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ABSTRACT

An arrhythmia is an irregular heartbeat that causes abnormal heart rhythms. Manual analysis of 
electrocardiogram (ECG) signals is not sufficient to quickly detect cardiac arrhythmias. This study 
proposes a deep learning approach based on a convolutional neural network (CNN) architecture for 
the classification of cardiac arrhythmias (ARR), congestive heart failure (CHF), and normal sinus 
rhythm (NSR). First, the ECG signal is converted into a 2D image using time-frequency conversion. 
The scalogram is constructed using a continuous wavelet transform to extract dynamic features. 
With CNN, each ECG signal is broken down into heartbeats, and then each heartbeat is converted 
into a 2D grayscale image of the heartbeat. Morphological feature extraction was performed by 
segmenting the QRS complex and detecting P and T waves. A third approach to feature extraction 
is dual-tree complex wavelet transform (DT-CWT). In addition, all extracted features are combined 
using neighborhood component analysis (NCA), and features are selected to classify using a support 
vector machine (SVM) classifier.
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INTRODUCTION

The working principle of the tissues and organs in our body is based on the potential difference that 
occurs as a result of the electrochemical events of the cells. This potential difference produces electrical 
signals that can be measured from the body surface. The electrical activity of the heart is also measured 
and evaluated by the electrocardiography (ECG) method. ECG is the recording of the potential difference 
that occurs due to the contraction and relaxation of the heart during a heartbeat with the help of electrodes 
placed on the body surface. In a healthy person’s ECG signal, there are P waves, QRS complexes, and T 
waves, each representing different phases of the heartbeat. Analysis and interpretation of ECG signals 
recorded for a certain period of time play an important role in the diagnosis of any heart-related disease. 
Abnormalities caused by the wave formation time, shape or the time difference between the waves cause 
arrhythmic heart rhythms (Xiong et al., 2018). Early and accurate diagnosis of arrhythmic signals is 
critical in preventing diseases that may result in sudden death.

Manual analysis of the ECG signal is not sufficient for rapid detection of abnormalities in heart 
rhythm. The analysis of the long-term ECG signal by the experts takes a lot of time and this analysis 
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may not accurately identify the problem. Computer-aided decision systems are being developed in 
the examination of ECG signals due to its advantages such as increasing the accuracy of diagnosis, 
shortening the analysis time, and reducing the expert errors that may occur. In the literature, there 
are many different studies based on signal processing methods related to arrhythmia detection using 
ECG signals. These studies are based on the extraction of different features from the signals and the 
classification of these features.

Depending on the examination of the time or frequency domain, ECG morphology (Anwar 
et al., 2018), RR interval (Xiang et al., 2018), principal component analysis (PCA) (Manik et al., 
2019), independent component analysis (ICA) (Desai et al., 2015), Fourier transform (Kurniawan et 
al., 2020), empirical mode decomposition (EMD) (Izci et al., 2018), The features are extracted by 
methods such as discrete wavelet transform (DWT) (Hamed & Owis, 2016; Chen & Maharatna, 2020). 
Different machine learning algorithms are used in the classification of feature vectors obtained from 
arrhythmic and normal signals. Support vector machines (SVM) (Li et al., 2020), k-nearest neighbor 
(k-NN) classifier (Qaisar et al., 2020), artificial neural networks (ANN) (Dewangan & Shukla, 2016; 
Subbiah & Subramanian, 2018) are among the classifiers used in the classification of ECG signals. 
In traditional machine learning algorithms, the signals go through the preprocessing stage in order 
to decompose the noise that may occur during signal recording. At this stage, the signal is cleared of 
noise by various filters. Deep learning algorithms are being developed as an alternative to machine 
learning algorithms consisting of preprocessing, feature extraction and classification stages. Deep 
learning can perform preprocessing, feature extraction and classification stages together, thanks to 
many hidden layers in its structure (Hatami et al., 2018).

In this paper contribution are as follows,
An Alexnet-NCA-SVM hybrid structure is suggested for Arrhythmia, CHF, and NSR ECG 

signal categorization. The proposed method is implemented with hybridization of time frequency 
scalogram images to get deep features, Morphological features, DTCWT and PCA features fused 
with NCA to demonstrate its superiority in classifier. This paper’s contribution to the literature can 
be summarized as follows. ECG signals for arrhythmia, CHF, and NSR are grouped together. The 
Alexnet-NCA-SVM hybrid structure was used for classification.

The rest of this paper is structured as follows. The second section presents Literature review; 
third section represents proposed method for classifying the proposed ECG signals. Fourth section 
discusses the simulation results in the MATLAB environment. The fifth section contains a final 
commentary with instructions for further work.

LITERATURE REVIEW

In recent studies on the classification of arrhythmic signals, deep learning methods are preferred 
because of their high success (Ullah et al., 2020). These methods vary according to the training model 
they use. Recurrent neural networks (RNN) (Zhang et al., 2020; Pokaprakarn et al., 2022; Hannun 
et al., 2019), deep neural networks (DNN) (Nonaka & Seita, 2020; Jun et al., 2018), convolutional 
neural networks (CNN) (Kiranyaz et al., 2016) are examples of these models.

A model for diagnosing cardiac arrhythmias was proposed by Singh and Singh (2019) with 
filter-based feature selection approaches were applied to three separate machine learning algorithms 
applied to the Cardiac Arrhythmia data set, and the best features were picked. The performance 
of feature selection approaches was assessed using SVM, random forest. Isin and Ozdalili (2017) 
proposed a deep learning-based technique for classifying patient ECG’s and automating ECG 
arrhythmia detection. AlexNet feature descriptor is used in the proposed method. To reach the final 
classification, the retrieved characteristics are fed into a simple back propagation neural network. To 
test the suggested approach, three class different ECG waveforms were chosen from the MIT-BIH 
Arrhythmia database. The results show that the deep learning feature can reach very high-performance 
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rates when combined with a typical back propagation neural network. While the highest accuracy 
rate of 98.51 percent was achieved, test accuracy was approximately 92 percent.

Bulbul et al. (2017) employed machine learning approaches to classify P, Q, R, S, and T 
waves in ECG signals using MLP and SVM techniques. Alarsan and Younes (2019) proposed a 
machine learning-based ECG categorization strategy based on multiple ECG characteristics. These 
characteristics are machine learning algorithm inputs, and a total of 205,146 data points were collected. 
For classification, such as Decision Trees, Random Forests, and Gradient Boosted Trees (GDB) were 
employed. The approach has an overall accuracy of 96.75 percent using the GDB Tree algorithm and 
97.98 percent using random Forest for binary classification, according to the findings.

Sharma et al. (2020) Classified ECG signals using the LSTM model. First, ECG data were used 
to compute RR-interval sequences. After that, using Fourier-Bessel (FB) expansion, the property 
vector was extracted from the RR interval sequences. The LSTM model is used to classify the 
obtained vectors. The MIT-BIH Arrhythmia Data Set was employed for classification, and accuracy 
was 90.07 percent with ten-fold cross validation. Masetic and Subasi (2016) developed a classifier 
based on characteristics derived from the ECGs of 13 healthy CHF patients and 15 CHF patients. 
They used Random Forests, SVM, C4.5, ANN, and k-NN approaches to obtain excellent accuracy. 
Isler (2016) Used heart rate variability (HRV) analysis to distinguish between patients with systolic 
and diastolic congestive heart failure (CHF).

CNN is a very popular model in studies of classification of ECG signals. First, authors of Huang et 
al. (2019) introduced the structure using the single-layer CNN model for arrhythmia classification. In 
addition to using the CNN model for one-dimensional signals, it is also used to classify 2-dimensional 
images. In these studies, pictures obtained from ECG signals are given as input data to the CNN 
model (Goldberger et al., 2000). Considering the success of the model in picture classification, high 
success was achieved by converting and classifying the signals into pictures (Vieau & Iaizzo, 2015).

PROPOSED METHODOLOGY

In this paper, the ECG signals from three PhysioNet databases (Pereira et al., 2020) are taken for 
various feature extraction operations which will be explained in the subsequent subheadings.

In the proposed system, as seen in figure 1, the ECG signal scalogram does not need any 
preprocessing and feature extraction as ECG signals are converted into scalogram images for deep 
feature extraction. Further in the other sections ECG signals are preprocessed and Morphological 
features, DTCWT features and PCA features are extracted. The proposed system creates the 
hybridization of Deep features and hand-crafted features with NCA (Neighborhood component 
analysis) to create hybrid set of features for classification using SVM. There are three class 
classification as class label ARR, CHF, NSR.

Electrocardiogram
When an action potential is conducted through the myocardium during the cardiac cycle, an electric 
current is generated, which is recorded by an electrocardiograph through electrodes placed on the 
surface of the body. These electrodes record the sum of all action potentials emitted by the heart at any 
given time. The summed recording of cardiac action potentials results in an ECG (Dössel et al., 2021).

Although this test is not a direct measurement of mechanical events in the heart and cannot be used to 
infer muscle contraction force and blood pressure, any abnormalities in the ECG recording are indicative 
of electrical events associated with a mechanical event. Thus, the ECG is the most widely used biomedical 
signal in the clinical diagnosis of the heart due to its easy, non-invasive and painless recording.

A normal ECG consists of a P wave, a QRS complex, and a T wave as seen in Figure 2.
The sample time between onset of P and onset of QRS complex is the PR interval. At the end 

of PR interval ventricles begin to depolarize. The QT interval is the time where ventricles contract 
and relax (Goldberger et al., 2018).
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The ECG can be recorded as the potential difference between a negative and a positive pole 
(Kusumoto & Bernath, 2012). ECG represented in to frontal leads, which use extreme electrodes 
and measure electrical activity in the vertical plane; and the anterior leads, use six-chest electrodes 
to measure electrical activity in the horizontal plane. As shown in figure 3(a), the three leads are 
marked by Roman numerals - I, II and III - and consist of a bipolar lead, as they are marked by possible 
differences between the two ends. The three wires are designated by Roman numerals - I, II and III - 
and consist of two-pole wires, as they are indicated by the potential difference between the two ends. 
The other three in the frontal plane refer to unipolar leads or augmented leads (aVR, aVL and aVF), 
as shown in figure 3(b). They are called unipolar leads due to the recording of electrical potentials at 
a location in relation to an electrode with an action potential close to zero (Singh & Majumder, 2019).

In the precordial leads, electrical activity is measured between one of the six chest electrodes 
and the sum of signals from the left and right arms and the left leg, which usually has a value close 
to zero. Figure 4(a) shows the relative position of each electrode in the thorax and Figure 4(b) the 
spatial relationship of the six thoracic leads that record the electrical voltages transmitted in the 
horizontal plane (Dössel et al., 2021).

Figure 1. Block diagram for proposed methodology

Figure 2. Electrocardiogram with waves, segments, intervals and segment marked (Goldberger et al., 2018)
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Time-Frequency Transform for Scalogram
Initial Considerations
The ECG signals are electrical signals produced by the heart to stimulate the heart muscles during 
the operation of the heart and show the electrical activity of the heart. Continuous recording and 
evaluation of ECG signs during the monitoring of heart diseases, determination of appropriate 
diagnosis and treatment, and monitoring of the applied treatment are very important in terms of 
determining the abnormalities and complications that may occur. In general, the monitoring of 
machines and equipment is performed by obtaining the vibration signals of the machine operating 
at a constant speed, which characterizes this signal as stationary, that is, its frequency components 
do not vary with time. In this case, the Fourier transform can be used as a tool to study the spectral 
characteristics of the signal in the frequency domain.

In more complex situations, the signals may present non-stationary characteristics, such as ECG 
signals and vibration signals in rotating machines with variable rotation. In these cases, it becomes 
more appropriate to analyze the behaviour of the variation of spectral components over time.

It is for this purpose that the so-called time-frequency transforms (TFDs) are applied to the 
analysis of machines and equipment aiming at fault detection and diagnosis. One of the advantages of 
using TFDs for machine monitoring is that they tell you when and how the frequency content of the 
signal is changing. The wavelet transform (WT) is one such tool. It has the advantage of presenting a 
noble resolution in the time-frequency plane, but it has the disadvantage of incorporating interference 
terms when signals with more than one spectral component are analyzed.

Figure 3. Representation of the electrodes used to obtain the frontal ECG leads: (a)I, II, III, (b)aVR, aVL and aVF (Kusumoto & 
Bernath, 2012)

Figure 4. (a) Location of electrodes relative to precordial leads (Dössel et al., 2021) (b) Representation of the horizontal plane 
formed by the chest leads (Kusumoto & Bernath, 2012)
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Another widely used distribution is the Short Term Fourier Transform (STFT). This technique 
comprises of separating the non-stationary signal into intervals small enough so that stationarity can 
be assumed in each of them, and thus the Fourier transform can be applied with good results. The 
sum of the spectra for each interval shows how the frequency composition of the signal changes over 
time. The signal splitting is done through the use of an observation window to emphasize the signal 
characteristics only in the vicinity of the instant of interest.

One of the limitations of STFT concerns the window width, which is fixed for all times. According 
to the Heisenberg uncertainty principle, large windows provide good resolution in the frequency 
domain, poor resolution in the time domain, and vice versa. In this way, the information obtained by 
STFT has limited accuracy due to the width of the window.

To solve the fixed (scale) resolution problem of the STFT, a transform that is independent of 
the scale can be used, that is, that presents the characteristic of multiresolution. This transformation 
is known as continuous wavelet transform (CWT), and allows you to analyze the signal with time 
resolution or frequency, depending on the width of the selected window (Wang et al., 2021).

Next, some concepts, theoretical aspects and information about the CWT are presented.

Continuous Wavelet Transform
The wavelet transform represents an advance over STFT, as it is a method which uses variable scales. 
For the higher resolution at high frequency signal in wavelet analysis uses smaller scale and for low 
frequency signal where greater resolution is required uses larger scale. Hence frequency and scale 
are inversely proportional, where higher scale implies low frequency and vice versa.

The CWT is the time scale decomposition of signal and it can be mapped through scalogram. 
It is similar to time-frequency mapping with STFT. In fact, there is a correspondence between scale 
and frequency, which is why several authors consider the Wavelet Transform to be a time-frequency 
representation. The wavelet transform consists of finding a family of functions called daughter 
wavelets, based on dilation and translation operations of the mother wavelet, as will be seen later. 
There are many types of Wavelets that can be used as a mother wavelet, they are Haar’s Wavelet, 
Meyer’s Wavelet, Coiflet’s Wavelet, Morlet’s Wavelet, Daubechies’ Wavelet, etc. These Wavelets 
have different characteristics. In this work, the Daubechies Wavelets are used.

The Continuous Wavelet Transform (CWT) of the signal x t( )  is defined by (Wang et al., 2021):

CWT a b
a

x t
t b

a
dt, .( ) = ( ) −







−∞

∞

∫
1

Ψ 	 (1)

Where, Ψ t( )  symbolizes the mother wavelet and Ψ t b
a

−









 are the daughter wavelets. The parameter 

a  is called a scale, which modifies the length of a function by compression or dilation; b  is a 
translation factor that predicts or delays the position of the wavelet on the time axis.

The main difference between STFT and WT is that WT uses a scale variable “a”, instead of the 
frequency variable " "f , in STFT. The values of the continuous wavelet transform obtained from 
equation (1) is called the wavelet coefficient, which is a function of position and scale.

Deep Features Extraction by Convolutional Neural Network
Deep learning (DL) is a Machine learning (ML) technique that imparts computers to perform tasks 
that are natural to humans, such as learning from examples, so that they can solve problems such as 
image and speech recognition. This technique is increasingly being applied to the biological sciences 
(Yıldırım et al., 2018).
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Given a large dataset, DL models are considered a good approach and often exceed human 
agreement rates. In line with what was mentioned above, the DL has been demonstrating recognition 
accuracies never before achieved (Yıldırım et al., 2018).

Deep learning techniques can reveal invisible image features from original images. Convolutional 
Neural Network (CNN) has proven to be very useful for feature extraction and learning and have 
been used in many studies (Zhao et al., 2020). With the advancement of deep learning technology 
in recent years, more efficient CNN (DCNN) models have been proposed such as VGG, AlexNet, 
ResNet, DenseNet, and EfficientNet. This deep CNN performs well in image classification tasks and 
allows computers to outperform humans in visual classification.

In this study, a deep CNN model was applied that can extract feature vectors of scalogram images. 
As shown in Figure 5 in the basic architecture of CNN, features were extracted from scalogram input 
images with successive convolution and pooling layers in CNN. At this stage, the established model 
and CNN are mentioned.

A convolution set (convolution-pooling) is made that separates and defines various features of 
the scalogram image and this process is called feature extraction.

Convolutional Layer
The feature extraction phase similar to the stimulation process in cells of the visual cortex. This phase 
consists of a combination of periodic layers of evolving neurons and descending pattern neurons. As 
the data progresses through this phase, the levels of the layers decrease, making them less sensitive 
to input changes, but at the same time increasing the complexity of the resources. A building block 
consists of one or more:

•	 Convolutional layer (CONV) that processes data from a receiving field.
•	 Correction layer (ReLU), often called “ReLU” with reference to the activation function (rectified 

linear unit);
•	 Pooling layer (POOL) is the compression of information by reduction of the dimensions of the 

intermediate image (often by subsampling). The typical architecture of CNN is shown in figure 5.

With deep learning approach input is normally represented as vector of different dimension (tensor) 
and the kernel is often represented as multi dimension vectors. As an example, if input is image I  then 
kernel will be 2-dimension structure (Dössel et al., 2021) which is denoted as K , in equation (2):

S i j I K i j I i m j n K m n
m n

, * , , ,( ) = ( )( ) = − −( ) ( )∑∑ 	 (2)

Figure 5. Architecture for deep convolutional neural network (Zhao et al., 2020)
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Morphological Features Extraction
Morphological features carry information about the shape of both the entire ECG as a whole and 
the P-QRS-T intervals that form it. In order to complete the ECG signal segmentation procedure, 
detection of all its other characteristic waves (P, Q, S, and T) is therefore necessary.

Segmentation of QRS Complexes
After the exact detection of the positions of the QRS complexes, we seek to identify all its elementary 
waves (the Q wave and the S wave) and also its start and end points (QRS_on and QRS_off). The 
extraction of its characteristic points is very complicated because of the wide variation in the 
morphology of QRS complexes.

In this work, the segmentation of QRS complexes relies on the determination of the slope of 
the filtered signal using the three-point derivation method, expressed in equation (3) (Goldberger 
et al., 2018):

′ ( ) ≈
+( )− −( )

f x
f x h f x h

h3
	 (3)

Where f  symbolizes the denoised signalthe time division is represented byh.�
Q Wave Detection: In order to extract the position of the Q peak, it is based on the fact that 

the maximum possible duration of the QRS complex is equal to 160 ms. In this case, we consider a 
window extending from the position point of the peak R to the left with 80 ms. Then, the Q wave is 
extracted by performing in this window the search for the first point verifying the sign inversion of 
the slope expressed in equation (4) (Yücelbaş et al., 2018):

′ ′( ) −( ) <f i f i* 1 0 	 (4)

S Wave Detection: The extraction of the S wave is carried out in such a way that the detection of 
the Q wave by considering a window of 80 ms in width. However, this time the window is positioned 
to the right of peak R.

Detection of characteristic points QRS_on and QRS_off: The start and end points of the QRS 
complexes correspond respectively to the points having a minimum value of the slope (almost zero) 
because the Q and S waves are low amplitude components. Therefore, the search for these two 
characteristic points (QRS_on and QRS_off) is carried out before the Q wave and after the S wave 
in a window of 40 ms. Figure 6 illustrates the location of the Q and S waves and the points marking 
the start and end of the QRS complexes for the ‘100’ record.

Figure 6. Representation of the characteristic points of the QRS complexes of the recording ‘100’
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Detection of P and T Waves
The positions of the P and T waves are looked for in the interval between two consecutive QRS 
complexes [QRS_off (j): QRS_on (j + 1)], where j indicates the current pulse rate. First, we divided 
this interval by 2/1. Then, the maximum position in the first field is subtracted as the position of the 
peak T and the position of the peak P is determined as the position of the maximum in the second field.

The results of the detection of all the characteristic waves of the recordings ‘101’ and ‘205’ are 
shown respectively in figure 7 and figure 8.

DT-CWT based Feature Extraction
The DT-CWT was proposed to represents an improvement of the DWT transform, as it provides 
information on the magnitude of the non-oscillating coefficients at points close to singularities, 
approximate invariance to signal displacement, less aliasing effect and greater directional selectivity. 
Furthermore, DT-CWT allows the signal to be perfectly reconstructed from its wavelet representation, 
has limited redundancy and still has linear phase (Wang et al., 2021).

Similar to sinusoidal Fourier basis functions, a complex wavelet function is defined in equation (5):

Ψ Ψ Ψ
c h g
t t j t( ) = ( )+ ( ) 	 (5)

Where Ψ
h
t( )  represents the real (even) part, j t

g
Ψ ( )  represents the imaginary (odd) part, and 

j = −1 . It is important to define the functions representing the real and imaginary part as a Hilbert 

Figure 7. Representation of all detected waves of record ‘101’

Figure 8. Representation of all detected waves of record ‘205’
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pair ( ) (Ψh t( )  and Ψ
g
t( )must have a phase shift of 90° from each other) so that Ψ

c
t( )  is an 

analytical signal and present the characteristics of the Fourier transform.
The complex coefficient d s t d s t jd s t

c h g
, , ,( ) = ( )+ ( )  has magnitude defined in equation (6):

d s t d s t d s t
c h g

, , ,( ) = ( )



 + ( )





2 2
	 (6)

And phase defined in equation (7):

∠ ( ) = ( )
( )












d s t

d s t

d s tc

h

g

, arctan
,

,
	 (7)

A coefficient with a high magnitude value represents a region in the signal with some kind of 
singularity such as, for example, an abrupt transition of the measured values.

The DT-CWT implementation uses a dual tree representation, with two DWT transforms. The 
first DWT results in the real part of the complex transform and the second results in the imaginary 
part. The mother wavelet functions (Ψ

h
t( )  and Ψ

g
t( ) ) of each of the DWTs are designed together 

to ensure that one is approximately the Hilbert transform of the other, that is, Ψ Ψ
h g
t t( ) ≈ ( ) , and 

to ensure that the aliasing effect on a branch of the first tree (tree h ) is approximately canceled with 
the corresponding branch on the second tree (tree g ).

Figure 9 illustrates the decomposition scheme of a one-dimensional signal t  using the double 
tree structure of DT-CWT. Although the scheme corresponds to a one-dimensional signal, it can be 
generalized to higher dimensions.

Figure 9. Three-level DT-CWT decomposition scheme using dual tree representation for an input signal t  (Wang et al., 2021)
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The real filters h
*0

 and h
*0

 represent the first pair of quadrature filters and the real filters g
*0

 
and g

*0
 represent the second pair. Filters with index endings equal to 0 are low-pass filters, while 

filters with indexes ending in 1 represent high-pass filters (some of them are useful to the output of 
a low-pass filter from the previous level).

Statistical Feature Extraction by Principal Component 
Analysis (PCA) and Normalized Correlation
Principal Component Analysis
PCA is a linear combination of weights of the variables originally observed in the problem under 
analysis and that allows a better understanding of the observed data set and the reduction of the 
number of variables presented (Yücelbaş et al., 2018; Lastre-Domínguez et al., 2018).

However, the synthesis of how PCA is performed can be exemplified, according to the desired 
application in this work, as follows (Raghu & Sriraam, 2018):

•	 From an initial data matrix “X ” formed by “ p ” morphological descriptors obtained from “n ” 
ECG signals, as seen in equation (8):
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•	 The random vector “x ” is considered to represent the set of descriptors selected for analysis, as 
seen in equation (9):

�
x x x x

p
= …



1 2

, , , 	 (9)

•	 The covariance matrix, or correlation, is calculated for all descriptors;
•	 And the eigenvalues “λ ” and eigenvectors “a ” of “k ” principal components are obtained 

through mathematical development of the calculated matrix, whether it is covariance or 
correlation, as seen in equation (10):
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•	 The eigenvectors are vectors with the weights of the linear combinations used to calculate the 
value of the principal components “y ” and the eigenvalues are the value of the variance of each 
principal component, that is, they indicate the representativeness of each calculated component, 
as seen in equation (11):

y a x a x a x a x

y a x a x a x a x
p p

p p

1 1 11 1 12 2 1

2 2 21 1 22 2 2

= = + +…+
= = + +…+

 ... ���         �������������������������������

y a x a x a
k k k k
= = +

1 1 22 2
x a x

kp p
+…+

	 (11)

Therefore, for the example used, after performing PCA on a given set of descriptors, a new set 
of descriptors is obtained, composed of “k ”elements. And these elements are the “k ”principal 
components, also called factors, whose eigenvalue “λ

k
” is the value of the variance presented by the 

factor “y
k

” and the sum of the eigenvalues,
i

k

i
=
∑
0

λ , is used to indicate the representativeness of the 

obtained set.

Normalized Correlation
It is a method for measuring the similarity between two signals or images. In most applications, these 
signals can still be considered very similar if the difference or ratio between the signals is constant. 
The purpose of normalization is to eliminate the effect of signals whose difference or ratio is constant, 
on the correlation value of these differences (Jha & Kolekar, 2020).

Normalized correlation can be defined as in equation (12).

NC
W i j W i j
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= =
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∑ ∑
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1 1
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1 2

1 2
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2

∑ ∑ =
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
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M
W i j,
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Here, W  is the original signal, ′W  is the noisysignal, and M
1

, M
2

 is the size of the original and 
noisysignals respectively. The value of the normalized correlation (NC) ranges between 0 and 1 and 
is calculated using Equation (12).

Feature Fusion using Neighborhood Component Analysis (NCA)
The (NCA) is a technique used to reduce the dimensionality of data in machine learning. Let
T x y x y x y

i i N N
= ( ) … ( ) … ( ){ }1 1

, , , , , , ,  be a training set, where x
i
 is an observation containing d  

features, y C
i
∈ …{ }1, ,  the corresponding class and N  the number of observations.In this formalism, 

the objective is to determine a vector w  containing weight factors that express the statistical relevance 
of each feature, in order to select a subset of features that optimizes the classification performance 
using leave-one-out validation (Lastre-Domínguez et al., 2018; Raghu & Sriraam, 2018).

NCA makes use of the following metric, which is a weighted distance between two observations 
x
i
 and x

j
, as seen in equation (42):

D x x w x x
w i j

l

d

l il jl
,( ) = −

=
∑

1

2 	 (13)

Where w
l
 is the weight associated with the l th feature. The classification performance is given by 

equation (14):

ζ w
N

p
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i

i
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1 1 	 (14)
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Where, K  is a kernel function.
In order to effectively select features and avoid data overfitting, a regularization term λ  is 

included in the following equation (15).

ζ λw y p w
i j

ij ij
l

d

l( ) = −∑∑ ∑
=1

2 	 (15)

As this function is differentiable, the derivative with respect to w
l
 can be computed to obtain 

equation (16):
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The discretization of the previous equation leads to an iterative algorithm that allows obtaining 
a vector containing weight factors for each feature and thus selecting features.

Classification by Support Vector Machines (SVM)
The SVM comes under the category of linear classifiers. A binary classification problem can be 
formalized as follows: given a set of points x y

i i
,( ) , i l= …1, ,  where x R

i
dT  are feature vectors and 

y
i
T −{ }1 1,  are classes, build a rule that correctly assigns a new point x to one of the classes. A binary 

classifier is then an application of the type: f x Rd( ) → −{ }: ,1 1 . As seen in equation (17), a classifier 
is linear if:

f x w b w x b; , ,( ) = + 	 (17)

Where, w  and b  are classifier parameters and ,  designates the inner product of two vectors if 

there is a linear classifier such that: y f x
i j( ) > 0 , for all i l= …1, , .

Linear classifiers have their genesis in the perceptron algorithm. This algorithm starts by predicting 
the classes of each observation. If at least one of the predictions fails the parameters w  and b  of the 
hyperplane are readjusted, that is, they are shifted towards the point (observation) where the error 
occurred. The speed with which these parameters are shifted is dependent on another parameter called 
the learning rate, a parameter that increases significantly with the number of iterations until there is 
convergence (Jha & Kolekar, 2020).

The perceptron is a graph with weighted nodes and interconnections, as in a network of neurons. 
There are then two layers of nodes: an input layer and an output layer. The input layer has a node for 
each feature and an additional node equal to 1. The output layer consists of a single node, and each 
node of the inner layer is connected to the outer layer (Jha & Kolekar, 2020).

The motto of SVMs resides in Novikov’s Theorem. Before stating this theorem, it is important 
to define the concept of margin. Consider a hyperplane w x b* *, + ,

w* = 1
. If the condition 

y w x b
i

* *, +( ) ≥ γ  is satisfied for all points x y
i i
,( )  in a training set S , the hyperplane is said to 

be separable with margin γ . Any separable hyperplane can be converted to the form: y w x b, +( )≥ 1 . 
So doing w w w* = / andb b b* /=  a separable hyperplane with margin y w= 1/  is obtained.

We are in a position to state Novikov’s Theorem. Let S , S l= be a training set and let 

R x
i

= max . Suppose there is a hyperplane w b,( )  such that y w x b
i i

, +( )≥ γ , for all i l= …1, , . 
then the maximum number of errors made by the perceptron algorithm in S  is at most given by 

2
2

R

γ











.

The probability of making a mistake is inversely proportional to the margin value. Therefore, in 
an SVM, the objective is to build a perceptron with the largest possible margin (in order to minimize 
the number of errors made), and that still manages to separate the points of the training set. This 
translates into the following optimization problem, as seen in equation (18):

minimize w w suchthaty w x b forall i l
w b i i,

, , , , ,+( )≥ = …1 1 	 (18)
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Problems of this type can be solved using Lagrange multipliers, α
i
. In this case the Lagrangian 

function is given by, equation (19):

L w b w w y w x b
i

l

i i i
, , , ,α α( ) = − +( )−





=
∑

1

2
1

1

	 (19)

Differentiating in order α ,w  and b  gives equation (20):

w y x andb y
i

l

i i i
i

l

i i
= =

= =
∑ ∑

1 1

α α� � 	 (20)

Given the first condition in (19), an SVM can be defined, as seen in equation (21):

f x y x x b
i

l

i i i( ) = +
=
∑

1

α , 	 (21)

Until now, only linearly separable points have been considered. However, SVM can be 
reformulated to handle points that are not linearly separable, this is done by introducing slack variables 
ζ( )  that control how far a point is on the wrong side of the hyperplane. The optimization problem 

is then reformulated as follows (Daqrouq & Dobaie, 2016):

minimize w w c
w b

i

l

i,
,

1

2 1

+










=
∑ζ 	

Such that, it results in equation (22):

y w x b l
i i i i i

, , , ,+( )≥ − ≥ ∀ = …1 0 1ζ ζ 	 (22)

The C  parameter controls the trade-off between the margin value and the training errors.
The SVM (which is a linear classifier) can be made nonlinear (in the original space) by introducing 

a function or kernel into the classifier expression. Common kernels include polynomials and Gaussian 
functions. We then obtain a classifier of the type, as seen in equation (23) (Jha & Kolekar, 2020):

f x y K x x
i

l

i i i( ) = ( )
=
∑

1

α , 	 (23)
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RESULTS AND DISCUSSION

Evaluation Parameters
To evaluate the performance of the classification model, sensitivity, precision, specificity and accuracy 
were used as performance criteria. The success of the model is related to the number of correctly 
classified samples and incorrectly classified samples. According to the performance information 
obtained as a result of the test, these criteria are calculated according to the equations (24), (25), 
(26) and (27) below.

Accuracy
TP TN

TP TN FP FN
=

+
+ + +

	 (24)

Precision
TP

TP FP
=

+
	 (25)

Specificity
TN

TN FP
=

+
	 (26)

Sensitivity
TP

TP FN
=

+
	 (27)

Dataset
The dataset includes ECG data from three groups of subjects: subjects with abnormal heart rhythm 
(ARR) (96 recordings), congestive heart failure (CHF) (30 recordings), and subjects with normal sinus 
rhythm (NSR) (36 recordings). A total of, 162 ECG recordings were used three PhysioNet databases: 
MIT-BIH Arrhythmia Database (Goldberger et al., 2000), MIT-BIH Normal Sinus Rhythm Database 
(Vieau & Iaizzo, 2015), and The BIDMC Congestive Heart Failure Database (Pereira et al., 2020). 
Here the SVM classifier can distinguish between ARR, CHF, and NSR.

Simulation Results
The simulation results are performed on MATLAB 2019a. The process of training comprises of 
training signals and validation signals as shown in Table 1.

ECG signals can be used to analyze arrhythmias (ARR). It is a measure of heart rate and mood. 
Congestive heart failure (CHF) is a clinical condition in which the heart is unable to draw out blood 
at the rate necessary to contract tissues, or at the rate at which the heart fills with weight. NSR is 
used to denote a particular type of sinus musicality when all other ECG scores also fall within the 
commonly defined cut-points as shown in Figure 10 (ARR, CHF and NSR waveforms).

There are many CNN-based methods that have different architectural structures and are used in 
learning applications. The most common CNN architectures used in deep learning applications are 
AlexNet and GoogLeNet networks. Following are the results for AlexNet architecture.

The ECG signal training process is accomplished with 130 training signals and 32 validation 
signals as shown Figure 12 and 13.



International Journal of Software Innovation
Volume 11 • Issue 1

17

Table 1. Process of training consisting of training signals and validation signals

Epoch Iteration
Time 

Elapsed 
(hh:mm:ss)

Mini-
batch 

Accuracy

Validation 
Accuracy

Mini-
batch 
Loss

Validation 
Loss

Base 
Learning 

Rate

1 1 00:00:05 26.67% 47.22% 2.3848 1.2520 1.0000e-04

2 10 00:00:27 60% 63.89% 1.3482 0.9712 1.0000e-04

3 20 00:00:52 66.67% 72.22% 1.0305 0.6557 1.0000e-04

4 30 00:01:16 66.67% 80.56% 0.5623 0.4883 1.0000e-04

5 40 00:01:40 60% 83.33% 0.7282 0.4268 1.0000e-04

7 50 00:02:05 100% 77.78% 0.1406 0.4307 1.0000e-04

8 60 00:02:29 73.33% 83.33% 0.5192 0.3589 1.0000e-04

9 70 00:02:54 100% 88.89% 0.2178 0.2984 1.0000e-04

10 80 00:03:15 86.67% 91.67% 0.2329 0.2784 1.0000e-04

12 90 00:03:37 93.33% 91.67% 0.2039 0.2564 1.0000e-04

13 100 00:03:58 86.67% 94.44% 0.2575 0.2304 1.0000e-04

14 110 00:04:20 100% 97.22% 0.1126 0.2027 1.0000e-04

15 120 00:04:41 86.67% 97.22% 0.4469 0.1941 1.0000e-04

17 130 00:05:02 100% 97.22% 0.1477 0.1624 1.0000e-04

18 140 00:05:23 93.33% 97.22% 0.1482 0.1668 1.0000e-04

19 150 00:05:44 93.33% 94.44% 0.1889 0.2053 1.0000e-04

20 160 00:06:05 93.33% 97.22% 0.2463 0.1308 1.0000e-04

Figure 10. Input ECG signal with ARR, CHF and NSR
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Table 2 represents the confusion matrix of AlexNet CNN where three class output is defined as 
predicted class 1, predicted class 2 and predicted class 3 respectively. It can be observed that there 
are total 19 samples available in class1 but 18 predicted properly and 1 misclassified as class 2. Class 
3 gives 100% accuracy as all the classes are predicted correctly. Table 3 represents the True Positive, 
False Positive, False Negative and True Negative values.

Figure 11. ECG scalogram using CWT

Figure 12. AlexNet based deep learning network analysis result-1
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Table 4 shows the classification results for three different PhysioNet datasets trained using different 
sets of feature vectors. The AlexNet-based CNN system model achieves an efficiency of 90.63% for 
three-class classification using a support vector classifier, while the overall accuracy of the proposed 
approach using GoogLeNet’s (ARR, CHF and NSR) three-class CNN architecture is 97.22%. With 
the NCA-based feature set system model, the mean statistic F1-score, MCC, and kappa score were 
higher (88.34%, 82.68%, and 78.91%). A higher F-score indicates a better ranking in the classifier.

A comparison of the proposed design with the available techniques for the three reference datasets 
is presented in Table 5. The proposed model is a three-class hit classification structure estimated from 
a feature-based fusion dataset. This far outstripped previous work at the NCA, where the proposed 
setup achieved an accuracy of 90.63% and 97.22%, respectively.

Figure 13. AlexNet based deep learning network analysis result-2

Table 2. Confusion Matrix using AlexNet CNN

Classes Predict Class 1 Predict Class 2 Predict Class 3

Actual Class 1 18 2 0

Actual Class 2 1 4 0

Actual Class 3 0 0 7

Table 3. Multi-Class Confusion Matrix Output using AlexNet CNN

Classes True Positive False Positive False Negative True Negative

Actual Class 1 18 1 2 11

Actual Class 2 4 2 1 25

Actual Class 3 7 0 0 25
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CONCLUSION

In this article, a new ECG classification technique is developed based on combining NCA-based 
deep features, morphological features, DT-CWT-based features, and statistical features using PCA 
and normalized correlations. To avoid the overlap effect of various frequency components, CWT 
was initially utilized to convert the ECG heartbeat signal into the time-frequency domain. The CNN 
was then utilized to extract features from the scalogram consisting of time-frequency decomposition 
components, after which the methods mentioned above for other features were applied. This method 
can take full advantage of CNN in image recognition and CWT in multivariate signal processing. 
When tested against the PhysioNet database, the SVM classifier with AlexNet CNN showed overall 
performance of 5.25%, 90%, 94.75%, 88.34%, and 90.63% for false positive rate, sensitivity, specificity, 
F1-score, and accuracy obtained in any case. In addition, GoogleNet CNN with SVM classifier offers 
a maximum accuracy of 97.22%, which is significantly higher than previous studies. This approach 
can be utilized as a supplementary clinical diagnostic tool due to the higher accuracy of classification 
of ECG signal. In general, early diagnosis of cardiac arrhythmias is necessary as the main cause of 
cardiovascular diseases. After appropriate early diagnosis, effective treatment such as medications 
or vagal maneuvers can decrease arrhythmias and prevent cardiovascular disease. This performance 
can be improved using different biological signals, and classification performance can be compared 
with different CNN architectures. The quantity of data points used and the number of diseases will 

Table 4. Final Results using AlexNet CNN

Parameter Result

Accuracy 0.9063

Error 0.0938

Sensitivity 0.9000

Specificity 0.9475

Precision 0.8713

False Positive Rate 0.0525

F1-Score 0.8834

Matthews Correlation Coefficient 0.8268

Kappa 0.7891

Table 5. Comparison of result with previous research works

Reference No. Method used Class Accuracy 
performance

Daqrouq and Dobaie 
(2016)

Feature extraction using wavelet packet transform 
and classification by confirmation functions 2 (CHF,NSR) 92.60%

Nahak and Saha (2020) Feature fusion and classification with SVM 3 (ARR,CHF,NSR) 93.33%

Sandeep et al. (2019) Wavelet based feature extraction and 
classification using CNN 3 (ARR,CHF,NSR) 90.63%

Çınar and Tuncer (2021) hybrid CNN-SVM deep neural networks 3 (ARR,CHF,NSR) 96.77%

Proposed Method Using AlexNet CNN 3 (ARR,CHF,NSR) 90.63%

Proposed Method Using Google Net CNN 3 (ARR,CHF,NSR) 97.22%.
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be enhanced in future studies. Furthermore, the impact of this condition on the suggested hybrid 
CNN architecture will be investigated.
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