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ABSTRACT

Stale blocks are not avoidable in blockchain, such as the Bitcoin network, when proof-of-work is 
used as the consensus protocol. However, as the economic loss to the miners and the security risk to 
the network cannot be ignored, research is needed to identify and analyse stale blocks. By analysing 
the factors influencing the generation of stale blocks, the authors propose a new machine learning 
model based on XGBoost. They propose a new data collection method for bitcoin nodes to obtain 
real data for training prediction model. Then, based on the model, they generate optimal mining 
strategies and analyse the economic benefits. The experimental data and application cases show that 
the real-time data detection and machine learning model that they propose can accurately identify 
and predict the generation of stale blocks and generate an economically optimal mining strategy in 
the Bitcoin network with the presence of stale blocks.
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INTRODUCTION

The emergence of digital currencies has substantial financial markets. For example, the market value 
of Bitcoin (Nakamoto, 2008), the first digital cryptocurrency, has now reached trillions of dollars 
(Böhme et al., 2015). As the core technology of digital cryptocurrencies, blockchain has gained much 
attention, and there are now many attempted implementations in a wide area of applications (Long 
et al., 2021; Tang & Zeng, 2021). However, all decentralized blockchain systems face the problem 
of ownership of bookkeeping rights.

For example, the Bitcoin system uses the proof-of-work (POW) mechanism to encourage miners 
to perform numerous calculations to compete for bookkeeping rights. The consensus on witnessing 
the transactions is based on the time spent calculating the results. Thus, competing for bookkeeping 
rights essentially turns out to be a zero-sum game among miners. In such a game, unfortunately, in 
competition, honest miners will inevitably produce blocks that are the same height as the optimal 
blocks but slightly later. These blocks become stale blocks.
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In the Bitcoin network, stale blocks are successfully mined by miners but ultimately fail to be 
retained on the mainchain because of forks in the blockchain caused by peer nodes competing for 
transaction bookkeeping rights. In other words, in the mining and competing process, a stale block 
has the same height as the mainchain block, and a miner produces it after performing hash operations 
of the same complexity but ultimately fails to be added to the mainchain. As a result, the miner that 
generates the stale block suffers a great financial loss. Furthermore, the transactions verified with 
packaged stale blocks must also be repeatedly verified by other nodes. This verification process results 
in a substantial waste of resources and affects the fairness of mining. When a miner receives a stale 
block, if it chooses the branch where the stale block is located as the basis for mining, it is likely to 
suffer a substantial loss in mining revenue because of the cropping of the branch.

Although the generation of stale blocks causes economic losses to miners and affects the network 
performance, it has been ignored by most researchers, possibly due to the small probability of stale 
block generation. To the best of our knowledge, there is a lack of research on the prediction of stale 
block generation.

In this paper, we study the impact of stale blocks on the Bitcoin network. To do this, this paper 
investigates the operation, data, and state changes of full Bitcoin nodes from real-time data and studies 
how to provide honest miners with strategies for reducing the impact of stale blocks on revenue. Our 
main contribution is to provide a machine learning model based on real-time data for stale block 
generation and prediction, analyze the effects of stale blocks, and generate an optimal mining strategy 
for honest miners to improve profits when a fork occurs.

Related work
Analysis and Definition of the Stale Block. Stale blocks are introduced in Bonneau et al. (2015), 
where stale blocks are described as blocks with valid transactions and complete transaction proofs 
but are not included in the mainchain, without analyzing the specific reasons for the emergence of 
stale blocks. The work of Feng and Niu (2019) analyzes the impact of stale blocks and uncle-order 
blocks generated with selfish mining in Ethereum. Boscovic et al. (2022) presented simulations of 
the probability of orphan blocks and stale blocks with different block sizes by constructing the NS3 
blockchain simulator. The simulations show that block size is an important factor affecting the rate 
of stale blocks, but it was not verified by real data validation.

Data Collection and Node Instrumentation. Most works in the literature and projects related to the 
instrumentation of blockchain have been conducted for Ethereum smart contracts using various data 
of smart contracts. Grossman et al. (2017) investigated how information about internal transactions 
and storage operations is obtained by instrumentation to detect object callbacks in smart contracts and 
analyze the related security risks (e.g., DAO attacks). This work is limited to only the Ethernet smart 
contract environment and is not scalable. In Chen et al. (2020), a similar approach was proposed for 
Ethernet to collect and analyze data about transactions, smart contract creation and invocation, the 
transaction log of nodes, and some malicious accounts and malicious contract invocations. Based on 
this approach, further work by the same authors (Chen et al., 2019) presents a tool for automatically 
detecting inconsistent behavior of cryptocurrency tokens in Ethernet. There is little work on full 
bitcoin node instrumentation to collect real-time data about stale block generation.

Mining strategy. Mining strategies have been heavily studied, mostly on mining strategies related 
to malicious attacks such as selfish mining. Göbel et al. (2016) studies selfish mining strategies in the 
presence of propagation delays and present an approach for modeling and analyzing how to gain more 
revenue through selfish mining in the presence of propagation delays. There, they detected selfish 
mining behaviour using the generation rate of stale blocks. However, there is little research on how to 
apply machine learning techniques to analyze mining schemes. For example, Wang et al. (2021) show 
how a Markov chain model is constructed for mining and analyzing more efficient mining schemes 
by machine learning methods of reinforced learning (RL). However, the environment for strategy 
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selection in the work is unrealistic as there is no real-time data from real networks used in the model. 
Therefore, the model cannot be used to solve problems such as stale blocks or double-spend attacks.

This paper is the first study to model and generate predictions for the stale block generation 
process compared to other literature. Meanwhile, this paper proposes a new method for collecting 
data from the Bitcoin blockchain. Finally, this paper is the first to propose a better mining strategy 
to reduce the impact of stale blocks on miner nodes.

Contribution and Organization
As stated earlier, the problem of stale blocks and their impact on miners’ revenue in the Bitcoin 
network has been largely ignored. This paper proposes to fill this gap by presenting a method for 
using machine learning techniques for stale block generation identification and prediction and an 
approach to improve mining strategy.

The model for stale block generation and identification is presented next. This paper parses 
the code of the full Bitcoin node to extract the operations and calls for an abstract presentation of 
the standard steps of block synchronization. This allows us to establish a behavioral model of block 
synchronization performed by the full nodes. With this model, this paper analyzes the synchronization 
process and determines the conditions for identifying stale blocks.

This paper then implements a collection method by instrumenting the source code of the full node 
to create detection nodes that can output more detailed data. By deploying the detection nodes into 
the Bitcoin network, this paper implements a real-time monitor to monitor the block synchronization 
process. Then, this paper implements a data parser to parse real-time data into analyzable data. Based 
on the analysis of the monitoring data, this paper uses the monitoring data as the input to the data 
parser for analysis of the full life-cycle of the blocks received by the full nodes. The output of the 
data parser is the block type and the state data of the node when it accepts the block.

The rest of this article is organized as follows. We next present the work on the prediction model. 
This paper measures the likelihood of a block being stale based on the parser’s output using four 
parameters: network difficulty, decentralization degree, network congestion degree, and aggregation 
effect. We then construct and tune the stale block prediction model by the XGBoost method. For the 
mining strategy in the presence of stale blocks, this paper then compares the profits of different mining 
strategies under the influence of stale blocks. Finally, this paper provides a prediction-based mining 
strategy for honest miners to hedge the risk of choosing stale blocks as the basis for mining, which 
can effectively increase profits. We then present application case studies and experiments to validate 
our models and implementations, and finally provide the discussions, conclusions, and future work.

FUNDAMeNTAL CONCePTS

In the Bitcoin network, miners mine transactions and form them into a block and are willing for them 
to be added to the blockchain. Such a block comprises two parts. They are the block header and the 
block body. The block header encapsulates information, including the current block hash, current 
difficulty target (Bits), and a random number (Nonce) of the current block POW process. The block 
body contains the transactions of the current block and the Merkel tree for verifying the transactions. 
For a miner’s block to be added to the blockchain, the miner must broadcast it to the network. All 
full nodes must comply with the consensus protocol to determine which block should be appended 
to the blockchain. This processor is called block synchronization.

Block Synchronization
This paper illustrates the complete process of block synchronization in Figure 1, which contains 
six steps: block acquisition, block verification, block type confirmation, block synchronization, 
orphan pool processing, and chain verification. After the full node obtains a new block, it generates 
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a BlockNode that represents the current block based on the block header data. After generating the 
BlockNode, the full node needs to check whether the block is standard. Then, the full node determines 
whether the block is an orphan block, a mainchain or a sidechain block and processes it according 
to its type, workload, and height. Finally, full nodes perform primary chain extension, side chain 
extension, or chain swap operations.

A block can become stale when more than one valid block with the same height from different 
miners is broadcast and verified during the block synchronization of the network. Our work in this 
paper analyzes the block synchronization process and devises full node instrumentation to obtain the 
data about the communication needed for predicting and identifying stale blocks.

Generation of the Stale Block
In the Bitcoin network, full nodes generate stale blocks in two cases. In the first case, the sidechain 
blocks become stale blocks. Upon the advent of a certain fork, the mainchain experiences a greater 
burden than any corresponding sidechains. In the event that the main chain exceeds the six blocks 
of the side chain, the side chain is no longer capable of replacing the main chain and all sidechain 
blocks become stale blocks (Figure 2).

In the other case, the original mainchain blocks become stale blocks. After the emergence of 
the fork and a period of competition, the workload of the sidechain becomes greater than that of the 
mainchain, causing chain swap. In this case, if the new mainchain (original sidechain) extends beyond 
the original mainchain block by six blocks in the subsequent extension, those blocks in the original 
mainchain that are replaced become stale. The chain swap is shown in Figure 3.

Judgement of the Stale Block
The blockchain is often described as a chain formed by connecting blocks containing valid 
transactions in chronological order. In fact, the blockchain stored in the full node is a tree structure. 
There can be multiple branches of chains at each tree height, while only one branch can go back 
from the optimal block to the genesis block. A branch traced back to the genesis block is known 

Figure 1. Bitcoin Block Synchronization Flow Chart

Figure 2. Stale Block Generation Diagram
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as the blockchain mainchain, while the other branches are known as blockchain sidechains. As 
mentioned earlier, stale blocks used to be the main or sidechain blocks for a while but eventually 
failed to connect to the mainchain.

Analysis of the code in this paper shows that the sufficient judgment condition for the stale block 
is as follows: 1. The block is not a mainchain block. 2. The total workload of the side chain on which 
the block is located is less than that of main chain 3. The height of the optimal block of the sidechain 
where the block is located is less than six blocks from the mainchain block.

Detection Node and Data Parser
As mentioned earlier, this paper implements a detection node to collect data related to stale blocks 
and a parser to parse the real-time data into analyzable data. This paper chooses full Bitcoin nodes 
(BTCD, 2022) for instrumentation to generate detection nodes. The choice is because the full 
Bitcoin node is a complete Bitcoin client that can access and maintain the complete blockchain data. 
The specific instrumentation plan for generating detection nodes is as follows. First, we divide the 
block synchronization behaviour into its constituent behaviours. Then, this paper parses out the full 
node operation corresponding to the behavior from the code, and the operations correspond to the 
function calls. Thus, this paper can realize one-to-one correspondence from the top-level behavior 
to the segmentation behavior and then to the bottom-level specific function calls. After that, this 
paper outputs the data in the corresponding function call. For example, in Figure 4, the chain swap 
operation in the block synchronization behavior of the full node requires three essential function 
calls: Findfork, getReorganiseNode, and getReorganiseChain. Finally, this paper implements a data 
analyzer to convert real-time data into analyzable data by string matching to real-time log files.

MeTHODOLOGy

In this section, this paper analyzes the causes that lead to the generation of stale blocks, identifies the 
factors that influence their generation, and establishes a prediction model to predict the probability 
of a block becoming stale based on real-time detection data.

what Affects Stale Block Generation?
The generation of stale blocks in the Bitcoin network is divided into four main stages: the generation 
of blocks by miners, the propagation of blocks by the network, the reception and processing of blocks 
by the full nodes, and the blocks becoming stale. Some factors affect the generation of stale blocks 
in each of these four stages.

Figure 3. Second Stale Block Generation Diagram
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1.  Network difficulty and decentralization degree: In the block generation process undertaken by 
miners, two primary factors affect the generation of stale blocks: network difficulty and decentralization 
degree. Network difficulty refers to the hash difficulty limit that needs to be satisfied when mining 
by a miner, which directly affects the speed of mining blocks by miners and the speed of reaching 
consensus in the network. This paper uses the dynamic difficulty in the Bitcoin code (BTCD, 2022) 
as a measure, which is the average of the difficulty of the most recent 2016 blocks.

2.  Degree of decentralization of the Bitcoin network: The more decentralized the network is, 
the greater the theoretical difficulty of reaching consensus across the network and the higher 
the probability of generating stale blocks. Coinbase CTO Srinivasan (Srinivasan & Lee, 2017) 
proposed a parameter to measure the degree of decentralization of the blockchain—the Satoshi–
Nakamoto coefficient. The principle is to calculate the Gini index of each of the six subsystems that 
make up the blockchain (such as mining revenue, node client version, or developer participation) 
as a parameter to measure the degree of decentralization. This paper adopts the Gini index of 
mining revenue and the Gini index of communication between neighbouring peer nodes to 
measure the network’s degree of decentralization.

3.  The network congestion level: In the process of new block propagation, the network congestion 
level is an important factor affecting the generation of stale blocks, which determines whether the 
blocks can spread to the whole network quickly and reach the correct consensus. Many factors 
affect the degree of network congestion, such as the block size, the number of nodes in the network, 
and the version share of nodes in the network. The larger the network congestion is, the longer the 
network takes to form consensus and the easier the generation of stale blocks (Vujičić et al., 2018).

4.  Aggregation effect: By performing a review of data concerning block synchronization collected 
from Bitcoin nodes, it is possible to discern the production of stale and orphan blocks which in 
turn has an aggregation effect (Figure 5). When the network produces these stale blocks, miners 
partake in mining different best-received blocks, consequently resulting in diluted computing 
power across the system and escalating the time taken to reach consensus. This paper uses the 
number of stale blocks and orphan blocks in the first hundred blocks of a new block as the 
aggregation effect parameter.

Figure 4. Full Bitcoin Node Instrumentation Diagram
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Analysis of Influencing Factors
This paper proposes measuring the probability of a block becoming stale by the following four 
variables: the network difficulty and decentralization during block generation, the degree of network 
congestion, and the aggregation effect parameters during propagation.

1.  Network difficulty parameter: This paper adopts the standard difficulty of a block as the 
network difficulty parameter to measure the dynamic difficulty of a block when it comes out of 
a block, where n refers to the block of height n, T

n
 refers to the time difference between the 

moment of the previous block coming out of a block of height n and the moment of the block 
coming out, Dif

n
 refers to the network difficulty when the block comes out of a block, T

Ave
 

refers to the average duration of the block coming out of a block, and 
n

n

n
T

−∑ 2016
 refers to the 

duration used for the first 2016 blocks out of the block, given by:

Dif Dif
T

T
Std n

Ave

n

n

n

= ×
×

−∑

2016

2016

 (1)

2.  Network congestion degree parameter: This paper uses the number of messages required to 
obtain a new block as the indicator of the congestion degree of the network, where T

IN
 refers 

to the difference between the block-out time and the connection time (s), calculated as the block-
up time minus the block-out time expressed by the block-out timestamp. T

M
 refers to the split-

average message reception of the full node, whose expression is as follows:

Congestion
T

TIn
M

= ×
60

 (2)

Figure 5. Aggregation Effect Diagram of Stale Blocks
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3.  Network decentralization parameters: This paper uses the mining revenue Gini index 
(ChainGini) and the message Gini index (InfGini) to measure the degree of decentralization of 
the network at synchronization. The message Gini index is also used to measure whether the 
information received by the probing nodes may be subject to information attacks against a single 
node and whether it can be used to effectively measure the network. This paper uses Miner

k
 to 

represent the number of blocks mined by a special miner’s address in the last 100 blocks. This 
paper uses node

k
 to represent the number of network messages received by the full node from 

a particular IP address in the last 10 minutes:

ChainGini
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k

k

= −
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= −
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4.  Aggregation effect parameter: It measures the aggregation effect of stale and orphan 
block generation in the network. Its parameter is the number of stale and orphan blocks 
in the last 100 blocks:

Cluster StaleN OrphanN= +  (5)

Prediction Model
This paper uses the XGBoost model (Chen & Guestrin, 2020; Xu et al., 2017) as the prediction model 
for stale blocks. The objective function of the XGBoost algorithm is shown below:

Obj l y y f
i

n

i i k

k

k
= ( )+ ( )

= =∑ ∑1 1
, ˆ Ω  (6)

The essence of its training is the process of gradually reducing the overall error by iteratively 
generating more classification trees to fit the classification error based on the predictions of 
the previously trained classification trees. Compared to the Adaboost and GBDT models, the 
XGBoost model adds a regular term to the loss function to control the complexity of the model. 
It can make the learned model simpler and prevent overfitting. The XGBoost model supports the 
user in defining the objective function and the loss function, which is more flexible. Compared 
to the random forest model, the XGBoost model can achieve better training results by adjusting 
the model training parameters. The XGBoost model also supports parallel processing, which 
allows for faster training of the model.

In the general XGBoost model, the loss function used for logistic regression is the following 
logistic loss:

l y y y e y e
i i i

y

i

yi i, ln lnˆ ˆˆ ˆ( ) = +( )+ −( ) +( )−1 1 1  (7)
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As seen in the previous section on data processing, in the process of stale block generation and 
prediction, the number of positive samples (stale blocks) to be predicted is much smaller than the 
number of negative samples (mainchain blocks), and there is an aggregation effect in the generation 
of stale blocks. Therefore, the difficulty of predicting a sample as a negative sample is much smaller 
than the difficulty of predicting it as a positive sample. As a result, this paper adopts the focal loss 
method for dense object detection (Lin et al., 2017; Wu et al., 2021) to adjust the loss function of 
XGBoost. The adjusted loss function is as follows. By adjusting the loss function, the XGBoost 
model in this paper can better distinguish more difficult positive samples (i.e., stale block samples):

l y y p y e p y e
i i t i

y

t i

yi i, ) ln( ln( )ˆ ˆ ˆ( ) = − − +( )+ −( ) −( ) +−α αγ γ1 1 1 1 1  (8)

Many parameters of the XGBoost model may lead to overfitting the model during the training 
process. Therefore, this paper also tunes these parameters. We describe the specific tuning results 
in the experimental section.

evaluation Indicators
Obviously, in practical application cases, the miner needs the model to accurately identify the stale 
blocks from all the received blocks and the model to accurately distinguish the mainchain blocks of 
the same height from the stale blocks and adjust the mining strategy accordingly. This paper uses 
accuracy and precision to determine whether the model can identify the stale blocks from all the 
received blocks. Additionally, accuracy is used to check whether the model can effectively distinguish 
between blocks of the same height and a similar number of blocks in the mainchain and stale blocks. 
Finally, accuracy indicates the number of correctly classified samples as a percentage of the total 
number of samples:

Accuracy
TP TN

FN TN TP FP
=

+
+ + +

 (9)

Precision indicates the ratio of the number of samples correctly identified by the model as positive 
classes to the total number of positive samples:

Precision
TP

TP FP
=

+
 (10)

MINING STRATeGy UNDeR THe INFLUeNCe OF STALe BLOCKS

The generation of stale blocks is inevitable in a decentralized Bitcoin network. If a miner chooses 
stale blocks as the basis for mining, there is a high probability that he blocks it mines will become 
stale due to chain swap. However, miners can reduce the impact of stale blocks on their revenue by 
adopting different mining strategies, thus increasing their revenue. In this section, this paper compares 
the gains from different mining strategies.

Current Mining Strategy and Revenue
Currently, the mining strategy of a miner is to receive the first block of a certain height as the optimal 
block and mine based on it. The miner’s revenue depends on whether the first block it receives is a 
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stale block (i.e., whether it is mining on a chain with a high probability of cropped). The total revenue 
expectation, when affected by stale blocks, is as follows, where p

mb
 refers to the probability that the 

mainchain block arrives first, p
T

 refers to the probability that chain swap occurs, p
i
 refers to the 

probability that the miner will mine the block earlier than other miners, P
Btc

 refers to the price of a 
single bitcoin, N

Btc
 and N

Pbtc
 refer to the bitcoin reward and the transaction fee when the block is 

released, respectively, n refers to the number of hash operations performed by the miner to mine the 
current block, m refers to the total number of operations performed by other nodes in the trading 
network, Cal  refers to the current miner’s computing power, and Cal

A
 refers to the current total 

computing power. T refers to the time taken to mine the block:

E p p p N N P p p p N N
mb T i Btc Pbtc Btc mb T i Btc Pbtc

= −( ) +( ) + − +( )1 1
� �
( ) ( ) ( PP

Btc
)  (11)

p
T

p p p
i n

T

n m

T
=











−( ) −( )−1
1 1

1
 (12)

n T Cal p
n

Dif
m T Cal p

m

Difn A m
= × =

×
= × =

×
, , ,

2 232 32
 (13)

New Mining Strategies
This paper proposes two new mining strategies based on stale block detection, and miners can choose 
the strategy for mining according to the situation. The optimized mining strategy is when the miner 
detects that the probability of the received block being stale is greater than a threshold value based 
on the model. The miner avoids the stale block and selects a mainchain block as a mining base. By 
mining through this strategy, the total revenue expectation function of the miner when affected by 
stale blocks is as follows, where A

c
 refers to the accuracy of the model in determining the stale blocks 

and T
M

 represents the arrival time difference between the mainchain blocks arriving at the node 
earliest at a certain height and the arrival time of the blocks arriving at the highest priority:

E A p p N N P
c T i Btc Pbtc Btc

= −( ) +( )1
�
( )  (14)

p
T T

p p p
i

M
n

T T

n m

TM=
−












−( ) −( )− −1
1 1

1
 (15)

n T T Cal p
n

Dif
M T Cal p

m

DifM n A m
= −( )× =

×
= × =

×
, , ,

2 232 32
 (16)
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The contrasting strategy involves selecting stale blocks for mining when the miner detects that 
the probability of the received blocks being stale blocks is greater than a threshold value based on 
the model. The total revenue expectation function of the miner, when affected by stale blocks, is as 
follows, where T

S
 refers to the arrival time difference between the earliest arriving stale block at a 

node at a certain height and the arrival time of the most preferred arriving block:

E A p p N N P
c T i Btc Pbtc Btc

= +( )�
( )  (17)

p
T T

p p p
i

S
n

T T

n m

TS=
−












−( ) −( )− −1
1 1

1
 (18)

n T T Cal p
n

Dif
M T Cal p

m

DifS n A m
= −( )× =

×
= × =

×
, , ,

2 232 32
 (19)

Optimization Strategy vs. Attack Strategy
Our proposed strategy is an optimization of the honest mining strategy in which the method 
recommends that miners select mainchain blocks as the basis for transaction validation. This method 
reduces the probability that the blocks mined by itself become stale blocks but does not impact the 
blocks mined by other honest mining nodes and improves miners’ gains under the influence of stale 
blocks. Moreover, the miners choose the mainchain blocks to mine, which also facilitates the nodes 
of the whole network in reaching consensus faster, saves the computing power resources of the entire 
network, and improves the efficiency of the transaction verification of the entire network. These 
features are essentially different from attack methods, such as selfish mining (Bag et al., 2016; Eyal 
& Sirer, 2018; Heilman et al., 2015), which exploits the concept of chain forking to craft maliciously 
generated sidechains thus leading to mainchain blocks created by honest nodes becoming stale and 
consequently hindering transaction networks from achieving consensus and posing economic hardships 
upon honest nodes. Therefore, our optimization strategy is more suitable for most honest miners in 
the network who do not commit evil acts to obtain larger revenue with a small judgment cost.

eXPeRIMeNTAL ReSULTS

This section describes the data collection results, preprocessing process, model tuning, experimental 
results, and application cases.

Data Collection
This paper implements a data collection and parsing tool. This paper deploys three detection nodes 
to collect block synchronization data of the Bitcoin Testnet for 20 days, including full node block 
synchronization data, chain transformation data, and internode communication data. The specific 
types and amounts of data are shown in Table 1.

By parsing the data collected by the parser, this paper can obtain the data about mainchain 
blocks, stale blocks and orphan blocks synchronised by the full node in 20 days, as well as the data 
about the network environment at the time of synchronising to the relevant blocks. According to the 
statistics, this paper collects 879 stale blocks, 3568 orphan blocks, and 41584 mainchain blocks in 
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20 days by three detection nodes (the nonrepetitive blocks are 426 stale blocks, 2327 orphan blocks, 
and 16838 mainchain blocks).

To verify real-time data collection, this paper counts the average time of block mining, the 
average time of block synchronization, the average time of data acquisition by the tool, and the 
average time of data processing by the tool within 20 days, as shown in Figure 6. The average time 
for block mining and synchronization in the network over a 20 days is approximately 253 seconds. 
The average time for the tool to obtain and process the data is approximately 3 seconds. Moreover, 
the block mining and synchronization time fluctuate between 10 and 20 seconds for a Bitcoin node, 
which is also greater than the processing time. In summary, the blockchain consensus in the network 
does not change significantly while the tool processes the data. Therefore, this paper concludes that 
the tool can meet the real-time requirements of data processing.

Data Preprocessing
After collecting the data of blocks, stale blocks, and orphan blocks within 20 days, the following data 
preprocessing work is performed on the data to facilitate data analysis and model building.

1.  Missing Data Completions: This paper cross-references the relevant data collected by different 
detection nodes to complete the missing values (except for temporal data).

2.  Data resampling: This paper adopts the method of undersampling mainchain blocks and 
oversampling stale blocks to balance the data volume.

3.  Exception handling: In processing block data, this paper finds that there are problems with the 
timestamps of some blocks, and the generation timestamps of blocks are smaller than the block 

Table 1. DataType Table

BLC INF WRN ERR

BLC INFO 250562 - - -

CHAN INFO - 1966 - -

SYNC INFO - 208871 - -

ERR INFO - - 213 453

Other INFO 503 214 127 42

Figure 6. Time Comparison
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arrival timestamps. Thus, this paper addresses the block timestamps according to the method of 
dealing with abnormal timestamps mentioned by Bowden et al. (2020). The method re-samples 
unreliable timestamps evenly between adjacent reliable timestamps. Then, the processing makes 
the timestamp data normal again.

4.  Outlier processing: This paper excludes outliers greater than four times the average cookie distance.
5.  Data standardization and normalization: Finally, this paper standardized the data.

After data processing, this paper divides the data into two parts to train the model. The first part 
is 70% of the data randomly selected as the training set, and the second comprises the remaining 
data, which is used as a test set to measure the model’s ability to distinguish normal blocks from stale 
blocks. Additionally, to measure whether the model can effectively distinguish between mainchain 
blocks and stale blocks of the same height and similar number, normal blocks and stale blocks of the 
same height (852 blocks in total) are distinguished as the second test set.

Modeling and Tuning
This paper customizes the loss function of the XGBoost model. It can have better prediction results 
when the number of positive and negative samples in the training differs significantly. As described 
in the article on focal loss for dense object detection (Lin et al., 2017; Wu et al., 2021), adjusting the 
α parameter allows the model to focus more on positive samples with smaller sample sizes. Adjusting 
the γ parameter allows the model to focus more on more difficult-to-judge samples. This paper tunes 
the α and γ parameters of the loss function with the same other training parameters. The paper also 
compares the strengths and weaknesses of the models with two different loss functions. We can 
conclude that the model predicts best when using the adjusted loss function with α = 0.8 and γ = 1.

Then, this paper tunes the other parameters of the XGBoost model, as shown in Table 3. The 
optimal prediction model is obtained when the learning degree is 0.5, the number of iteration layers 
is 20, the maximum tree depth is 10, the maximum incremental step of tree nodes is 5, the minimum 
tree divergence loss value is 1, and the division threshold is 0 in Table 2. The model can distinguish 
the stale blocks from all the received blocks (the precision is 0.976, and the precision ratio is 83/85) 
and distinguish the stale blocks from the mainchain blocks with the same height and stale blocks (the 
accuracy is 0.991, and the accuracy ratio is 844/852).

This paper also compares the performance of the random forest, GBDT, and decision tree models 
with that of the XGBoost model when the same training and test sets are used. As shown in Figure 
7, the XGBoost model has a higher prediction accuracy than the other models.

Table 2. Loss Function Parameter Tuning Table

Loss Function α γ
Pred1. 

Precision
Pred1. 

Accuracy Pred2. 
Accuracy

Test Train Test Train

Logit loss - - 0.905 0.998 0.820 0.978 0.957

New Loss 0.8 1 0.976 0.995 0.986 0.980 0.991

New Loss 0.8 0 0.917 0.985 0.978 0.982 0.957

New Loss 0.8 0.5 0.953 0.989 0.984 0.973 0.978

New Loss 0.8 2 0.987 0.998 0.953 0.994 0.984

New Loss 0.7 1 0.974 0.995 0.967 0.978 0.956

New Loss 0.6 1 0.941 0.985 0.935 0.973 0.937

New Loss 0.9 1 0.969 0.998 0.980 0.976 0.990
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Benefits of the New Strategy
In a determined Bitcoin network environment, two factors affect the revenue of miners and mining 
pools: miners’ computing power and the time difference between the arrival of mainchain blocks and 
the earliest stale blocks. This paper uses 20 days of Bitcoin test network data from July 3rd to July 
23rd as our database. From the previous prediction model, we can obtain A

c
= 0 991. , the average 

value of the 20-day difficulty is 28T, the current total network hash computing capacity is 204.75 
Eh s/ , the outgoing block bitcoin reward is 6.25BTC, the average transaction fee is 0.015
BTC block/ , and the bitcoin price is approximately 24000$USD/block$. This paper calculates 
p
mb
= 373 426/  and p

T
= 4 426/  in that period. According to Shahsavari et al. (2020), the current 

bitcoin blockchain block size is approximately 1 M. The time for the block to spread to ninety percent 
of the nodes across the network is approximately 10 s. Thus, the propagation interval between most 
of the stale blocks generated by honest miners and the mainchain blocks is also within 10 s. Therefore, 

Table 3. Model Tuning Table

ETA Nroud MaxDepth MaxDeltaStep MinSplitLoss
Pred1. 

Precision
Pred1. 

Accuracy Pred2. 
Accuracy

Test Train Test Train

0.5 20 10 5 1 0.976 0.995 0.986 0.980 0.991

0.5 20 5 5 1 0.953 0.985 0.983 0.970 0.978

0.5 20 20 5 1 0.989 0.998 0.978 0.982 0.983

0.5 20 10 1 1 0.940 0.989 0.984 0.973 0.988

0.5 20 10 10 1 0.976 0.995 0.978 0.980 0.978

0.5 20 10 5 0 0.917 0.998 0.976 0.988 0.984

0.5 20 10 5 2 0.988 0.999 0.953 0.989 0.984

0.5 10 10 5 1 0.976 0.995 0.953 0.981 0.984

0.1 20 10 5 1 0.976 0.995 0.957 0.979 0.957

Figure 7. Performance of the XGBoost, GBDT, Random Forest, and Decision Tree Models
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we set the propagation interval between the stale and mainchain blocks to 10 s and the total mining 
time to 10 min.

Using the above data as a basis, this paper compares the gains of three different strategies at 
different computing powers when affected by stale blocks in Figure 8. Meanwhile, this paper also 
uses the simulator to compare the revenue of selfish mining mentioned by Eyal and Sirer (2018) and 
the revenue of RL mining mentioned by Wang et al. (2021) in the same scenario. Finally, this paper 
denotes γ  the proportion of honest miners who choose to mine on the node or pool chain branch 
that adopts the strategy. Notably, the effects of stale blocks and propagation delays are not considered 
in both articles.

The propagation interval between the stale and mainchain blocks is not fixed. This paper calculates 
the gains of different strategies under the influence of stale blocks with variable propagation intervals. 
To make the revenue more intuitive, this paper sets the miner’s computing power to 10 EH/s with 
other conditions unchanged. The results are shown in Figure 9.

As a result, this paper concludes that miners can obtain more revenue with the optimized honest 
mining strategy compared to honest mining under the influence of stale blocks. Ideally, when the 
arrival time of stale blocks is close to that of mainchain blocks, it can increase total revenue by 10% 
to 15% compared to the original mining model under the influence of stale blocks, which can lead to 
1.3% to 3% profit growth (the normally stale block rate is 2 to 3 percent, and the cost of block mining 
is approximately 85% of the revenue). Furthermore, the strategy will improve profits if the network 
environment in which the miner is located is volatile and the stale block rate is higher.

We find three improvements if we compare the optimization strategy in this paper with some 
existing attack strategies of the selfish mining class. First, the optimization strategy does not require 
miners to keep private attack chains. Second, it does not require malicious attack methods such as 

Figure 8. Variation in Revenue with Computing Power
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chain substitution to damage the revenue of other miners. Third, it does not require miners to obtain 
more information about the network and nodes and does not harm the current bitcoin network. 
Furthermore, under the influence of stale blocks, with γ = 0 5. , the optimization strategy can 
effectively maximize the profit of all honest miners with less than 80 EH/s of computing power 
(approximately 40% of the network’s computing power) to increase the miner’s total revenue during 
the mining process.

CONCLUSION

This paper investigates the generation of stale blocks in the Bitcoin network. The current 
research has not analyzed the factors influencing the generation of stale blocks. Therefore, in 
this paper we first analyze the factors that influence the generation of stale blocks. Then, this 
paper proposes a new machine-learning prediction model based on the XGBoost model. The 
model is the first to predict network stale block generation by machine learning. However, 
the current blockchain data collection methods cannot collect enough blockchain formation 
data to train the model. Therefore, we propose a new node data collection method to obtain 
real-time data to train models.

The method generates detection nodes by code instrumentation to obtain more detailed real-time 
data. First, this paper labels real-time data based on the principles of stale block generation. Then, 
this paper separates the real-time data into a training set and a test set for model tuning.

After tuning the loss function and parameters of XGBoost, the model can accurately predict the 
generation of stale blocks. The precision of the model is 0.976. The model can also distinguish stale 
blocks from mainchain blocks with the same height and stale blocks with 0.991 accuracy. Ultimately, 
this paper proposes an optimized mining strategy based on the prediction model. The model can 
boost profits for mining nodes by 1.5% to 3.3%.

Some problems remain and will be addressed in future research, of which there are two 
key issues. First, the number of detection nodes for collecting and analyzing data is small, 

Figure 9. Variation in Revenue with Broadcast Time Space
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which results in incomplete data collection. Second, this paper needs to consider more data 
from the detection network to increase the prediction accuracy. In future research, we will 
focus on methods to arrange detection nodes in the network more efficiently. As a result, it can 
obtain more complete real-time network data and improve the prediction accuracy achieved 
by the method.
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