shortcomings of RL.

Recent breakthroughs have occurred in deep reinforcement learning (DRL) in many fields, 
such as natural language processing, games (Volodymyr et al., 2019), robotic control, and so on. 
Some researchers have adopted a DRL model to solve TS problems in cloud computing. (Bitsakos, 
Konstantinou, & Koziris, 2018) proposed a flexible TS system based on DRL for resource scheduling 
in large-scale clusters. The system can automatically allocate computing resources according to users’ 
fluctuating workload demands and follow an optimal resource management strategy. (Huang, Feng, 
Zhang, Qian & Wu, 2019) combined the reinforcement learning training method with distributed 
deep learning model to solve the task offloading problem of mobile edge computing to reduce energy 
consumption and guarantee quality of service (QoS). To schedule large-scale workloads atomically in 
cloud data center, (Rjoub, Bentahar, Wahab & Bataineh, 2020) developed four DRL-based scheduling 
algorithms and achieved good scheduling results. Most of the above studies based on DRL can solve 
various cloud computing scheduling problems and achieve good performance, and are very suitable 
for dynamic TS. However, they are too complex and requires a lot of training, and are not suitable 
for static TS with batch submission.

Based on the above studies, we propose a cloud TS optimization scheduling algorithm based on 
MHDNNL for MOO problem. MHDNNL proposed a collaborative exploration mechanism to generate 
the training samples, and drew on the memory playback mechanism of DRL to train. MHDNNL takes 
minimizing task latency and energy consumption as the system optimization goal, and generate an 
optimal scheduling strategy to improve QoS of users and revenue of CSPs. The MHDNNL algorithm 
we proposed can effectively solve the TS problem of MQMC mode in cloud computing.

SYSTEM FRAMEWORK AND PROBLEM DESCRIPTION

Main System Framework
Since cloud users get personalized cloud services from CSP by paying on demand, they then submit 
their tasks to cloud service system through network, and CSP provides virtual resources that meet 
user needs to deploy tasks. The system framework is shown in Figure 1.

There is diversity in user workload (Gao, Wang, Gupta & Pedram, 2013), which contains multiple 
tasks with dependencies and data transmission. The task decoupler of this framework should ensure 
the order and dependencies when the tasks are scheduled. The data center is composed of a large 
number of physical machine servers, and the scale is very large. In data center, the neighboring servers 
can be clustered into computing clusters according to user needs (Li, Ji, Wang, Nazarian & Wang, 
2017). In clusters or between clusters, because communication is usually carried out through high-
speed optical fibers, the transmission speed is very fast. Therefore, this part of transmission latency 
and energy consumption can be ignored. However, the communications between users and clusters 
are usually long-distance transmission, and there are no dedicated high-speed network channels. At 
a certain scheduling timestep, the bandwidth between each user and different cluster is different, and 
the computing powers of different clusters allocated to each user are also different. Therefore, the 
communicational latency and energy consumption of this part are important factors to be considered 
in the optimization problem. In addition, because computing ability and computing power of each 
cluster are different, they are also key factors that affect the efficiency of TS.
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Problem Formulation
The two key factors of the problem we are focusing on are task latency and energy consumption. 
They are related to the communication between task queues and clusters and the execution on the 
clusters. Below, we will clarify the definitions of the communicational sub-model and computational 
sub-model used in this paper.

The task of cloud system is to schedule atomic tasks in multiple queues and multiple clusters. 
We assume that the number of waiting task queues in the system is N , represented as 
{ , }Q Q QN1 2 , , , and each queue contains M  tasks, denoted as { , , , }T T TM1 2  , the total number 
of tasks is M N∗ , and there are K  clusters, denoted as { , , , }Clu Clu CluK1 2  . Task Tnm  
represents the m-th task in the n-th queue, and the attribute of task Tnm  is represented by a binary 
group ( , )r rnm

cpu
nm
data , where rnm

cpu  indicates the number of required CPU cycles, and rnm
data  indicates 

amount of data of the Tnm . In addition, we assume that the required number of CPU cycles for each 
task is linearly related to the amount of task data (Miettinen & Nurminen, 2010): r rnm

cpu
nm
data� �* , 

where µ  represents the computation-to-data ratio. The attributes of cluster Cluk  are represented 
by a triplet, ( , , )CP P Pk k

comm
k
comp , where CPk  represents the computing power of the Cluk , that 

is, the number of cycles of the CPU. Pk
comm  represents the communication power consumption of 

Figure 1. System framework
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the Cluk  and Pk
comp represents the computing power consumption of the Cluk . The action is 

anmk ∈{ , }0 1 , 1≤ ≤n N , 1≤ ≤m M , 1≤ ≤k K . If anmk =1 , then the Tnm  is scheduled to 
the Cluk . In addition, the bandwidth between multiple queues to multiple clusters is represented by 
{ , }BW BW BWnk11 12 , , , and BWnk  represents the bandwidth from the Qn  to the Cluk .

1. 	 Communicational sub-model

The communicational sub-model includes the time required for the transmission of the task data and 
the energy consumption. When multiple tasks in the same queue are simultaneously scheduled to the same 
cluster, the bandwidth is distributed equally to each task, so the bandwidth occupied by T

nm
 is

R
BW

nm
bw nk

nk

=
Α

,	 (1)

where BW
nk

 is the bandwidth from the Q
n

 to Clu
k

, and A
nk

 is the number of tasks scheduled from 
the Q

n
to Clu

k
. The communicational latency is the time it takes to upload the task data to the server,

TD
Rnm

comm nm

nm
bw

=
α

,	 (2)

where α
nm

 is the amount of data of T
nm

.
The communicational energy consumption is the energy consumed during the transmission task,

EC P TD
nm
comm

k
comm

nm
comm= ⋅ .	 (3)

So, the communicational energy consumption for all tasks in the Q
n

 is,

EC EC
n
comm

nm
comm

m M

=
∈
∑ .	 (4)

2. 	 Computational sub-model

The computational sub-model contains the computational latency of the task and the computational 
energy consumption. The cluster computing power will be distributed equally to the tasks scheduled 
to the cluster, i.e., each task gets the following CPU cycles:

R
CP

anm
cpu k

nmk
m Mn N

=

∈∈
∑∑

.	 (5)

The computational latency is the time consumed by the calculation of the task, 
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TD
r

Rnm
comp nm

cpu

nm
cpu

= .	 (6)

The computational energy consumption is the energy consumed in the calculation process of the task,

EC P TD
nm
comp

k
comp

nm
comp= ⋅ .	 (7)

The computational energy consumption for all tasks in the Q
n

 is,

EC EC
n
comp

nm
comp

m M

=
∈
∑ .	 (8)

3. 	 Total cost

Since the factors considered in this paper are task latency and energy consumption, the total cost 
of scheduling decision d under system state s can be calculated as,

Cos ( , ) max ( ) (
,

t s d TD TD ECdelay

n N m M nm
comm

nm
comp ec

n
com= ⋅ + + ⋅

∈ ∈
ξ ξ mm

n
comp

n N

EC+
∈
∑ ) ,	 (9)

where ξ ξdelay ec, [ , ]∈ 0 1  respectively indicate the fraction of optimization for task latency and energy 
consumption. The ultimate goal of the system is to obtain an optimal scheduling strategy to minimize 
task latency and energy consumption, i.e., to minimize the cost.

MHDNNL Model
The MHDNNL model as shown in Figure 2 uses multiple heterogeneous DNNs as joint schedulers 
to make scheduling decisions together.

Figure 2. MHDNNL model
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The model has two key techniques. The first is to evaluate the scheduling decisions of multiple 
DNN outputs based on the prior knowledge of the system, so as to obtain the optimal decision that 
meets the optimization objectives. The second is the memory replay mechanism based on DRL [20]. 
After each scheduling, we combine the optimal scheduling decision generated by DNNs with the 
task set as a training sample and save it into the Memory. This approach can increase the number 
and diversity of samples. In addition, we select a mini-batch of samples from Memory randomly to 
train the network model and guide multiple agents to explore the optimal scheduling strategy. This 
model can not only enhance the agent’s ability to explore the optimal strategy, but also improve the 
utilization of the training samples.

In training, the state space s
t
 is composed of multiple task properties in multiple queues, expressed 

as { , , , , , , }r r r r r rcpu data cpu data
nm
cpu

nm
data

11 11 12 12
… , as the X  DNNs’ input. Each DNN outputs different decision, 

expressed as ( , , , )d d d
t
t
t t

x2 … . With time step t  and taking s
t
 as an input, each DNN’s output d

t
x  is 

expressed as f s d
t
x t t

x

θ
: → , where f

t
xθ

 and θ
t
x  represents the function and the parameters of of the 

x -th DNN, respectively. Decision d
t
x consists of a binary sequence, expressed as d a a a

t
x

nmk
= { , , }

111 121
. 

Once the scheduling decision of x -th DNN is determined, the cost of the decision is calculated with 
Equation (9). Among the decisions generated by each DNN, the decision with the minimum cost is 
selected as the optimal action decision for the current task set, expressed as d

t
opt ,

d t s d
t
opt

x X
t t

x=
∈

argminCos ( , ) ,	 (10)

where ( , )s d
t t

x  is stored in the Memory as the training sample. When the quantity of Memory’s 
samples reaches the preset threshold, we select a mini-batch number of samples from Memory 
randomly for each DNN to train. By minimizing the cross-entropy loss, we optimized θ

t
x  with the 

gradient descent method,

L d f s d f s
t
x

t
T

t t
T

tx x( ) log ( ) ( ) log( ( ))θ
θ θ

= − − − −1 1 .	 (11)

The optimization scheduling algorithm based on MHDNNL is shown as Algorithm 1.

Algorithm 1 pseudo-code of TS algorithm based on MHDNNL

1. Initialize all X DNNs with different random wights θ x, xÎ X.
2. Initialize replay memory D to capacity M.
3. Input: all task requirements in task ready queues.
4. Output: task scheduling decisions d x.
5. For t = 1, 2,. .., T do
6. Input the same st to each DNN.

7. Generate X scheduling decisions from the DNNs { } ( )d f s
t
x

t
t
x=
θ

.

8. Select the optimal decision d Q s d
t
opt

x X
t t

x=
∈

argmin ( , ) .

9. Store ( , )s d
t t

opt  into replay memory D.
10. If the number of samples exceeds the threshold:
11. Update DNNs’ parameters with the stochastic gradient descent method 
12. End If
13. End For
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EXPERIMENT RESULTS

Experimental Design and Parameter Description

We designed a two-part simulation experiment to verify the validity and performance of the proposed MHDNNL 
algorithm. The first part is to verify the convergence of the MHDNNL algorithm with different numbers of queue 
and clusters. The second part is to verify the optimization results of MHDNNL algorithm and compare them with 
the benchmark algorithms, such as the Random, Round-Robin (RR), and multi-objective particle swarm optimization 
(MoPSO). In the experiments, ξdelay and ξec  of equation (9) were set to 0.9 and 0.1, respectively. The number of 
queues was set from 3 to 12, the number of tasks in the queue was 4, the data of the task was set from 100MB to 
500MB, and the computation-to-data ratio of different types of tasks were 330 cycles/byte, 1300 cycles/byte, 1900 
cycles/byte, 2100 cycles/byte, respectively. The number of clusters was set from 3 to 12, the computing power of 
the cluster was set from 1.5*1015 cycles/s to 10.0*1015 cycles/s randomly, the computing power of the cluster was 
set from 1.0*105 W to 10.5*105 W according the computing power, the bandwidth between the queue and the cluster 
was set from 250MB to 900Mbps, and the communication power was set from 0.2W to 0.8W.

We took 1000 sets of tasks as the training dataset, and 100 sets of tasks as the test dataset. We designed 
8 heterogeneous DNN as decision generators, each with 1 input layer, 3 hidden layers, and 1 output layer. The 
numbers of neurons in the first hidden layer, second hidden layer and the third hidden layer were randomly set 
from 100 to 200, from 30 to 50, and to 10, respectively.

The simulation experiment platform was developed base on Python3.6.2 and TensorFlow1.2.1. We carried out the 
experiment on a Windows 10 operating system, with an Intel core i7-8550U dual-core CPU at 1.80 GHz and 16 GB memory.

Network Model Verification

The convergence of the model with different hyperparameters have been verified in (Cui et al., 2020). Then we 
experimentally verified the convergence of the model with different environment parameters, such as different 
numbers of queues (QN) and different number of clusters (CN).

1. 	 Convergence under different QN and a fixed CN

Firstly, we examined the convergence of the MHDNNL algorithm under different numbers of queues and a 
fixed number of clusters. In this experiment, the CN was to 5, and the QN was set to 4, 6, 8, and 10, respectively. 
The results of this experiment are shown in Figure 3.

Figure 3. Convergence of MHDNNL algorithm versus QN with CN=5. (a) QN=4; (b) QN=6; (c) QN=8; (d) QN=10
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It can be seen from Figure 3 that the proposed MHDNNL algorithm tends to converge eventually, 
and the cost increases with the increase of QN. In this experiment, the CN is fixed to 5. An increase 
in QN means an increase in the number of tasks, so that the competition for cloud resources (such 
as CPU, bandwidth, etc.) by tasks becomes more intense. Eventually, the cloud resources allocated 
to each task will be reduced, leading to an increase in cost.

2. 	 Convergence under different CN and a fixed QN

Then, we examined the convergence of the MHDNNL algorithm under different numbers of 
clusters and the same number of queues. In this experiment, the QN was to 5, and the CN was set to 
3, 6, 9, and 12, respectively. The results of this experiment are shown in Figure 4. 

It can also be seen from Figure 4 that the proposed MHDNNL algorithm tends to converge 
eventually, but the cost decreases with the increase of CN. In this experiment, the QN is fixed to 5, 
which means the tasks is fixed, too. An increase in CN means an increase of cloud resources (such 
as CPU, bandwidth, etc.). Eventually, the cloud resources allocated to each task will be increased, 
leading to an reduce in cost.

Algorithm Comparison
We compared the optimization scheduling effect of MHDNNL algorithm with several benchmark algorithms 
versus QN and CN. The benchmark algorithms include Random, Round-Robin (RR), and MoPSO.

1. 	 Performance comparison with different QN and a fixed CN

Firstly, we compared the proposed MHDNNL algorithm with benchmark algorithms for different 
QN with a fixed CN. In the experiments, the CN was fixed at 5, and the QN was set from 3 to 12. 
The results of this experiment are shown in Figure 5.

It can be seen from Figure 5 that the cost of all algorithm increases with the increase of QN. In 
this experiment, the proposed MHDNNL algorithm performed better than RR and random algorithms. 

Figure 4. Convergence of MHDNNL algorithm versus CN with QN=5. (a) CN=3;(b) CN=6; (c) CN=9; (d) CN=12
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When the QN is small, the optimization results of MHDNNL algorithm are close to those of MoPSO 
algorithm. However, when the QN is 5 or more, the costs of the MHDNNL algorithm are better than 
those of MoPSO algorithm. The CN is fixed means the resources are limited. As the QN increases, 
the task’s competition for resources will become more intense. In this case, the MHDNNL algorithm 
shows better TS performance than the MoPSO algorithm.

2. 	 Performance comparison with different CN and a fixed QN

Then, we compared the proposed MHDNNL algorithm with benchmark algorithms for different 
CN with a fixed QN. In the experiments, the QN was fixed at 10, and the CN was set from 3 to 12. 
The results of this experiment are shown in Figure 6.

It can be seen Figure 6 that the cost of all algorithm decreases with the increase of CN. In this 
experiment, the proposed MHDNNL algorithm also performed better than RR and random algorithms. 

Figure 5. Algorithm performance comparison versus QN with CN=5

Figure 6. Algorithm performance comparison versus CN with QN=10
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When the CN is small, the optimization results of MHDNNL algorithm are better than those of MoPSO 
algorithm. However, when the CN is 9 or more, the costs of the MHDNNL algorithm are close to 
those of MoPSO algorithm. Similarly, the QN is fixed means the tasks is fixed. As the CN increases, 
the resources will be more abundant, so the task’s competition for resources will become less intense. 
In summary, in an environment with fierce resource competition, the MHDNNL algorithm for TS 
can perform better than the benchmark algorithms.

CONCLUSION

Based on MHDNNL, we proposed a cloud TS optimization scheduling algorithm which solves the 
MOO problem of MQMC scheduling in cloud computing well. The proposed TS model is trained by 
cooperating with multiple heterogeneous DNNs and by drawing on the memory replay mechanism of 
DRL, effectively improves the convergence speed and results, and generates a optimal scheduling strategy 
to minimize the system energy consumption and task latency. The proposed can better adapt to large-
scale MOO problems, and the optimization results are better than heuristic algorithms such as MoPSO.

Although we have done some research on the TS problem of MQMC scheduling in cloud 
computing, and achieved some research results, there are still some problems for further research 
and improvement, including the following issues: (1) The MHDNNL algorithm we proposed is with 
a fixed number of clusters. It should be able to effectively predict the user workloads and realize the 
dynamic adjustment of the number of clusters. (2) The scale of cloud data centers becomes more 
and more large, the single scheduling model has limited performance; multi-model collaborative 
scheduling will therefore be a fruitful direction for future research.
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