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ABSTRACT

With a high rate of morbidity and mortality, chronic kidney disease is a global health issue that also 
causes other diseases. Patients frequently overlook the condition because there aren’t any evident 
symptoms in the early stages of CKD. An efficient and effective Extreme gradient boosting method 
for the early diagnosis of kidney illness has been proposed in this paper to explore the capability of 
various machine learning algorithms. DenseNet can extract a variety of features such as vector features. 
After that feature extraction phase, the data are fed into the feature selection phase. The features are 
selected based upon the Improved Salp swarm Algorithm (ISSA). The proposed CKD classification 
method has been simulated in PYTHON. Utilizing the CKD dataset from the UCI machine learning 
resources, the dataset is then tested. Sensitivity, accuracy, and specificity are the performance metrics 
used for the proposed CKD classification approach. The results of the experiments demonstrate that 
the proposed approach outperforms the present state-of-the-art method in classifying CKD.

Keywords
Chronic Kidney Disease (CKD), CKD dataset, DenseNet, Improved Salp Swarm Algorithm (ISSA), Machine 
Learning, Classification, Outperform

Introduction

A serious death and illness problem is enforced by CKD, often known as CKD (Ammirati, 2020). It 
is one of the non-communicable diseases with one of the fastest expanding epidemiologies. CKD is 
a condition where the kidneys lose their ability to filter blood, allowing the body’s waste products 
to build up within and leading to other health issues (Henry & Lippi, 2020; Jankowski et al., 2021; 
Byrne & Targher, 2020). Because clean, pure blood aids in the improved functioning of the body’s 
organs, it is extremely vital to maintain healthy kidney function. Over many years, this harm develops 
(Portolés et al., 2020). Kidney function decreases as damage increases, which is bad for the body. 
In developing and underdeveloped nations, it is increasingly becoming a serious hazard. Diseases 
like diabetes and high blood pressure are the main causes of its onset (FIDELIO-DKD Investigators 
et al., 2021; Guzzi et al., 2019; Bidin et al., 2019). In addition to obesity, heart disease and a family 
history of CKD, other risk factors contribute to CKD.
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Testing may be the only way to determine whether the patient has the renal disease because, 
in its initial stages, CKD has no manifestations (Connaughton et al., 2019; Paik et al., 2022). Early 
identification of CKD in its initial phases can enable the patient to receive appropriate treatment 
and halt the development of ESRD (Zhuang et al., 2021). It is suggested that everyone with a risk 
factor for CKD, such as a family history of renal failure, high blood pressure, or diabetes, should be 
examined annually (Mihai et al., 2018). This illness is characterized by a gradual decline in renal 
function, which leads to a full loss of renal function in the end.

Early on, CKD does not manifest any overt symptoms. As a result, the disease might not be 
identified until the kidney has lost about 25% of its functionality (Kumar et al., 2022). Additionally, 
CKD affects the human body globally and has a high rate of morbidity and mortality. Cardiovascular 
disease may develop as a result (Han et al., 2020). A pathologic illness that progresses and cannot be 
reversed is CKD. Therefore, early detection and diagnosis of CKD are crucial for allowing patients 
to begin treatment and halt the disease’s progression (Chen et al., 2019).

Diabetes, high blood pressure, and cardiovascular disease (CVD) are risk factors for CKD 
patients. Patients with CKD experience side effects, particularly in the late stages, which weaken the 
immunological and nervous systems (Sharma, 2018; Siraj, 2019). Patients may be in advanced stages 
in developing nations, necessitating dialysis or kidney transplants. Glomerular filtration rate (GFR), 
a measure of kidney function, is used by medical professionals to identify renal illness. Age, blood 
test results, gender, and other patient-related characteristics are taken into account while calculating 
GFR. Doctors can divide CKD into five stages based on the GFR value (Wang et al., 2019).

Machine learning describes a computer program that evaluates and extrapolates task-related data 
to determine the traits of the associated pattern (Gunasundari et al., 2018). This technology is capable 
of making cost-effective and accurate diagnoses of diseases, making it a potentially useful tool for 
CKD diagnosis (Calderon-Margalit et al., 2018). With the advancement of information technology, 
it has evolved into a new kind of medical instrument and has a wide range of potential applications.

The following are the contributions of the proposed research:

•	 The preprocessing stage includes checking for uneven data and estimating missing values as well 
as removing noise like outliers and normalization.

•	 Then the pre-processed data is given as the input into the DenseNet for feature extraction. In this 
process, the layers of DenseNet are utilized to extract the important features of the input data.

•	 The features are selected based on the Improved Salp swarm Algorithm.
•	 Then the selected features are passed into the classification phase. An extreme gradient boosting 

algorithm is used for classification. Whether the data is Ckd or not CKD.

The remaining portions of the paper are formatted as follows: The research on CKD classification 
will be covered in the part that follows. The suggested approach is explained in Section part 3. Portion 
4 discusses the evaluation criteria and categorization techniques used. The research’s findings are 
summarized in Part 5. In Part 6, comes to a close.

Literature Review

In this section, we review some existing Machine learning approaches for diagnoses of CKD.
Elhoseny et al. (2019) introduced DFS with the D-ACO algorithm for CKD. Before building the 

ACO-based classifier, the suggested intelligent system via DFS removes unnecessary or duplicate 
features. The effectiveness of the suggested algorithm is assessed utilizing a CKD dataset, and a 
comparison is also done with the other approaches. The suggested D-ACO algorithm exceeded the 
other approaches with increased categorization effectiveness in a number of ways when compared 
to the current approaches.
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Jerlin Rubini and Perumal (2020) presented MKSVM and FFOA for disease classification. That 
is used to pick the best features. For the goal of classifying medical data, the processed and chosen 
features from the dataset are sent to the presented approach. The provided approach produces improved 
accuracy when compared to current approaches.

Ma et al. (2020) introduced the HMANN for the earlier detection and characterization of chronic 
renal failure on the IoMT platform. The suggested HMANN is categorized as an MLP and SVM 
using a Back Propagation (BP) technique. The strategy that is being shown helps to segment the renal 
image and eliminates noise. The suggested HMANN approach for kidney segmentation provides high 
accuracy while greatly lowering the time to outline the contour.

Chen et al. (2020) introduced the AHDCNN for the identification of kidney disease. The numerous 
sub-types of lesions in kidney cancer are distinguished from CT scans using a deep learning algorithm. 
First, the acquired data will be examined, along with any missing values. Utilizing the learning and 
activation mechanisms effectively is the best method to prevent kidney disease. These advances in 
machine learning provide a promising framework for finding clever solutions that can show their 
predictive relevance outside the context of kidney disease.

Linear regression (LR) and neural networks were introduced by Abdelaziz et al. (2019). (NN). 
Critical factors that have an impact on CKD are identified using LR. NN is employed to forecast 
CKD. Out of the twenty-four parameters that have an impact on CKD, thirteen are crucial, according 
to the trial data, and a hybrid intelligent model has a 97.8% accuracy rate.

ANN and LR were recommended by Ahmed and Alshebly (2019) for the prediction of chronic 
renal disease. According to the experimental findings, the ANNs classifier performs better than the 
LR method. According to the elements that had the biggest influence on the data of patients with 
chronic renal illness, the variables creatinine and urea are the most significant and effective variables 
when applying the two approaches. Using FCM clustering, which is efficient in mining complicated 
data with fuzzy correlations among members, Kunwar et al. (2019) demonstrated analysis and 
identification of Chronic Kidney Disease.

Proposed Methodology

The proposed chronic kidney disease classification employing the Extreme gradient boosting algorithm 
is discussed in this section. The preprocessing processes are used to increase the classification 
efficiency even more. The raw data were passed through the preprocessing phase. Preprocessing tasks 
included checking for imbalanced data and approximating missing values as well as removing noise 
like outliers and normalization. Then the preprocessed raw data is fed into the feature extraction phase. 
The features can be extracted based on DenseNet. In this process, the layers of DenseNet are used to 
extract the important vector features of data. With the help of the Improved Salp swarm Algorithm, 
the features are selected, followed by classification is used. After the feature selection process, the 
Extreme gradient boosting algorithm is utilized to classify the CKD.

In our strategy, the work is processed based on four phases such as preprocessing, feature 
extraction, feature selection and classification. Figure 1 depicts the general structure of the proposed 
methodology.
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Preprocessing

The most crucial step in obtaining the required features and classification levels is preprocessing 
the data. The data’s quality must be good to provide efficient performances. The dataset needed to 
be cleaned up during preprocessing because it had outliers and noise. Estimating missing values, 
removing noise like outliers, normalizing, and verifying for imbalanced data were all parts of the 
preprocessing step. When patients are undergoing tests, it is possible for some measures to be missed, 
leading to missing numbers. 158 occurrences in the dataset were complete, whereas the rest instances 
had missing values.

Missing Values
The dataset comprised 158 cases that were fully finished, and the rest instances had missing values. 
The simplest way to deal with missing values is to remove the record, although this approach is 
problematic for small datasets. Instead of deleting records, we can apply algorithms to estimate the 
missing values. One the statistical measures, such as median, mean, and standard deviation, can be 
used to calculate the missing values for numerical features. But utilizing the mode technique, which 
substitutes the missing value with the most frequent value of the characteristics, it is possible to 
evaluate the missing values of nominal features.

Feature Extraction

A robust diagnostic model cannot be built since the vector characteristics must be extracted to exclude 
features that are irrelevant and unhelpful for prediction. The pre-processed data is then fed into the 
DenseNet as input so that features can be extracted. The vector features of the data are extracted in 
this step using the DenseNet layers. A feed-forward neural network like DenseNet ensures maximal 
information flow across layers by directly connecting each layer to all succeeding layers. The dense 
block, transition layer, GAP, and convolutional layer are the primary components of the DenseNet 
structure.

Every layer passes its feature maps to all succeeding layers and receives extra input from all 
earlier layers. Concatenation is used to merge the resulting feature maps from the previous layer with 
those from the current layers. Each layer of the network is connected to all of the successive layers, 

Figure 1. Architecture diagram of proposed Methodology
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and these networks are known as dense nets. Compared to conventional CNNs, this model requires 
fewer parameters. Additionally, it lessens the overfitting issue that smaller malware training sets have.

Dense Block
Considering the input data x0 that the suggested convolutional network processes. Every layer of the 
network, which consists of N layers, performs a nonlinear transformation called F

n
 (.). Assume layer 

n is made up of the feature maps from all layers of convolution that came before it. Cascaded feature 
maps from layers 0 to n − 1 from the input data are shownx x

n0 1
,...., - . As a result, this structure is 

connected to an N layer network via N (N + 1)/ 2 links. The nth layer’s output can be calculated using:

x F x x
n n n
= 



( )−0 1

,...., 	 (1)

while F
n

 (.) is the composites functional of Batch Normalization (BN)- Rectified Linear (ReLU) 
Units, x x

n0 1
,...., −





  is a fusion of feature maps generated from 0 to n − 1 layer, and xn is the present 

nth layer. ReLU, 3 × 3 convolutions, and BN are the subsequent processes in the transition layer 
(Conv). If the dimensions of the feature maps alter, the fusion procedure is not practical. The layers 
with various feature map sizes are consequently down sampled. Among two adjacent Dense Conv 
blocks, transition layers made up of 1× 1 Conv and 2 2 ×average pooling operations are provided. 
Seven by seven Conv blocks with a stride of two make up the first Conv layer.

BN is a widely accepted standard technique for achieving quick convergence and improved neural 
network classification capacity. The following output x̂

r
 can be provided for a short batch of data 

from B:

x
x

BN
r B

B

=
−

+

ˆ µ

σ ε2
	 (2)

x̂ x
r BN
= +γ β 	 (3)

Transition Layer
To speed up training and reduce the number of features, the transitional layer was used because 
dense connections enhanced network parameters. For every transitional layer in the tests, a 1×1 Conv 
layer for lowering the data size and a 2×2 average pooling were used. To guarantee the invariance of 
feature shift and scale, the input feature maps were divided into many, non-overlapping regions by 
the pooling layer, which then estimated the average value for each region.

As a result, the network processing was reduced while the important features were maintained, 
producing a more reliable model.

Gap Layer
We processed the feature maps with the GAP after combining dense blocks and transitional layers, 
and then we fed the processed feature maps into the next Softmax layer for categorization selections. 
Whenever GAP sets the window to the same dimensions as the feature map, the featured maps can 
be easily recognized as probability maps for categorization. This emphasizes the correlations among 
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feature maps and categories. The training parameters were effectively decreased by generating the 
corresponding feature vector by averaging every feature map.

Softmax Classifier
The localization of MI was made possible in the current work by the training of the Softmax classifier 

using the feature vectors generated by DenseNet. For the dataset x y i N y k
GAP

i i i( ) ( ) ( )∈ ∈ −( ){ }, ; ... , ,...1 0 1  

where x(i) GAP is the ith feature vectors of the input sample The categorization probability for every 
sample is provided by:
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while p y j x
i

GAP

i
( | ; )( ) ( )= q  denotes the likelihood that the GAP falls under the jth category, which is 

identical to the likelihood that the GAP falls under one of the several types of MI. The following 
provides the Softmax classification function:
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while θ is the parameter and 
j

k X
e j
T
GAP
i

=∑
( )

1

q  is the operation of the likelihood normalization.

Feature Selection

The choice of features will have a big impact on how accurate and complex the classifier is during 
judgment. Feature selection is used to increase insight into the profusion of data while also shortening 
the computing time and complexity of the prediction model. The improved salp swarm method 
provides a basis for feature selection.

Salp Swarm Algorithm (SSA)
The SSA is a heuristic algorithm that draws inspiration from the foraging behavior of slap swarms. In 
SSA, populations are split into two groups: leaders and followers. A leader location upgrade operator 
and a follower location upgrade operator make up the majority of SSA. The operator for updating 
the leader position is:

x
x c u l c l c

x c u l c l c
t best

t
b b b

best
t

b b b
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1 1 2 3

1 2 3
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while ub and lb stand for the search space’s upper and lower limits, correspondingly, c2 and c3 stand 
for two random values, and tmax signifies the number of iterations, xt best represents the location 
belonging to the greatest food source at the t-th iteration. One way to express the follower’s position 
upgrade operator is as follows:

x x x i
i
t

i
t

i
t+
−= +( ) ≥( )1
1

1

2
2, 	 (8)

An Improved Slap Swarm Algorithm (ISSA)
Despite SSA having demonstrated its ability to be applied to real-world issues, the algorithm also 
has the drawback of being susceptible to local optimal solutions. In light of this, this work develops 
an ISSA by combining the chaotic local search (CLS) and Levy’s flight (LF) strategies. The LF 
technique can be applied following Levi’s distribution, which is usually assumed:

L Z Z( ) ≈ < ≤− −1 0 2b b, 	 (9)
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z being the step size; β is the Levy index capable of regulating stability. A N≈ ( )0 2,s  Denotes a 
sample taken from a Gaussian distribution, and its average and standard deviation are both zero and 
δ2, accordingly. Г (·) includes the Gamma function.

The CLS strategy is best described as:

v v v k n v v
k k k+ = −( ) = ∈ ( ) ≠( )1 1 1

4 1 1 2 0 1 0 25 0 5 0 75, , ,... , , . , . , . 	 (12)
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where n is the number of steps in a random local search. The shrinking speed is managed by m. To 
obtain ISSA, integrate the LF and CLS strategies into the SSA. The following stages can be used to 
divide up ISSA implementation:

Phase 1: Initialization of the population:

x u l rand l
b b b

1 = −( ) + 	

a random number, rand, is used.

Phase 2: Updating the positions of the leading salp and follower salp using Equations (11) and (13).
Phase 3: Adopting the LF approach.

Upgrade the population using Equations (11) through (13), and then record the ideal response.

Phase 4: CLS approach implementation. A chaotic local search will be conducted by the phase three-
acquired optimal solution. There are 8000 steps in a CLS. It should be emphasized that once a 
superior outcome is discovered using the CLS technique, CLS is terminated.

Phase 5: Ending the process. We additionally take into account two termination conditions to help 
ISSA converge to the global optimum:

Criteria 1: Completing the maximum number of iterations.
Criteria 2: Ensuring that the algorithm’s objective function value changes by less than 10-6 after 

50 iterations.

Classification

The final step of a model, categorization, is to predict the label. The most popular machine learning 
approach, the Extreme gradient boosting algorithm, is summarized in this portion.

Extreme Gradient Boosting Algorithm
The distributed gradient boosting algorithm known as XGBoost, sometimes known as extreme gradient 
boosting, has been developed to be very effective, adaptable, and portable. A group of classification 
or regression trees make up the decision tree ensemble-based XGBoost. It was established as an 
improved version of the gradient boosting technique and is a supervised machine learning approach 
based on ensemble learning. By aggregating the predictions of weak learners, the XGBoost algorithm 
uses additive approaches to create an effective learning approach. The XGBoost classifier avoids the 
overfitting issue and maximizes the use of computational resources in addition to its speed and great 
performance. These benefits come from the objective functions being made simpler so that they may 
be executed in parallel during the training phase and allow for the integration of regularization and 
predictive terms.

The first learner is fitted to the complete data according to the steps of the XGBoost algorithm. 
The second learner is then adjusted to include the previous learner’s mistakes. Until a termination 
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criterion is fulfilled, this process is continued, and when it is, the sum of all learners’ predictions 
becomes the final prediction model. Equation (6) depicts the prediction procedure at the next stage:

f f x f f x
i

t

n

t

n i i

t

t i

( )
−

−( )= ( ) = + ( )∑ 1

1 	 (15)

To begin with, the objective function is indicated as:
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i

n

i i

t

i

t

i
= ( )+=

( )
=∑ ∑1 1

, ( )ˆ Ω 	 (16)

This equation has three variables: n, l, and Ω, which stand for the number of trees, training loss 
function, and regularization term, respectively. The XGBoost increases the loss function to the second 
order and gets rid of all constants to accomplish the goal that has been set for step t. As a result:
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According to the decision rules for a particular tree, Ij is the instance set divided into the j-th leaf 
node. The score value for a tree’s quality can be calculated using the formula (6). They also specified 
the point increase that results from splitting a leaf into two leaves:
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This equation is made up of the scores on the new left and right leaves, the original leaf’s score, 
and the additional leaf’s score after regularization. By scanning from left to right to obtain all feasible 
split options, we can quickly choose the best split by the highest Gain value:

α δ σµf T( ) = +
1

2
2 	 (20)

while σ is the regularization parameter, μ is the leaf node score vector, and δ is the minimal loss 
required to further divide the leaf node.
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Result and Discussion

To illustrate the conclusion, using a benchmark dataset to compare the proposed method to existing 
methodologies in terms of sensitivity, specificity, precision and accuracy. The materials and metrics 
that were employed to achieve the intended results will be described in this paper. The proposed 
experiment’s performance was evaluated in PYTHON using medical database. On an Anaconda 
navigator-equipped Windows 10 computer with 16 GB RAM and an Intel Ci7 64-bit processor, we 
trained and validate the proposed model. Tensor flow is used as the backend for all simulations, 
which are run on Keras.

Dataset Description

The UCI, which was gathered from hospitals and donated, is where the CKD data set that was used 
in this work was found. 400 samples make up the data collection. Every sample in this data set has 
24 predictive factors, including a categorical response variable. Every class has two values: non-CKD 
and CKD (example with CKD). 250 of the 400 samples are classified as having CKD, while 150 
are classified as not having CKD. It is crucial to note that the data contains a significant number of 
missing values. Table 1 contains a list of each variable’s specifics.

Table 1. Dataset description

Variables Explanation Scale Class Missing Rate

Age Age Age in years Num 2.25%

su Serum creatinine In mgs/dI Num 4.25%

bp Blood pressure In mm/Hg Num 3%

sod Sodium In mEq/L Num 21.75%

al Albumin (0,1,2,3,4,5) NOM 11.5%

pcv Packet cell volume - Num 17.75%

pcc Pus cell clumps (present, not present) NOM 1%

rbcc Red blood cell count In millions/cmm Num 32.75%

ba Bacteria (present, not present) NOM 1%

sg Specific Gravity (1.005,1.010, 1.015, 
1.020, 1.025)

NOM 11.75%

bu Blood urea In mgs/dI Num 4.75%

pc Pus cell (normal, abnormal) NOM 16.25%

pot Potassium In mEq/L Num 22%

rbc Red Blood Cells (normal, abnormal) NOM 38%

hemo Hemoglobin In gms Num 13%

su Sugar (0,1,2,3,4,5) NOM 12.25%

htn Hypertension (yes, no) NOM 0.5%

wbcc White blood cell count In cells/cumm Num 26.5%

Table 1 contniued on next page
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Metrics for Evaluation of the Model

This stage involved assessing each technique’s effectiveness to decide which could produce the best 
outcomes. Each approach used in this study was examined using the metrics of sensitivity, accuracy, 
and specificity from the confusion matrix. The True Positive is represented as TP, False Positive 
is represented as FP, True Negative is denoted as TN, and False Negative entries in the confusion 
matrix (FN).

Accuracy
The maximum number of positive outcomes divided by the maximum number of instances is used 
to calculate a model’s accuracy:

Accuracy
TN TP

FP TN TP FN
=

+
+ + +

	 (21)

Precision
By evaluating the actual positive effects of the projected ones, checks the model’s accuracy. The ratio 
of accurately predicted positive items to all predicted things is:

Prescision
TP

TP FP
=

+
	 (22)

Recall
Generated is the total number of actual positive values that the model noted and categorized as positive:

Recall
TP

TP FN
=

+
	 (23)

Variables Explanation Scale Class Missing Rate

dm Diabetes mellitus (yes, no) NOM 0.5%

cad Coronary artery disease (yes, no) Class 0.5%

ane Anemia (yes, no) Num 0.25%

pe Pedal edema (yes, no) Num 0.25%

class Class (ckd, not CKD) Num 0%

appet appet (good, poor) Num 0.25%

bgr Blood glucose random In mgs/dI Num 11%

Table 1 continued
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F1-Score
Precision and recall are two functions of the F1 score. A precise-recall balance is required, in which 
case the balance is determined:

F
precision Recall

Precision Recall
1 2= ×

×
+

	 (24)

Evaluation Performances
The performances can be compared with the existing approaches like SVM, KNN, PNN and decision 
tree.

Performance evaluation comparison with existing approaches is shown in table 2. Comparison 
can be made with the approaches like SVM, decision tree, KNN. When differentiating the accuracy 
SVM gain 96.67%, the Decision tree yield 99.17%, KNN gains 98.33% and our proposed approach 
yield 99.29%. Accuracy performance over proposed with existing approaches is represented in figure 2.

Table 2. Performance evaluation comparison with existing approaches

Classifiers SVM Decision Tree KNN Proposed

Accuracy 96.67% 99.17% 98.33% 99.29%

Precision 92% 98.79% 98.65% 99.17%

Recall 94.74% 98.68% 97.37% 98.97%

F1-Score 97.30% 99.34% 98.67% 99.65%

Figure 2. Accuracy performance over proposed with existing approaches
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When differentiating the precision seen in figure 3, SVM gain 92%, the Decision tree yield 
98.79%, KNN gains 98.65% and our proposed approach yield 99.17%. Precision performance over 
proposed with existing approaches.

When differentiating the precision in figure 4, SVM gain 94.74%, Decision tree yields 98%, 
KNN gains 97.37% and our proposed approach yield 98.97%. Recall performance over proposed 
with existing approaches.

Figure 3. Precision performance over proposed with existing approaches

Figure 4. Recall performance over proposed with existing approaches

Figure 5. F1-Score performance over proposed with existing approaches
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When differentiating the F1-score in figure 5, SVM gain 97.3%, Decision tree yields 99%, KNN 
gain 98.67% and our proposed approach yield 99.65%. F1-Score performance over proposed with 
existing approaches.

Table 3 displays the estimated values that were derived for four dataset records. These indicators 
can be used to forecast how effectively a model for classifying medical data will be generated. 
Four datasets accuracy percentages are 96.03%, 93.19%, 95.12%, and 99.16%. The four datasets 
sensitivity values are 98.7%, 91.48%, 97.6%, and 98.96%. 92.80%, 96.22%, 94.78%, and 98.37% are 
the specificity values for the four datasets. Figure 6 shows the performance of the suggested technique 
with different datasets.

Figure 6. Performance of the suggested technique with different datasets

Figure 7. Training and Validation Accuracy

Table 3. Performance of the suggested technique with different datasets

Name of the dataset Accuracy (%) Sensitivity (%) Specificity (%)

Cleveland data 96.03 98.7 92.80

Hungarian data 93.19 91.48 96.22

Switzerland data 95.12 97.6 94.78

Proposed dataset 99.16 98.96 98.37
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When comparing training and validation accuracy (table 4) with the existing approaches our 
proposed approach yield a greater accuracy which is depicted in figure 7.

Performance Evaluation of Accuracy is represented in figure 8. The Overall performances can be 
compared with the existing approaches like SVM, RBF and PNN. 60.7% of accuracy in SVM, 87% 
of accuracy in RBF, 96.7% of accuracy in PNN and the proposed approach yield a greater solution 
which is 99.06%. Performance Evaluation of Execution time is shown in figure 9.

Table 4. Accuracy and Execution Time comparison with existing approaches

Approaches Accuracy Execution Time

SVM 60.7% 0:00:40

RBF 87% 0:00:60

PNN 96.7% 0:00:22

Proposed 99.06% 0:00:11

Figure 8. Performance Evaluation of Accuracy

Figure 9. Performance Evaluation of Execution time
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Conclusion

The Extreme gradient boosting algorithm is described in this research for the classification of 
chronic kidney disease (CKD). On four scale datasets—the Cleveland dataset, the Hungarian dataset, 
the Switzerland dataset, and the CKD dataset—the anticipated work’s outcome was evaluated by 
sensitivity, specificity, and accuracy. When differentiated from the existing RBF, PNN, and SVM, 
our proposed CKD categorization approach obtained the highest classification performance and also 
acquires maximum sensitivity and specificity. The suggested method thus achieves the kidney chronic 
dataset’s maximum classification accuracy value of 99.06 percent. In future research projects, the 
clustering technique will be employed to increase classification accuracy and decrease instances of 
the wrong categorization.
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