
DOI: 10.4018/IJeC.315777

International Journal of e-Collaboration
Volume 19 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Addressing Noise and Class Imbalance
Problems in Heterogeneous Cross-
Project Defect Prediction:
An Empirical Study
Rohit Vashisht, Jamia Millia Islamia, New Delhi, India & KIET Group of Institutions, Delhi-NCR, Ghaziabad, India*

Syed Afzal Murtaza Rizvi, Jamia Millia Islamia, India

ABSTRACT

When a software project either lacks adequate historical data to build a defect prediction (DP) model
or is in the initial phases of development, the DP model based on related source project’s defect data
might be used. This kind of SDP is categorized as heterogeneous cross-project defect prediction
(HCPDP). According to a comprehensive literature review, no research has been done in the field
of CPDP to deal with noise and class imbalance problem (CIP) at the same time. In this paper, the
impact of noise and imbalanced data on the efficiency of the HCPDP and with-in project defect
prediction (WPDP) model is examined empirically and conceptually using four different classification
algorithms. In addition, CIP is handled using a novel technique known as chunk balancing algorithm
(CBA). Ten prediction combinations from three open-source projects are used in the experimental
investigation. The findings show that noise in an imbalanced dataset has a significant impact on
defect prediction accuracy.

KEywoRDS
Classification, Cross-Project, Defect, Heterogeneous, Imbalance, Noise, Regression, With-In

INTRoDUCTIoN

Software has become an essential part of everyone’s daily life in today’s digital era. Even a minor flaw
or malfunction in this software might result in financial or even life-threatening losses. Inconsistencies,
ambiguities or misinterpretation of the specifications, carelessness or negligence in writing code,
insufficient testing, unsuitable or unanticipated use of the software, or other unforeseen issues can
all cause software errors. Software testing should be done at the proper time in the early stages of
Software Development Life Cycle (SDLC) in order to reduce overall software development cost.
The SDLC software testing phase, on the other hand, accounts for 60% of the total cost of software
development. As a result, it’s vital to do testing on the appropriate modules at the appropriate time.

Software Defect Prediction (SDP) can be broadly split into two classes, according to the state
of the art: Within Project Defect Prediction (WPDP) and Cross Project Defect Prediction (CPDP).
The available defect dataset is split into two parts in WPDP in order to build the DP model in such
a way that one half of the dataset (referred to as labeled observations) is used to train the DP model
and the other portion is used to validate the DP model, as illustrated in Figure 1.Finding labels that

International Journal of e-Collaboration
Volume 19 • Issue 1

2

are either faulty or non-faulty for unidentifiable instances in the target dataset is how the DP model
is tested (Ambros et al., 2012).

CPDP is a type of SDP in which software projects that lack the required local defect data can
develop an accurate and effective DP model using data from other projects. CPDP can also be divided
into two subcategories: Homogeneous CPDP (HoCPDP) and Heterogeneous CPDP (HCPDP).
HoCPDP collects common software measures/features from both the source (whose defect data is
used to train the SDP model) and the target (for which the SDP model is created) applications (He et
al., 2014). When using HCPDP, however, there are no uniform metrics between the prediction pair
datasets. Uniform features between two applications can be determined by evaluating the coefficient of
correlation between all possible software feature combinations. In the case of HCPDP, combinations
of feature pairs with a similar distribution in their values are employed as common features between
source and target datasets in order to forecast project-wide problems. As shown in Figure 2, correlated
feature pairs for the HCPDP category include (A, Q), (B, P), and (D, S). Figure 2 provides more
details on both CPDP groups.

Figure 1. With-In project defect prediction

International Journal of e-Collaboration
Volume 19 • Issue 1

3

The change-log documents of software configuration management may be used in SDP
models, as the change-log does indeed report the modules that change when defects are recognized
and corrected. In defect datasets, there are two key limitations that might contribute to poor SDP
model prediction performance. Firstly, due to a number of factors, the linkages between logs and
bug reports may be unreliable, resulting in mislabeled data (Kurt et al., 1999). As a result, it’s very
likely that an SDP model is operating with noisy data and producing incorrect findings. Secondly,
in a binary classification problem, where the cardinality of instances for one kind of class is very
low compared to the other, the model developed from such data produces skewed and biased results
in favor of the majority class. In training datasets, there are a variety of strategies for dealing with
CIP. There are two strategies to equalize the number of cases in the majority and minority classes
if data resampling techniques (Marques et al., 2013) are used to combat CIP. However, resampling
techniques have drawbacks that will be explored in the later section. To overcome the drawbacks of
sampling strategies, a novel technique called Chunk Balancing Algorithm (CBA) is utilized in this
paper to induce Class Imbalance Learning (CIL) (Vashisht & Rizvi, 2021).

According to a thorough review of the literature, no research has been done to address both noise
and CIP in the context of CPDP. The main objective of the proposed research study is to evaluate
the efficacy of the HCPDP model with varied levels of noise and imbalanced datasets. The primary
contributions of the paper are as follows: -

RQ1. To compare the prediction performance of traditional method of SDP i.e., WPDP at various
levels of noise with or without handling of CIP.

Figure 2. Categories of cross project defect prediction

International Journal of e-Collaboration
Volume 19 • Issue 1

4

RQ2. To compare the prediction performance of HCPDP at various levels of noise with or without
handling of CIP.

RQ3. To determine the maximum level of noise that each prediction pair can tolerate under both SDP
categories (HCPDP & WPDP).

RQ4. Which classification method outperforms the rest of the algorithms in use?

The proposed research study is organized as follows: - section B provides a detailed literature
survey on CPDP, section C describes the four-phase HCPDP model, three phase WPDP model and
the CBA approach used in the proposed research study; section D summarizes the datasets used for
analysis of the proposed work and the performance parameters used to evaluate the experimental
results. The experimental set up and results are discussed in section E & F respectively and the final
conclusions are reported in section G.

STATE oF THE ART

Melo et al. (2002) reported the first recognized study in CPDP. In two Java-based frameworks, Xpose
and Jwriter, they established the MARS (Multivariate Adaptive Regression Spline) paradigm for
defect detection and data design. They forecast the classes in Jwriter using their tendency for fault.
They achieved this by training a model on the Xpose dataset. They evaluated MARS’ efficiency to
that of Linear Regression (LR) and determined that MARS beats LR and is considerably cheaper.

Menzies et al. (2009) used data from ten projects from two sources. They remove noisy, repetitive,
and irrelevant data from the data and train the model with this unblended data for successful defect
prediction. On data from ten projects, the tests were conducted using the Nearest Neighbor (NN)
approach. The results revealed that the tests were effective at predicting project faults. Meanwhile,
the CPDP job was unable to outperform the project defect prediction task in these studies.

Camargo et al. (2009) employed log transformation for the first time in the same year to detect
related instances in training and analyzing project data in order to remove project-based data instances.
In the same year, Menzies et al. (2009) proposed classifying defect prediction on Internet Explorer
and Mozilla Firefox as training and testing initiatives. They employed the coding model and process
parameters to complete the classification job. They trained the suggested DP model using Mozilla
Firefox defect data, which was subsequently utilized to forecast problems in Internet Explorer. When
the suggested model was utilized as a training project and Mozilla Firefox was employed as a testing
project, these studies demonstrated that the proposed model outperformed.

Menzies et al. (2011) claimed that relevance varies depending on how it is interpreted. They
claimed that the meaning of data varies based on how it is interpreted, and that data relevance can be
contradictory depending on how it is interpreted. Data that appears significant when seen worldwide
can be useless when viewed locally. They backed up their ideas with studies, concluding that local
behaviour outperformed global behavior and that condition-based laws should take precedence over
other considerations.

Bellenburg et al. (2012) expanded to Menzies et al. (2011) arguments by proving that while
local models were better for a specific dataset, global models were better for generality. Rahman et
al. (2012) did research in the same year to show that performance metrics like F-score, accuracy, and
recall are insufficient for quality assurance when defect prediction is made using multiple models.
According to them, AUC produces equivalent results in WPDP models. To overcome the drawbacks
of the single-objective model (Rahman et al., 2012), Canfora et al. (2013) proposed a multi-objective
strategy. To practise the Logistic Regression (LR) model, they employed a non-dominated sorted
Generic Algorithm (NSGA-II).

Gao et al. (2011) used 1398 projects from Google code and source forge to create a Universal
Defect Prediction (UDP) model. This model compares the metrics in the datasets of the training and
testing projects, and if at least 26 of them match, only predictions on the target project may be produced.

International Journal of e-Collaboration
Volume 19 • Issue 1

5

He et al. (2014) developed a novel metric based on instance characteristic vectors to overcome this
constraint. When comparing CPDP to feature disparity, they discovered negative consequences. Three
separate datasets were used to test 11 different projects.

To model faults, Dong et al. (2015) suggested utilizing Canonical Correlation Analysis (CCA).
They were the first to bring the concept of Heterogeneous Defect Prediction (HDP) to the attention
of the general audience. They eliminate the metrics disparity issue between the training and testing
project datasets by adding dummy metrics with null values. They put 14 projects to the test using
four different datasets.

Ni et al. (2017) developed FESCH, a unique strategy that outperformed TCA+ and WPDP in
most circumstances while also providing state-of-the-art results for the baseline methodologies used.
FeSCH’s success was also self-sustaining and independent of the classifiers utilized, according to
the data.

Li et al. (2017) examined the four filtration procedures for defect data in the same year. According
to them, the fault data filtration method adopted has a big impact on the model’s capacity to anticipate
problems. Four different filtering approaches were compared: Local Cluster based Filter (LCBF),
Data Characteristic based Filter (DCBF), Target project data Guided Filter (TGF), Source project data
Guided Filter (SGF), and Target project data Guided Filter (TGF) (LCBF). They also added a new
filter, the Hierarchical Selection Dependent Filter (HSDF), to address the scalability issues with the
other four filters when working with large datasets. Existing filtering strategies were outperformed
by the suggested filtering strategy.

After gathering similar data from prior versions of the same system, Lee and Felix (2020) focused
on method-level (ML) defect estimation using regression models in a recent software release. The
authors employed three performance assessment factors to implement defects that demonstrate a
substantial association with ML defects, such as defect density, defect velocity, and time. The proposed
study and evaluation of pre-to-post system data pre-processing classifiers and entropy values in average
output datasets was also made easier to the proposed effort. With a 93 percent connection, defect
velocity demonstrated the strongest correlation with the count of ML faults of all three components.

Deep learning methods were suggested by Majd et al. (2020) for forecasting Statement Class
Defects (SCD) in the same year. By specifying regions or modules that are more prone to errors,
the authors of this research hoped to alleviate the burden on software engineers. The authors ran
trials on 1,19,989 C/C++ programs using Code4Bench’s Broad Short-Term Memory (BSTM) deep
learning model. The SCD model was put to the test for anticipating faults in unknown data (i.e., new
statements), and the authors discovered that it worked well, with high memory, precision, and accuracy.

Grassmann Manifold Optimal Transfer Defect Prediction (GMOTDP) is a novel work in the
subject of HCPDP that was presented in the year 2020. Jiang et al. (2020) proposed a three-phase
HDP model that included a Mahalanobis distance-based Class Imbalance Learning (CIL) framework
for dealing with Class Imbalance Problem (CIP) in the source dataset, as well as a CART-based
ensemble learning methodology for finding the best subset of the source dataset for metric matching.
The authors examined nine projects from three public domain software defect repositories to four
recognized advanced methodologies to see if the proposed approach in this paper was feasible. In
terms of AUC, the results of the experiments suggest that the proposed strategy is more reliable.

Diwaker et al. (2019) introduced a novel model for estimating the reliability of component-based
software (CBS) utilizing series - parallel reliability theories, and then tested the developed component-
based software reliability concept using two soft computing techniques: Fuzzy Logic and PSO. In
comparison to reliability prediction using fuzzy logic and PSO, the experimental findings show that
the suggested reliability model has a lower error rate in forecasting CBSE reliability.

Panwar et al. (2019) provides a new optimal mathematical model for predicting stakeholder
satisfaction levels (Q). The relationship implications of various quality attributes are used to validate
the real data in optimal models. It employs constraint equations. Q’s maximum and minimum values
are determined by the best model. Constraints are features of software quality.

International Journal of e-Collaboration
Volume 19 • Issue 1

6

Preprocessing, Deep Learning Model, and Duplicate Bug Report Detection and Classification
are the three elements of the proposed system by Kukkar et al. (2020). In addition, the suggested
technique uses a deep learning model based on Convolutional Neural Networks to extract significant
features. These relevant features are used to identify bug report features that are similar. As a result
of these identical traits, the bug reports are similar to computers.

PRoPoSED woRK

In this study, two models for each of the SDP categories are proposed. Firstly, WPDP, the conventional
DP technique, employs only one dataset, which is subsequently partitioned into two components, one
for training and one for testing, according to the partition strategy. Figure 3 depicts the three-phase
WPDP model in detail.

Figure 3. Three phase WPDP model

International Journal of e-Collaboration
Volume 19 • Issue 1

7

Preprocessing datasets is done in the initial phase to ensure that they are suitable to be used in
any machine learning model. It encompasses dealing with missing values, labeling the categorical
variable, and dealing with CIP if any of the training datasets contain it. The most significant challenge
to be addressed in this phase is CIP. Resampling is the data-based approach which tries to balance the
count of instances either by eliminating the majority class instances called Random Under Sampling
Technique (RUST) or by increasing the minority class instances called Random Over Sampling
Technique (ROST) (Vashisht & Rizvi, 2020).

However, both techniques have limitations, according to the literature survey done for the proposed
analysis (Vashisht & Rizvi, 2020). ROST method generates duplicate minority class observations,
which can over-generalize the minority class without considering the distribution of instances in the
majority class. RUST, on the other hand, can ignore certain useful or relevant observations in the
majority class without considering their importance in predicting the future outcome. As a result,
to handle the imbalance count of observations in datasets, a novel CIL approach called CBA is used
(Vashisht & Rizvi, 2021). In Figure 4, the CBA concept is well-explained.

The approach starts with an imbalanced input dataset D and has m software features. In the first
step, D is divided into two classes: Majority Class Bunch (Maj-CB) and Minority Class Bunch (Min-
CB), each with a and b number of observations respectively. Non-defective and defective classes are

Figure 4. Chunk balancing algorithm

International Journal of e-Collaboration
Volume 19 • Issue 1

8

represented by Maj_CB and Min_CB, respectively. CBA then calculates n and divides Maj-CB into
n chunks of nearly identical size as b. In the last step, each majority class chunk created in step 3 is
merged with Min_CB to produce n balanced chunks (C’1, C’2,....., C’n) with a size near to 2b. After
preprocessing step, second phase of WPDP modeling i.e., Feature Engineering (FE), redundant and
worthless features are eliminated from the original datasets, and the top n features are chosen using
an appropriate feature selection technique (Mwadulo et al., 2015). WPDP divides the given dataset
into training and validation datasets in a 7: 3 ratio, as per the state of the art. In the final phase, the
performance efficiency of WPDP model is evaluated on the basis of machine learning classification
algorithms.

While HoCPDP permits many similar project datasets to be used for training and testing the DP
model, HCPDP starts the DP process with a pair of datasets known as the source and the target datasets
as shown in Figure 5. In both datasets, each row and column represents an instance and a software
metric, respectively. The pre-processing phase and the FE phase of HCPDP model are implemented
in the same way as they are executed in WPDP model.

The third phase of heterogeneous prediction modeling, metric matching, is the most crucial and
challenging stage since the model’s training accuracy is mostly relied on the matched metric collection.
Modern methods such as the least square method, dispersion diagram method, and Spearman’s Rank
Correlation Method (SRCM) can be used to display the relationship between metrics. The model picks
those feature pairs whose Coefficient of Correlation Value (CCV) is greater than the chosen cutoff
level after evaluating CCV between different possible feature pairs of two projects. The set of features
generated after applying a cutoff filter is known as strongly correlated features. If this highly correlated
metric collection for a pair of datasets (S, T) is null, the source dataset S cannot be used to model
defects in a heterogeneous target dataset T. After discovering this highly correlated metric collection,
the model is trained using an appropriate machine learning method, and performance results are given
in the model’s final step. The output findings are summarized using various assessment measures.

Figure 5. Four phase HCPDP model

International Journal of e-Collaboration
Volume 19 • Issue 1

9

DATASETS USED & PERFoRMANCE MEASURES

Datasets Description
This section goes over the datasets that were used in the analysis. 13 benchmarked datasets from
the AEEEM, ReLink, and SOFTLAB repositories are included in the study. Object-oriented metrics
(OOs), past defect metrics, application metrics, and other metrics are included in the AEEEM
collection. The Understand tool produced 26 coding consequences findings, which were saved in
the ReLink repository. SOFTLAB also has patented data sets that include cyclomatic measurements
from Halstead and McCabe.

The Class Imbalance Ratio (CIR) is the ratio of defective to non-defective occurrences, or the
other way around. The greater the Imbalance Problem (IP) in a particular training sample, the lower
its CIR value. In the datasets ar1 and Apache, CIR values vary from 7.43 (highest IP) to 102.08
(lowest IP), respectively. In three repositories, however, there are 61, 26 and 29 software metrics,
respectively. The following is the source of all datasets:

https://github.com/bharlow058/AEEEM-and-other-SDP-datasets/tree/master/dataset

The statistics of CIR in all three software repositories are depicted in Figures 6, 7, and 8. CIR is
highest in datasets EQ (66.15), Apache (102.08), and ar5 (28.57), indicating that they have the least
or no CIP among the datasets in their respective groups. The datasets LC (10.2), ZXing (41.99), and
ar1 (7.43), on the other hand, have the lowest CIR, implying that there is a higher need to address
CIP in these datasets.

Additional information about these datasets can be found in Table 1. In three project categories,
the proportion of defective cases ranges from 7.43 percent to 50.51 percent, according to Table 1.

Table 1. Datasets description

Project Group Datasets Count of Observations Count of Software Metrics

Total Defective Non-Defective

AEEEM EQ 324 129
(39.81%)

195
(60.19%)

61

JDT 997 206
(20.66%)

791
(79.34%)

LC 691 64
(9.26%)

627
(90.74%)

ML 1862 245
(13.15%)

1617
(86.85%)

PDE 1492 209
(14.01%)

1283
(85.99%)

ReLink Apache 194 98
(50.51%)

96
(49.49%)

26

Safe 56 22
(39.28%)

34
(60.72%)

Zxing 399 118
(29.57%)

281
(70.43%)

Table 1 continued on next page

International Journal of e-Collaboration
Volume 19 • Issue 1

10

Figure 6. CIR in AEEEM project group

Figure 7. CIR in ReLink project group

Project Group Datasets Count of Observations Count of Software Metrics

Total Defective Non-Defective

SOFTLAB ar1 121 9
(7.43%)

112
(92.57%)

29

ar3 63 8
(12.69%)

55
(87.31%)

ar4 107 20
(18.69%)

87
(81.31%)

ar5 36 8
(22.22%)

28
(77.78%)

ar6 101 15
(14.85%)

86
(85.15%)

Table 1 continued

International Journal of e-Collaboration
Volume 19 • Issue 1

11

Performance Parameters
The numerous measures used to assess the efficacy of different machine learning classifiers are listed
in this section. The additional factors in the confusion matrix are considered during the evaluation
process. The confusion matrix used to estimate erroneous classifications is shown in Table 2.

• Recall: - It’s also known as sensitivity or true positive rate. It genuinely tells you what percentage
of actual positives was correctly identified.

Recall = TP

TP FN+
 (1)

• False Positive Rate (FPR): - It’s also known as the fall rate. It actually tells you what percentage
of negative cases in the data was misclassified as positive.

FPR = FP

FP TN+
 (2)

Figure 8. CIR in SOFTLAB project group

Table 2. Confusion matrix

Predicted Result

Defective Non- Defective

Actual Result Defective True Positive
(TP)

False Negative
(FN)

Non- Defective False Positive
(FP)

True Negative
(TN)

International Journal of e-Collaboration
Volume 19 • Issue 1

12

• F1-Score: - Because it is a measurement of a test’s accuracy in a statistical study of binary
classification, it is also known as the F-measure. It considers both the test’s accuracy and precision
when calculating the score. According to the eq (3), the harmonic mean of precision (p) and
recall (r) is utilized to determine it.

F-Score = 2*p*r
p r+

 (3)

• Area Under Curve (AUC): - A plot of True Positive Rate (TPR) and False Positive Rate (FPR)
is used to measure a classification algorithm’s overall efficacy. If the AUC parameter is adjusted
to a higher value, the classification model will be more accurate. The maximum AUC value for
a classification algorithm is 1.

• Accuracy: - Accuracy is defined as the ratio of true outcomes (TP and TN) to the total number
of occurrences evaluated. Its value ranges from 0 to 1, with 0 being the least accurate outcome
and 1 denoting the most accurate outcome.

Accuracy = TP TN

TP TN FP FN

+
+ + +

 (4)

EXPERIMENTATIoN SETUP

The proposed research study’s principal objectives are grouped into four categories. The study’s first
two objectives assess the performance of the respective HCPDP and WPDP frameworks with and
without handling CIP in datasets with varying degrees of noise introduced manually. The study’s
third goal is to determine the maximum degree of noise that a given prediction pair may tolerate for
a specific classification algorithm for both SDP categories. The research analysis’ final goal is to
identify the best classification algorithm that outperforms all other classifiers, as well as to compare
the prediction performance of WPDP and HCPDP for the set of classifiers used. In order to answer
the four research questions, the research analysis conducted two experiments.

Experiment 1
The goal of this experiment is to compare the output of a traditional DP, specifically WPDP, with or
without handling CIP at various level of noise. To conduct both experiments, noise levels of 0%, 15%,
30%, 45%, 60%, and 75% have been used. The 0% noise indicates that all instances of the datasets are
correctly labeled. On the other hand, 60 percent noise suggests that 60 percent of the total instances
are erroneously labeled, implying that their labels have been manually changed to the opposite label.
To begin, the dataset is preprocessed to remove any superfluous software features and the categorical
data is encoded using the tag. The defective and non-defective examples are assigned 0 or 1 in this
process. To cope with CIP in imbalanced training datasets, this experiment also employs the novel CBA
discussed in section C. Chi-Square Test (CST) is used as a feature selection technique for identifying
the most important features that are significant to predict the expected outcome.

The available number of instances is divided into training and validation instances in a ratio
of 7:3 after the most discriminating features are chosen. Figure 9 shows DP within a project, with
I_Total, I_Train, and I_Test denoting the total, training, and testing observations in the dataset,
respectively. The training and testing datasets involved in this experiment are shown in Table 3. Four
different classifiers are used to evaluate the prediction accuracy of the WPDP model: Naive Bayes
(NB), Support Vector Machine (SVM), Adaptive Boosting (AdaBoost), and Random Forest (RF).

International Journal of e-Collaboration
Volume 19 • Issue 1

13

Experiment 2
The objective of this experiment is to explore how the preprocessing step affects the performance of
the proposed four-phase HCPDP framework when CBA is used to induce CIL in imbalanced datasets.
The six heterogeneous prediction combinations listed in Table 4 were obtained from three open-
source projects: AEEEM, ReLink, and SOFTLAB, respectively. The number of maximal associated
feature pairs found between them is used to generate prediction combinations. In the first phase of
preprocessing datasets, redundant software features are removed, and categorical data is encoded
with labels. Then, for a given dataset, CST is utilized as a feature ranking and feature selection
approach to create a list of K- best features that are more relevant to the final outcome. Following
the selection of useful features, the metric matching method assesses the relationship between each
pair of source and target dataset feature pairs using SRCM (Mwadulo et al., 2015). The advantage
of utilizing SRCM is that it considers the data’s relevance, allows for further research, and does not
presume normal distribution.

This experiment uses the same set of classification methods that were used in experiment 1 to
train the HCPDP model, i.e., to carry out the final modeling step. Finally, performance parameters
stated in section D are used to evaluate the model’s efficiency in this experiment.

Figure 9. With-In project defect prediction

Table 3. WPDP’s prediction combinations

Prediction Combination Training Dataset
(70%)

Testing Dataset
(30%)

WPDP-C1 ar1 ar1

WPDP-C2 JDT JDT

WPDP-C3 Apache Apache

WPDP-C4 ML ML

International Journal of e-Collaboration
Volume 19 • Issue 1

14

RESULTS & DISCUSSIoN

Both experiments have been run on a Windows 10 operating system with an Intel Core i5-1130G7
processor and 32GB RAM, using TensorFlow 2.0 with GPU support. In this section, the findings
of the experiments are discussed. The experimental results are shown in Tables 5 to 13 and Figures
10 to 17. FPR, recall, F-Score, and AUC are used as performance benchmarks in this study. The
prediction’s accuracy is measured using 10-fold cross-validation.

RQ1. To compare the prediction performance of traditional method of SDP i.e., WPDP at various
levels of noise with or without handling of CIP.

To investigate the effectiveness of WPDP, four prediction combinations, WPDP_C1 to WPDP_C4,
are considered, with 70% of the total cases being used to train the DP model and the remaining 30%
being utilized to validate it. For example, there are 194, 136, and 58 as total, training and testing
instances in WPDP_C3 (Apache dataset from ReLink source), as shown in Figure 9. Table 5 shows
the FPR value for all prediction combinations with and without managing CIP at various levels
of induced noise. Table 5 shows that WPDP_C3 with a CIR of 102.08 has the best performance,
indicating that Apache has nearly equal numbers of instances from the majority and minority classes.
For the RF and NB classification algorithms, the lowest and highest FPR values for WPDP_C3 are
0.13/0.23 (at 0% level of noise) and 0.58/0.65 (at 75% level of noise), respectively. Similarly, using
the RF and AdaBoost classification approaches, the lowest and greatest FPR values for WPDP_C1
are 0.15/0.36 (at 75 percent level of noise) and 0.48/0.53 (at 15 percent level of noise), respectively.
The reason for the higher disparity in FPR values for WPDP_C1 with and without managing CIP is
that it has the highest CIR of 7.43 among all prediction combinations.

Table 6 reveals that for WPDP_C3, the maximum and minimum TPR values for RF and AdaBoost
approaches are 0.97/0.94 (at 0% level of noise) and 0.51/0.49 (at 75% level of noise), respectively.

Table 4. HCPDP’s prediction combinations

Prediction Combinations Source Dataset Target Dataset

HCPDP-C1 JDT ar1

HCPDP-C2 ar5 JDT

HCPDP-C3 ar1 Apache

HCPDP-C4 Safe ML

HCPDP-C5 EQ ar3

HCPDP-C6 LC ar3

International Journal of e-Collaboration
Volume 19 • Issue 1

15

Table 5. FPR values at different level of noise (WPDP)

Prediction
Combination

Classification
Algorithm

 Induced Noise Level (%)

0 15 30 45 60 75

WPDP-C1

NB 0.36/0.39 0.34/0.37 0.34/0.39 0.35/0.36 0.37/0.40 0.51/0.68

SVM 0.56/0.65 0.61/0.64 0.47/0.58 0.41/0.49 0.42/0.49 0.38/0.46

AdaBoost 0.46/0.58 0.48/0.53 0.47/0.54 0.43/0.49 0.46/0.48 0.41/0.44

RF 0.20/0.41 0.20/0.46 0.17/0.41 0.18/0.36 0.25/0.38 0.35/0.56

WPDP-C2

NB 0.31/0.47 0.23/0.29 0.33/0.29 0.22/0.34 0.28/0.27 0.30/0.39

SVM 0.77/0.84 0.68/0.77 0.59/0.68 0.45/0.58 0.39/0.49 0.31/0.44

AdaBoost 0.47/0.59 0.50/0.55 0.52/0.61 0.41/0.63 0.40/0.38 0.40/0.65

RF 0.22/0.32 0.19/0.32 0.18/0.31 0.23/0.31 0.29/0.38 0.32/0.49

WPDP-C3

NB 0.32/0.39 0.35/0.35 0.45/0.47 0.49/0.55 0.52/0.59 0.58/0.65

SVM 0.39/0.37 0.37/0.42 0.47/0.51 0.54/0.56 0.55/0.57 0.53/0.60

AdaBoost 0.33/0.51 0.24/0.29 0.29/0.34 0.25/0.41 0.49/0.54 0.53/0.64

RF 0.13/0.23 0.17/0.33 0.17/0.35 0.23/0.36 0.30/0.37 0.34/0.41

WPDP-C4

NB 0.27/0.28 0.27/0.30 0.31/0.37 0.29/0.34 0.35/0.39 0.30/0.38

SVM 0.23/0.27 0.15/0.28 0.17/0.39 0.10/0.35 0.19/0.49 0.39/0.57

AdaBoost 0.21/0.24 0.28/0.32 0.30/0.36 0.46/0.48 0.45/0.47 0.47/0.51

RF 0.11/0.21 0.11/0.23 0.12/0.26 0.11/0.26 0.18/0.34 0.23/0.41

Table 6. TPR values at different level of noise (WPDP)

Prediction
Combination

Classification
Algorithm

 Induced Noise Level (%)

0 15 30 45 60 75

WPDP-C1

NB 0.57/0.53 0.51/0.48 0.56/0.50 0.55/0.59 0.61/0.65 0.40/0.33

SVM 0.64/0.69 0.65/0.64 0.55/0.62 0.56/0.61 0.54/0.57 0.53/0.58

AdaBoost 0.73/0.71 0.70/0.68 0.66/0.66 0.64/0.64 0.65/0.64 0.60/0.55

RF 0.82/0.74 0.82/0.76 0.84/0.75 0.81/0.77 0.72/0.71 0.64/0.55

WPDP-C2

NB 0.72/0.71 0.73/0.70 0.71/0.68 0.72/0.70 0.68/0.69 0.65/0.62

SVM 0.77/0.72 0.85/0.72 0.83/0.69 0.75/0.67 0.77/0.67 0.74/0.59

AdaBoost 0.78/0.75 0.72/0.71 0.77/0.71 0.65/0.70 0.64/0.68 0.65/0.61

RF 0.89/0.78 0.72/0.71 0.71/0.70 0.68/0.70 0.69/0.68 0.65/0.61

WPDP-C3

NB 0.85/0.92 0.81/0.80 0.70/0.63 0.69/0.58 0.61/0.56 0.63/0.52

SVM 0.91/0.94 0.86/0.83 0.79/0.76 0.74/0.67 0.66/0.58 0.61/0.48

AdaBoost 0.80/0.93 0.87/0.84 0.88/0.76 0.86/0.66 0.58/0.56 0.51/0.49

RF 0.97/0.94 0.94/0.85 0.92/0.71 0.87/0.67 0.86/0.67 0.84/0.62

Table 6 continiued on next page

International Journal of e-Collaboration
Volume 19 • Issue 1

16

Figure 10 illustrates the average prediction accuracy for all WPDP prediction combinations.
Practically, for all classification algorithms, there is a gradual decline in accuracy value as the level
of induced noise increases. The accuracy value is collected using 10 fold cross validation to avoid any
randomness in the results. The following is the increasing order of different classification algorithms
based on calculated accuracy through repeated experimental results: -

SVM < AdaBoost < NB < RF

As demonstrated in Figure 11, a similar pattern of performance may be noticed in terms of AUC
value. Even when the noise level is increasing, RF continues to provide consistent performance, as
shown in the graph. Other classifiers exhibit a minor increase or decrease in AUC values when the
induced noise level changes.

Prediction
Combination

Classification
Algorithm

 Induced Noise Level (%)

0 15 30 45 60 75

WPDP-C4

NB 0.67/0.63 0.61/0.58 0.66/0.60 0.65/0.69 0.66/0.62 0.66/0.63

SVM 0.74/0.70 0.68/0.61 0.67/0.62 0.66/0.61 0.64/0.57 0.63/0.58

AdaBoost 0.73/0.72 0.69/0.68 0.64/0.64 0.61/0.61 0.65/0.61 0.58/0.54

RF 0.89/0.77 0.89/0.76 0.88/0.75 0.89/0.76 0.68/0.54 0.62/0.49

Figure 10. WPDP’s prediction accuracy

Table 6 continued

International Journal of e-Collaboration
Volume 19 • Issue 1

17

In Figure 12 to Figure 15, the AUC plot for all prediction combinations has been seen. With the
exception of RF in WPDP C2, it can be concluded that induced noise has a significant impact on
AUC values for all classification algorithms.

Figure 11. WPDP’s AUC plot

Figure 12. F-Score in WPDP_C1

Figure 13. F-Score in WPDP_C2

International Journal of e-Collaboration
Volume 19 • Issue 1

18

Figure 14. F-Score in WPDP_C3

Figure 15. F-Score in WPDP_C4

RQ2. To compare the prediction performance of HCPDP at various levels of noise with or without
handling of CIP.

SRCM is used to find strongly correlated feature pairs for all six heterogeneous prediction
combinations after completing data preprocessing and feature engineering on datasets. Table 7 shows
how many correlated feature pairs there are in each combination with a CCV larger than 0.05. (cutoff
threshold). According to the state of the art, the cutoff is set at 0.05 to encompass the maximum
defect prediction likelihood in all feasible dataset combinations. As per Table 7, the source and target
datasets JDT and ar1 have a total of 19 strongly correlated feature pairs.

International Journal of e-Collaboration
Volume 19 • Issue 1

19

The FPR values for defect prediction in the target project utilizing a heterogeneous source project
are shown in Table 8. After using CBA to manage an unbalanced dataset, the maximum and minimum
FPR values for the heterogeneous prediction combination HCPDP_C1 are determined to be 0.60 for
SVM and 0.11 for RF, respectively. Similarly, the highest and lowest FPR values for HCPDP_C4 are
0.67 using AdaBoost and 0.16 using RF. It can be seen that the model in HCPDP_C5 and HCPDP_C6
tries to forecast defects in the target dataset ar3 using different source datasets EQ and LC.

Table 7. Metric matching in HCPDP

Heterogeneous Prediction Combination No. of Strongly Correlated Feature Pairs

HCPDP_C1 19

HCPDP_C2 17

HCPDP_C3 12

HCPDP_C4 19

HCPDP_C5 11

HCPDP_C6 17

Table 8. FPR values at different level of noise (HCPDP)

Prediction
Combination

Classification
Algorithm

Induced Noise Level (%)

0 15 30 45 60 75

HCPDP-C1

NB 0.32/0.38 0.34/0.40 0.31/0.43 0.31/0.48 0.35/0.42 0.41/0.50

SVM 0.59/0.67 0.60/0.60 0.51/0.58 0.47/0.55 0.41/0.49 0.34/0.46

AdaBoost 0.43/0.62 0.44/0.52 0.41/0.50 0.49/0.52 0.43/0.48 0.62/0.71

RF 0.28/0.49 0.16/0.46 0.11/0.40 0.12/0.36 0.35/0.39 0.35/0.36

HCPDP-C2

NB 0.31/0.49 0.20/0.26 0.26/0.39 0.21/0.36 0.34/0.29 0.31/0.35

SVM 0.68/0.74 0.68/0.77 0.51/0.70 0.41/0.68 0.49/0.55 0.51/0.67

AdaBoost 0.42/0.56 0.55/0.59 0.50/0.65 0.42/0.69 0.40/0.58 0.59/0.71

RF 0.27/0.35 0.25/0.32 0.27/0.45 0.18/0.31 0.19/0.25 0.29/0.37

HCPDP-C3

NB 0.30/0.41 0.33/0.37 0.41/0.46 0.43/0.52 0.51/0.55 0.61/0.65

SVM 0.32/0.41 0.37/0.42 0.40/0.51 0.44/0.50 0.53/0.57 0.68/0.62

AdaBoost 0.20/0.26 0.21/0.29 0.27/0.30 0.38/0.51 0.49/0.58 0.55/0.60

RF 0.19/0.27 0.16/0.32 0.15/0.38 0.27/0.39 0.38/0.43 0.37/0.41

HCPDP-C4

NB 0.21/0.29 0.21/0.37 0.32/0.36 0.21/0.37 0.38/0.49 0.40/0.47

SVM 0.28/0.34 0.19/0.25 0.23/0.35 0.21/0.34 0.43/0.56 0.49/0.57

AdaBoost 0.21/0.34 0.29/0.31 0.37/0.46 0.48/0.59 0.41/0.59 0.67/0.71

RF 0.21/0.29 0.16/0.23 0.24/0.29 0.31/0.46 0.38/0.44 0.59/0.61

Table 8 continued on next page

International Journal of e-Collaboration
Volume 19 • Issue 1

20

Table 9. TPR values at different level of noise (HCPDP)

Prediction
Combination

Classification
Algorithm

 Induced Noise Level (%)

0 15 30 45 60 75

HCPDP-C1

NB 0.50/0.59 0.51/0.64 0.48/0.61 0.55/0.68 0.44/0.49 0.31/0.69

SVM 0.66/0.71 0.69/0.64 0.61/0.64 0.58/0.60 0.50/0.57 0.48/0.51

AdaBoost 0.68/0.61 0.68/0.65 0.62/0.66 0.58/0.73 0.51/0.70 0.34/0.48

RF 0.80/0.71 0.82/0.68 0.80/0.75 0.86/0.72 0.66/0.57 0.57/0.52

HCPDP-C2

NB 0.66/0.56 0.69/0.56 0.76/0.46 0.70/0.57 0.55/0.48 0.49/0.55

SVM 0.65/0.54 0.77/0.63 0.80/0.63 0.69/0.53 0.58/0.48 0.60/0.54

AdaBoost 0.72/0.66 0.70/0.62 0.79/0.56 0.62/0.55 0.61/0.50 0.55/0.43

RF 0.90/0.74 0.92/0.76 0.89/0.70 0.90/0.70 0.69/0.47 0.60/0.39

HCPDP-C3

NB 0.80/0.72 0.84/0.80 0.79/0.61 0.80/0.68 0.60/0.51 0.58/0.45

SVM 0.82/0.66 0.86/0.73 0.77/0.70 0.64/0.43 0.66/0.54 0.41/0.38

AdaBoost 0.85/0.71 0.85/0.77 0.73/0.58 0.70/0.58 0.68/0.50 0.50/0.44

RF 0.94/0.84 0.90/0.87 0.90/0.82 0.84/0.61 0.70/0.62 0.55/0.32

HCPDP-C4

NB 0.67/0.60 0.72/0.61 0.76/0.60 0.76/0.69 0.56/0.44 0.43/0.33

SVM 0.78/0.68 0.74/0.60 0.73/0.54 0.68/0.50 0.61/0.46 0.53/0.38

AdaBoost 0.83/0.70 0.85/0.64 0.71/0.60 0.44/0.40 0.37/0.21 0.35/0.25

RF 0.90/0.72 0.86/0.71 0.90/0.74 0.88/0.64 0.72/0.54 0.68/0.53

Table 8 continued

Table 9 continued on next page

Prediction
Combination

Classification
Algorithm

Induced Noise Level (%)

0 15 30 45 60 75

HCPDP-C5

NB 0.22/0.47 0.34/0.37 0.34/0.39 0.35/0.36 0.37/0.40 0.35/0.38

SVM 0.78/0.89 0.67/0.77 0.59/0.67 0.44/0.58 0.39/0.49 0.31/0.44

AdaBoost 0.79/0.78 0.5/0.58 0.53/0.64 0.67/0.48 0.47/0.52 0.40/0.40

RF 0.24/0.32 0.26/0.59 0.18/0.44 0.18/0.37 0.22/0.35 0.25/0.44

HCPDP-C6

NB 0.18/0.43 0.13/0.37 0.30/0.36 0.33/0.34 0.30/0.42 0.31/0.33

SVM 0.66/0.78 0.67/0.71 0.53/0.60 0.39/0.51 0.33/0.44 0.25/0.37

AdaBoost 0.40/0.73 0.48/0.55 0.55/0.67 0.57/0.55 0.44/0.49 0.34/0.37

RF 0.21/0.27 0.20/0.41 0.18/0.34 0.18/0.31 0.13/0.32 0.12/0.39

International Journal of e-Collaboration
Volume 19 • Issue 1

21

The FPR values in HCPDP_C5 and HCPDP_C6 at the highest level of induced noise are 0.25/0.44
and 0.12/0.39, respectively, according to the results of Table 8. When compared to HCPDP_C5,
the better outcomes for every classification algorithm in HCPDP_C6 are due to the higher number
of strongly correlated pairs produced by the metric matching phase. This demonstrates that, in the
case of HCPDP, metric matching has a significant impact on prediction performance. When the DP
performance is evaluated using TPR values, similar performance patterns can be seen in the results
of Table 9. It shows that the maximum and minimum TPR values for HCPDP_C4 after including
CBA to handle CIP in training dataset Safe with CIR as 64.71 are 0.90 using RF and 0.35 using
AdaBoost, respectively.

Using a 10-fold cross validation technique, the average prediction accuracies for all HCPDP
combinations are examined. At all levels of induced noise, RF outperforms the other set of employed
classifiers, as shown in Figure 16.

Tables 10 and 11 exhibit the comparative results for WPDP and HCPDP prediction performance.
The authors used the prediction combinations WPDP_C1 to WPDP_C4 and HCPDP_C1 to HCPDP_

Prediction
Combination

Classification
Algorithm

 Induced Noise Level (%)

0 15 30 45 60 75

HCPDP-C5

NB 0.73/0.71 0.74/0.68 0.71/0.68 0.72/0.70 0.68/0.69 0.67/0.62

SVM 0.77/0.72 0.85/0.72 0.83/0.69 0.79/0.68 0.75/0.67 0.77/0.66

AdaBoost 0.78/0.75 0.72/0.71 0.78/0.72 0.67/0.71 0.70/0.68 0.66/0.64

RF 0.89/0.78 0.89/0.76 0.88/0.74 0.89/0.76 0.88/0.74 0.88/0.72

HCPDP-C6

NB 091/0.92 0.86/0.83 0.78/0.73 0.73/0.61 0.63/0.58 0.65/0.54

SVM 0.91/0.85 0.84/0.72 0.79/0.58 0.68/0.51 0.62/0.43 0.66/0.48

AdaBoost 0.95/0.87 0.86/0.85 0.81/0.74 0.67/0.59 0.48/0.49 0.48/0.46

RF 0.97/0.90 0.94/0.81 0.92/0.68 0.87/0.65 0.86/0.65 0.84/0.61

Figure 16. HCPDP’s prediction accuracy

Table 9 continued

International Journal of e-Collaboration
Volume 19 • Issue 1

22

C4 for this study. While the source and target projects are the same in With-in predictions, they are
different in heterogeneous prediction, as seen in Tables 10 and 11. For all four prediction combinations,
it can be seen that HCPDP performs similarly to WPDP. Table 10 shows that after addressing CIP
with CBA, the FPR values for WPDP_C1 and HCPDP_C1 are 0.313 and 0.375, respectively, at a
noise level of 75 percent.

When there is no induced noise, the maximum TPR values for predicting defects in target dataset
Apache using source datasets Apache (With-in) and ar1 (HCPDP) are 0.908 and 0.853, respectively,
according to Table 11. After treating CIP with CBA, all experimental results of Tables 10 &11 for
this comparison analysis are gathered. As shown in Figure 17, the DP performance within a project
surpasses predictions using heterogeneous projects at zero level of generated noise in terms of average
AUC value. On the basis of these findings, one can conclude that HCPDP performance is comparable
to defect prediction within the project.

Table 10. Comparison of prediction performance of WPDP & HCPDP using FPR

Prediction Combination
Induced Noise Level (%)

0 15 30 45 60 75

(ar1, ar1) 0.395 0.408 0.363 0.343 0.350 0.313

(JDT, ar1) 0.405 0.410 0.335 0.397 0.385 0.375

(JDT, JDT) 0.443 0.400 0.405 0.320 0.315 0.283

(ar5, JDT) 0.420 0.420 0.410 0.305 0.330 0.425

(Apache, Apache) 0.268 0.283 0.345 0.428 0.465 0.495

(ar1, Apache) 0.253 0.308 0.308 0.380 0.478 0.553

(ML, ML) 0.205 0.203 0.225 0.265 0.318 0.323

(Safe, ML) 0.228 0.213 0.290 0.303 0.400 0.538

Table 11. Comparison of prediction performance of WPDP & HCPDP using TPR

Prediction Combination
Induced Noise Level (%)

0 15 30 45 60 75

(ar1, ar1) 0.690 0.670 0.653 0.640 0.660 0.593

(JDT, ar1) 0.660 0.675 0.628 0.643 0.528 0.450

(JDT, JDT) 0.790 0.755 0.755 0.708 0.705 0.673

(ar5, JDT) 0.733 0.770 0.810 0.728 0.608 0.560

(Apache, Apache) 0.908 0.870 0.798 0.740 0.678 0.648

(ar1, Apache) 0.853 0.863 0.798 0.745 0.660 0.510

(ML, ML) 0.758 0.718 0.713 0.703 0.708 0.688

(Safe, ML) 0.795 0.793 0.700 0.690 0.565 0.498

International Journal of e-Collaboration
Volume 19 • Issue 1

23

RQ3. To determine the maximum level of noise that each prediction pair can tolerate under both SDP
categories (HCPDP & WPDP).

For both SDP categories, the range of admissible noise varies depending on the classification
algorithm as shown in Tables 12 & 13. As shown in Table 12, the performance of WPDP_C1
(AdaBoost), WPDP_C3 (NB), and WPDP_C4 (NB) in predicting defects within a project is uniform.
This indicates that there is no abnormally high or low point in either FPR or TPR values throughout
the experimented noise range. However, using the AdaBoost classification algorithm, the values
of FPR and TPR for WPDP_C3 are found to be similar or show slight fluctuation in their values
between 15% and 45%. On the other hand, WPDP_C4 performed consistently from pure data (at
0% noise level) through 45% noise level, with a breakdown point beyond 45% noise level. All six
heterogeneous prediction pairs showed similar kind of tolerated noise ranges like WPDP. Except for
SVM, HCPDP_C5 provides consistent prediction performance for all classification techniques. In
the case of SVM, no specific performance pattern can be identified across the entire noise range.

Figure 17. Comparative analysis of WPDP & HCPDP using AUC value

Table 12. Tolerable range of noise in With-In prediction combinations

Prediction Combinations Classifier Tolerable Noise Range

Lower Upper

WPDP_C1

NB 0 60

SVM 0 15

AdaBoost Perform Uniformly

RF 0 45

Table 12 continued on next page

International Journal of e-Collaboration
Volume 19 • Issue 1

24

Prediction Combinations Classifier Tolerable Noise Range

Lower Upper

WPDP_C2

NB Perform Uniformly

SVM 0 30

AdaBoost 0 30

RF 0 30

WPDP_C3

NB 0 15

SVM 0 15

AdaBoost 15 45

RF 0 30

WPDP_C4

NB Perform Uniformly

SVM 15 60

AdaBoost 0 30

RF 0 45

Table 13. Tolerable range of noise in heterogeneous prediction combinations

Prediction Combinations Classifier Tolerable Noise Range

Lower Upper

HCPDP_C1

NB 0 60

SVM 0 45

AdaBoost 0 60

RF 15 45

HCPDP_C2

NB 15 45

SVM 0 30

AdaBoost Perform Uniformly

RF 0 45

HCPDP_C3

NB 15 45

SVM 0 30

AdaBoost 0 30

RF 15 45

HCPDP_C4

NB 15 45

SVM 0 45

AdaBoost 0 15

RF 0 30

Table 12 continued

Table 13 continued on next page

International Journal of e-Collaboration
Volume 19 • Issue 1

25

RQ4. Which classification method outperforms the rest of the algorithms in use?

From Figures 11 and 15, it is clear that RF outperforms all other classifiers. In both WPDP and
HCPDP, the prediction accuracies using RF are higher for all prediction combinations. In comparison
to other classifiers, the AUC plot indicated that RF performed consistently and is least impacted by
noise. So, the increasing order of DP performance is given as follows: -

SVM < AdaBoost < NB < RF

CoNCLUSIoN & FUTURE DIRECTIoNS

HCPDP is an open study area in software defect prediction that forecasts defects in the target application
without using previous defect data. The two major problems of SDP, noise and an unbalanced dataset,
were investigated in this research employing 133 experiments on three open-source projects with
ten prediction combinations. CIP has been found to have a substantial impact on any DP model and
should be dealt with during the pre-processing step or before to train the DP model. In this study, a
novel hybrid technique called CBA is developed to overcome the drawbacks of both oversampling
and undersampling data-driven CIL approaches. The results of the experiment were analyzed using
four different classifiers, and it was discovered that RF performed the best among all classifiers and
was less affected by noise level.

It is also found that WPDP and HCPDP perform similarly across a noise range, but WPDP
outperforms HCPDP for pure data since it is evident that a DP model trained using the same project
data will perform better than a model trained using defect data from different projects.

HCPDP modeling relies heavily on metric matching. Poor performance will always be the outcome
of ineffective metric matching between prediction datasets. As a future project, a novel technique
for preventing noisy metric matching could be investigated. Deep learning techniques can be used to
investigate new features from the source and target projects in order to improve the HCPDP model’s
performance. Future research should focus on developing an empirical association between software
defect prediction and predictive maintenance.

Prediction Combinations Classifier Tolerable Noise Range

Lower Upper

HCPDP_C5

NB Perform Uniformly

SVM No Proper Performance Pattern

AdaBoost Perform Uniformly

RF Perform Uniformly

HCPDP_C6

NB 0 15

SVM 0 30

AdaBoost 0 30

RF Perform Uniformly

Table 13 continued

International Journal of e-Collaboration
Volume 19 • Issue 1

26

REFERENCES

Bettenburg, N., Hassan, A. E., & Nagappan, M. (2012). Think locally, act globally: Improving defect and effort
prediction models. In 9th IEEE Working Conference on Mining Software Repositories (MSR) (pp. 60–69). IEEE.
doi:10.1109/MSR.2012.6224300

Briand, L. C., Melo, W. L., & Wurst, J. (2002). Assessing the applicability of fault- proneness models across
object-oriented software projects. IEEE Transactions on Software Engineering, 2(8), 706–720. doi:10.1109/
TSE.2002.1019484

Canfora, G., De Lucia, A., Oliveto, R., Panichella, A., Di Penta, M., & Panichella, S. (2013). Multi-objective
cross-project defect prediction. In IEEE Sixth International Conference on Verification and Validation in
Software Testing. IEEE.

Cruz, C., & Ochimizu, A. E. (2009). Towards logistic regression models for predicting fault- prone code across
software projects. Proceedings of the Third International Symposium on Empirical Software Engineering and
Measurement (ESEM), 460-463.

D’Ambros, M., Lanza, M., & Robbes, R. (2012). Evaluating defect prediction approaches: A benchmark and
an extensive comparison. Empirical Software Engineering, 17(4-5), 531–577. doi:10.1007/s10664-011-9173-9

Diwaker, C., Tomar, P., Solanki, A., Nayyar, A., Jhanjhi, N. Z., Abdullah, A., & Supramaniam, M. (2019). A
new model for predicting component-based software reliability using soft computing. IEEE Access: Practical
Innovations, Open Solutions, 7, 147191–147203.

Gao, K., Khoshgoftaar, T. M., Zhang, H., & Seliya, N. (2011). Choosing software metrics for defect prediction:
An investigation on feature selection techniques. Software, Practice & Experience, 41(5), 579–606.

Gheisari, M., Panwar, D., Tomar, P., Harsh, H., Zhang, X., Solanki, A., & Alzubi, J. A. (2019). An optimization
model for software quality prediction with case study analysis using MATLAB. IEEE Access: Practical
Innovations, Open Solutions, 7, 85123–85138.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning
Research, 3, 1157–1182.

Jiang, K., Zhang, Y., Wu, H., Wang, A., & Iwahori, Y. (2020). Heterogeneous Defect Prediction Based on
Transfer Learning to Handle Extreme Imbalance. Appl. Sci. 10.3390/app10010396

Jing, X., Dong, X., Qi, F., Wu, F., & Xu, B. (2015). Heterogeneous cross company defect prediction by unified
metric representation and CCA- based transfer learning. In Proceedings of the 2015 in 10th Joint Meeting on
Foundations of Software Engineering (pp. 496–507). ACM. doi:10.1145/2786805.2786813

Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M., & Kwak, K. S. (2020). Duplicate bug report detection
and classification system based on deep learning technique. IEEE Access: Practical Innovations, Open Solutions,
8, 200749–200763.

Lee, S. P., & Felix, E. A. (2020). Predicting the number of defects in a new software version. PLoS One, 15(3).

Li, B., He, P., & Ma, Y. (2014). Towards cross-project defect prediction with imbalanced feature sets. CoRR,
vol.abs/1411.4228.

Linberg, K. R. (1999). Software developer perceptions about software project failure: A case study. Journal of
Systems and Software, 49(2-3), 177–192. doi:10.1016/S0164-1212(99)00094-1

Majd, A., Vahidi-Asl, M., Khalilian, A., Poorsarvi-Tehrani, P., & Haghighi, H. (2020). SLDeep: Statement-level
software defect prediction using deep-learning model on static code features. Expert Systems with Applications,
14(7).

Marqués, A., García, V., & Sánchez, J. (2013). On the suitability of resampling techniques for the class imbalance
problem in credit scoring. The Journal of the Operational Research Society, 64, 1060–1070. doi:10.1057/
jors.2012.120

http://dx.doi.org/10.1109/MSR.2012.6224300
http://dx.doi.org/10.1109/TSE.2002.1019484
http://dx.doi.org/10.1109/TSE.2002.1019484
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1145/2786805.2786813
http://dx.doi.org/10.1016/S0164-1212(99)00094-1
http://dx.doi.org/10.1057/jors.2012.120
http://dx.doi.org/10.1057/jors.2012.120

International Journal of e-Collaboration
Volume 19 • Issue 1

27

Rohit Vashisht is an Assistant Professor in the Department of Computer Science & Information Technology, KIET
Group of Institutions, Delhi-NCR, Ghaziabad, India. He has completed his B.Tech from Ajay Kumar Garg Engineering
College, AKTU with silver medal and M.Tech from USICT, GGSIPU, and Delhi with gold medal. He is currently
pursuing Ph.D from Jamia Millia Islamia University. His area of interest includes machine learning, sentimental
analysis, software engineering and cloud computing. He has teaching experience of 5.5 years. He is certified as
Elite Silver for subject Compiler Design and Operating System by NPTEL. He has good numbers of publications
in reputed international conferences and journals (indexed in Scopus, ESCI, SCIE).

S. A. M. Rizvi has been working as a professor for a decade in the Department of Computer Science, Jamia
Millia Islamia, having more than 35 years of experience in teaching and research at Universities/HEIs in India and
abroad. He has earned doctorate in Computer Science way back in 1996from Dr. R. M. L. Avadh University, India.
He is completing two decades of Teaching and Research at Central University - Jamia Millia Islamia where he was
appointed Head of the Department for 3-years term from 2016 till 2019. He designed various programmes/courses
as a Chairman/Member of BOS, Academic Council, and other academic bodies at universities/ Higher Educational
Institutions (HEIs). He has more than 187+ Publications as per Google Scholar, including SCI, SCOPUS and IEEE
Transactions covering a vast array of topics in Computer Science and Applications. He has to his credit More than
23 Ph.D. awardees till date, with 8 currently registered scholars. He is an author of six text books in the subject
well known and respected amongst peers and Scholars. He is a Senior Member of the Computer Society of India
(CSI), Old Member of IEEE, ISCA, and IEA. Prof Rizvi is a versatile personality having taught, and held Senior
Academic Positions across India, such as Goa University, University in Chennai, in Haryana, at Agra University
in U.P. and abroad as well. He taught in the USA (Credit Hour System), Australia, UAE, and Indian Educational
Systems and has the exposure of working with International Accreditation Bodies and getting approvals for new
programmes launched, such as B.S.(MIS) of AbuDhabhi University. He has also worked as Director, Training
and University-Industrial Linkage programme and Chief Manager (EDP/IT) in Goa Shipyard under the Ministry of
Defense, Government of India. He has Trained Industrial Computer Professional in the area of software development
and has hands-on experience through various Training of Executive-MBA programmes. He has been a Founder-
Director and Head at various Universities/HEIs where he has innovated new courses and programmes. Prof Rizvi is
also been a part of various Selection Committees at Central and State Universities, State PSCs, including JKPSC,
Recruitments/Promotions at Nationalized Bank besides President of RWAs. His research interests in Genome/
Bioinformatics led him to establish a vast lab in the shape of FARM on seeds, Medicinal plant, developed like a
Botanical Garden. These varieties of interests and entrepreneurial skills made him all the more popular amongst
Academia. He observes the research world from his perspective.

Menzies, T., Butcher, A., Cok, D. R., Marcus, A., & Zimmermann, T. (2011). Local vs. global models for
effort estimation and defect prediction. In 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (pp. 343–351). IEEE. doi:10.1109/ASE.2011.6100072

Mwadulo, M. W. (2015). A Review on Feature Selection Methods for Classification Tasks. International Journal
of Computer Applications Technology and Research, 5(6), 395–402. doi:10.7753/IJCATR0506.1013

Ni, C., Liu, W., Gu, Q., Chen, X., & Chen, D. (2017). FeSCH: A Feature Selection Method using Clusters of
Hybrid-data for Cross-Project Defect Prediction. Proceedings of the 41st IEEE Annual Computer Software and
Applications Conference, COMPSAC, 51–56.

Rahman, F., Devanbu, P., & Posnett, D. (2012). Recalling the imprecision of cross- project defect prediction.
In Proceedings of the ACM-Sigsoft 20th International Symposium on the Foundations of Software Engineering
(FSE- 20) (pp. 61-65). ACM.

Turhan, B., Menzies, B., Bener, A. B., & Stefano, J. (2009). On the relative value of cross-company and
within-company data for defect prediction. Empirical Software Engineering, 14(5), 540–578. doi:10.1007/
s10664-008-9103-7

Vashisht, R., & Rizvi, S. M. (2020). Feature Extraction to Heterogeneous Cross Project Defect Prediction. 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), 1221-1225. DOI: doi:10.1109/ICRITO48877.2020.9197799

Vashisht, R., & Rizvi, S. M. (2021). Feature Engineering to Heterogeneous Cross Project Defect Prediction- A
Novel Framework. Arabian Journal for Science and Engineering.

http://dx.doi.org/10.1109/ASE.2011.6100072
http://dx.doi.org/10.7753/IJCATR0506.1013
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1109/ICRITO48877.2020.9197799

